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Abstract

The immune response is known as a physiological mechanism to protect the body, pro-
viding defense to different systems that compose it and allowing its proper functioning. 
The ability to keep the organism free from foreign agents depends on the mechanisms of 
natural resistance or innate immunity, as well as the resistance that can develop over time 
through adaptive immunity. However, when these defense mechanisms fail, it can trig-
ger injuries and diseases in the tissues, such as hypersensitivity, which is characterized 
as an excessive and undesirable reaction, produced by the immune system; as well as 
autoimmunity, which refers to the failure of the mechanisms of immunological tolerance, 
causing the reaction of the immune system against the body itself.

Keywords: innate immune response, adaptive immune response, histocompatibility, 
immune tolerance, hypersensitivity diseases, autoimmune diseases

1. Introduction

The immune system is characterized by both innate and adaptive immune responses. The 
innate response is characterized by the recognition of molecular patterns associated with 
damage and pathogens, whose molecules and receptors are fixed in the DNA of the germ 
line. Adaptive immunity is an antigen-specific response which is relatively slow, since it 
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requires a genetic rearrangement [1]. The main objective of the immune system is the defense 
against pathogens through these innate and adaptive mechanisms [2, 3]. However, dysfunc-

tion or deficiency of the immune system can lead to tissue injuries and diseases. On the 
one hand, there are hypersensitivity diseases, which are characterized by excessive and 

undesirable reactions, produced by the immune system [4]. On the other hand, autoimmune 
diseases refer to the failure of the immunological tolerance mechanisms, causing reactions 

against own cells and tissues [5].

2. Innate immune system

The innate immune system is the first line of defense against invading pathogens. It has a dou-

ble role to provide initial control of the infection and initiate an adaptive immune response. 
The innate immune system consists of physical barriers such as epithelial layers and mucus, 

soluble factors such as the complement system, soluble mediators, cytokines and cells such 

as neutrophils, macrophages and dendritic cells [6]. These immune cells detected pathogens 
based on their molecules or pathogen-associated molecular patterns (PAMPs) that are recog-

nized by multiple classes of pattern-recognition receptors (PRRs) that initiate inflammatory 
responses [7]. PRRs can also recognize host molecules containing damage-associated molecu-

lar patterns (DAMPs), molecules that are released from cells damaged [8]. Then, these PRRs 
respond by producing several soluble mediators such as the complement system and proin-

flammatory cytokines to kill microbes or infected cells [1].

2.1. Immune innate system cells

The cells of the innate immune system have several functions that are essential for the defense 

of the organism. These cells respond by producing inflammatory cytokines and some of them 
are responsible for removing foreign substances, pathogens or infected cells. Some of the 
innate immune cells include macrophages, dendritic cells, neutrophils, mast cells, basophils 

and eosinophils.

2.1.1. Macrophages

Macrophages function as cells that capture and degrade agents that are not recognized as belong-

ing to the organism, in addition to being antigen-presenting cells; therefore, they are essential in 

both types of immunity (innate and adaptive) [9]. Macrophages are formed in the bone marrow 
from myeloid progenitor cells, which when stimulated by the granulocyte-macrophage colony-

stimulating factor (GM-CSF) are converted into monocytes, immature cells that are released into 
the bloodstream. Monocytes mature when stimulated by chemotactic substances, making them 
migrate to tissues as mature cells, establishing themselves for a lifetime of weeks to months. 
This cell type is directly related to the inflammatory response, since phagocytosis uses harm-

ful substances that can cause acute cell injury and promote apoptosis, including reactive oxy-

gen species (ROS), high amounts of nitric oxide and halogenating radicals. Other mechanisms 
that promote inflammation are through the production of cytokines such as interleukin (IL)-6 
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and tumor necrosis factor (TNF)-α. However, it has also been seen that macrophages modulate 
inflammation through the release of anti-inflammatory cytokines and growth factors such as 
IL-10, vascular endothelial growth factor (VEGF)-α, transforming growth factor (TGF)-β and 
Wnt proteins [10, 11]. Then, the macrophages can be divided into two general classes, depend-

ing on their phenotype, M1 that promote inflammation and M2 that release anti-inflammatory 
and pro-regenerative cytokines [12, 13].

2.1.2. Dendritic cells

The process of formation of dendritic cells (DCs) is like macrophages, being monocytes in 
their more immature stage. However, these cells are directed to epithelia even as immature 
cells and remain there for long periods (weeks or months). When they capture microorgan-

isms or antigenic agents, they eliminate them by phagocytosis, going through the lymph to 

the lymph nodes, where they will perform their specialized function as antigen-presenting 

cells [14]. The DCs present antigens to the T lymphocytes; however, it has been proven that 
they are also capable of activating B lymphocytes, natural killer (NK) cells, macrophages 
and eosinophils. DCs participate in innate immunity; however, they regulate the adaptive 
immune response and are fundamental for the development of immunological memory and 

tolerance [15]. There are mainly two DCs subpopulations: classical and plasmacytoid DCs. On 
the one hand, classical DCs are specialized cells in the antigen processing and presentation, 
which have both high phagocytic activity and capacity for cytokine production [16]. On the 
other hand, plasmacytoid DCs are long-lived cells [17], which are present in the bone mar-

row and in all peripheral organs and are specialized to respond to viral infection with mass 

production of type I interferons (IFN). However, these DCs can also act as antigen-presenting 
cells and control the responses of T cells [18].

2.1.3. Neutrophils

Neutrophils are phagocytes that are derived from myeloid cells as well as monocytes and den-

dritic cells. Its morphology is very characteristic, since they present nuclear lobes of different 
morphologies and they are known as polymorphonuclear (PMN). It is the most abundant leuko-

cyte in the blood (up to 70% of the total of leukocytes) and unlike the other phagocytes, neutro-

phils are released into the blood as mature cells; however, they have a short life time (from hours 
to maximum 2 days). They are the first cells of the immune system to reach the focus of infection 
and their function is practically phagocytosis. Although its short life has been identified that 
neutrophils are also involved in adaptive immunity, previously, it was known that neutrophils 

participated in the elimination of foreign agents by phagocytosis, dying in their function; how-

ever, it has been found that neutrophils have the ability to return to the bloodstream as antigen-

presenting cells, interacting with dendritic cells, NK cells, T and B lymphocytes [19, 20].

2.1.4. Mast cells

Mast cells are derived from mesenchymal precursor cells (MCPs) in bone marrow but mature 
in peripheral tissues. They are distributed mainly in tissues close to the external environment 
such as the skin, mucous membranes, digestive tract and respiratory tract. Activation of mast 

Immune System Disorders: Hypersensitivity and Autoimmunity
http://dx.doi.org/10.5772/intechopen.75794

3



cells is practically due to the binding of immunoglobulin (Ig)-E antibodies to the high-affinity 
receptors for the Fc region of IgE (FcεRI) found in their plasma membrane, triggering the 
release of their granules containing high concentrations of histamine, tryptase, chymase, car-

boxypeptidase and heparin [21]. Activation of mast cells causes the activation of phospholipase 
A2 and breaks down membrane lipids to produce arachidonic acid, which can be metabolized 
in two ways: (1) the cyclooxygenase (COX) pathway, producing prostaglandins and (2) the 
lipoxygenase pathway (LOX), producing leukotrienes. Both prostaglandins and leukotrienes 
have pro-inflammatory effects, increasing vascular permeability. The mast cells boost the 
immune response, increasing the recruitment of specific cells against pathogens, activating 
different types of immune cells such as macrophages, eosinophils and lymphocytes that elimi-
nate bacteria, fungi, some parasites and cells infected by viruses. Mast cells activate other cells 
of the immune system by releasing TNF-α, TGF-β, IL-4, IL-5, IL-8, granulocyte-macrophage 
colony-stimulating factor (GM-CSF), VEGF and fibroblast growth factor (FGF)-2 [22].

2.1.5. Basophils

Basophils are granulocytes derived from myeloid cells. They are the least abundant (0.5% of 
leukocytes) and have a nucleus in the form of S, lobed (1–3 lobes). They have many granules 
containing histamine, heparin, serotonin and high amounts of leukotrienes. Like mast cells, 
they contain histamine in their granules, being responsible for most of the early symptoms of 

IgE-dependent and non-dependent allergy (sneezing, pruritus, bronchospasm and edema). 
Basophils migrate to the site of inflammation and secrete proteases and various inflammatory 
mediators such as IL-4 to activate cells such as macrophages, innate lymphoid cells, fibro-

blasts and endothelial cells, aggravating the allergic inflammatory response [23, 24].

2.1.6. Eosinophils

Eosinophils are bilobed granulocytes originating from the bone marrow from myeloid cells, 
being released into the bloodstream in a mature manner and at low concentrations (3% of 
the total of granulocytes). An important characteristic of eosinophils is their high quantity of 
granules, which have different components, among which are high concentrations of leukot-
rienes, ROS, IL-4, IL-5, neurotoxins (EDN), main basic protein (MBP), eosinophilic cationic 
protein (ECP) and eosinophilic peroxidase (EPO) [25, 26]. Eosinophils play an important role 
in hypersensitivity since they are stimulated by IL-5 produced by mast cells and Th2 cells. 
Also, fibroblasts when stimulated by IL-4, release eotaxins, molecules that stimulate the func-

tion of eosinophils [27].

2.2. Pattern recognition receptors

Innate immune cells are capable of recognizing pathogens and endogenous molecules of pro-

teins known as PRRs. These receptors recognize highly conserved motifs known as PAMPs or 
DAMPs. PRRs dictate the initiation of an adequate and effective innate immune response, as 
well as the activation of the adaptive immune response to infection or inflammation [28]. These 
PRRs include Toll-like receptors (TLRs), nucleotide-binding domain and leucine-rich repeat-
containing receptors (NLRs) and RIG-I-like receptors (RLRs) [29].
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The TLRs family, was originally identified in Drosophila, as important genes for its ontogeny 
and the innate immune response in Drosophila adults [30]. The TLRs family consists of 10 
highly conserved transmembrane glycoproteins in humans, which recognize a wide range of 

pathogens [31]. TLR-1, TLR-2, TLR-4, TLR-5, and TLR-6 are expressed on the cell surface, while 
TL-3, TLR-7, TLR-8, and TLR-9 are found intracellularly in endosomes [32]. The extracellular 
leucine-rich repeat (LRR) regions in the TLRs mediate protein-protein or PAMP-protein interac-

tions, while their intracellular tails mediate proinflammatory signaling through the myeloid dif-
ferentiation primary response protein (MYD88) and TIR domain-containing adapter molecule 1 
(TRIF; also known as TICAM1) pathways [33]. They are expressed in a wide variety of cells such 
as innate immune cells, T and B cells, epithelial cells, fibroblasts, and endothelial cells; however, 
not all cell types express every TLR [34]. Different TLRs specifically recognize distinct PAMPs 
and DAMPs [35]. For example, TLR2 recognizes lipoarabinomannan from mycobacteria [36]. 
Some TLRs detect different nucleic acids; TLR3 detects viral double-stranded RNA (dsRNA) 
formed during the replication of positive stranded viral RNA in the cytosol [37]; TLR7 and TLR8 
both recognize viral single-stranded RNA (ssRNA) [38, 39] and TLR9 recognizes bacterial DNA 
[40]. TLR4 together with myeloid differentiation factor (MD)-2 recognizes lipopolysaccharide 
(LPS), which comes from Gram-negative bacteria [41]. Further, TLR4 is also involved in antivi-
ral innate immunity [42, 43]. TLR5 is highly expressed DCs and detects bacterial flagellin [44, 

45]. Plasmacytoid DCs express TLR7 and TLR9, and both are implicated in recognition of viral 
and bacterial nucleic acids [46]. TLR10 has been implicated in the recognition of Helicobacter 

pylori by gastric epithelial cells and may act as a heterodimer with TLR2 [47, 48].

The NLR family comprises 22 members in humans. Most NLRs share common structural char-

acteristics including a C-terminal leucine-rich repeat (LRR) domain, often involved in ligand 
recognition, a central NOD, and a variable N-terminal effector domain [49]. Based on the type 
of effector domains that is either a caspase recruitment domain (CARD), a pyrin domain (PYD), 
or a baculoviral inhibitor of apoptosis protein repeat (BIR) domain [50], the NLR family can be 
categorized structurally into five subsets based on their N-terminal effector domain: NLRA, 
NLRB, NLRC, NLRP and NLRX [29]. The most well-defined sensors of peptidoglycan are the 
cytosolic NOD-like receptors (NLRs), NOD1 and NOD2, which are expressed by diverse cell 
types, including myeloid phagocytes and epithelial cells [51], which recognize specific ligands 
from various pathogens. This family is involved in increasing the proinflammatory events 
caused by cell death and several more proinflammatory processes [52].

The RIG-I-like receptor family consists of RNA-binding proteins that are expressed in almost 
all cells. Family members include RIG-1, melanoma differentiation-associated gene (MDA)-5, 
and laboratory of genetics and physiology (LGP)-2 [34]. They act as sensors for viral replica-

tion within human host cells necessary to mediate antiviral responses [53].

2.3. Cytokines

Cytokines are secreted proteins that can be delineated as a distinct class of signaling mol-
ecules from hormones based on two key factors. First, the kinetics of cytokine secretion (rapid 
and dramatic induction following specific extracellular stimuli), which is often prolonged at 
less dramatic concentrations to affect physiological changes. Second, cytokines can be signal-
ing autocrine, paracrine and endocrine fashions [54, 55]. Cytokines are involved in regulating 
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the homeostasis of the organism, but when its production or its signaling pathway in the cell 

is not regulated, this homeostasis is altered, which can trigger in a pathology [56, 57].

Cytokines can be classified into five groups [57]: (1) IL-1 superfamily, there are 10 members of 
the IL-1 family of receptors (IL-1R1–ILR10) [58] and 11 members of the IL-1 family of cytokines 
(IL-1α, IL-1β, IL-1Ra, IL-18, IL-33, IL-36α, IL-36β, IL-36γ, IL-36Ra, IL-37 and IL-38) [59]. The 
interleukin-1 superfamily members are closely linked to damaging inflammation; however, 
the same members also function to increase nonspecific resistance to infection and the devel-
opment of an immune response to foreign antigens [60]. (2) TNF superfamily is composed of 
19 ligands and 29 receptors [61]. This family plays a pivotal role in immunity, inflammation 
and controlling cell cycle (proliferation, differentiation and apoptosis) [62]. (3) The interleu-

kin (IL)-17 cytokine family is composed of IL-17A and five other members (IL-17B, IL-17C, 
IL-17D, IL-17E, also referred to as IL-25, and IL17F). IL-17-related cytokines play key roles 
in defense against extracellular pathogen, autoimmunity. In addition, there is evidence that 
indicates that some of these molecules are involved in the amplification and perpetuation of 
pathological processes in many inflammatory diseases, such as psoriasis, rheumatoid arthri-
tis, multiple sclerosis and allergy. However, the same cytokines can exert anti-inflammatory 
effects in specific settings and play key role in the control of immune homeostasis [63, 64]. (4) 
IL-6 superfamily is comprised by IL-6, leukemia inhibitory factor (LIF), oncostatin M (OSM), 
ciliary neurotrophic factor (CNTF), cardiotrophin (CT)-1, IL-11, cardiotrophin-like cytokine 
factor (CLCF)-1, viral IL-6 (vIL-6), IL-27 and IL-35 [65]. This cytokine family shows some 
redundant but not uniformly identical biological activity. IL-6 exerts pleiotropic effects on 
inflammation, immune response and hematopoiesis [66, 67]. IL-6 is produced at the inflamma-

tion site by infection or tissue damage, which induces production of acute phase proteins such 

as C-reactive protein (CRP), serum amyloid A, fibrinogen and hepcidin in liver. IL-6 also plays 
an important role in acquired immune response to induce differentiation of activated B cells 
in to antibody (Ab)-producing cells and to prolong survival of plasmablasts [65], while it pro-

motes the development of Th17 cells and follicular helper T cells by naïve T cells and inhibits 

the differentiation into regulatory T cells (Treg) [68]. But, dysregulated excessive or persistent 
production of IL-6 plays a pathological role in various kinds of diseases [65]. (5) Type I super-

family, includes the common γ-chain cytokines (IL-2, IL-4, IL-7, IL-9, IL-13, IL-15 and IL-21) 
[69], common β-chain cytokines (IL-3, IL-5, GM-CSF) [70] and IL-12 subfamilies (IL-12, IL-23, 
IL-27 and IL-35), as well as similar cytokine products with unique receptor characteristics such 
as IL-13, IL-14, IL-32, IL-34, granulocyte colony-stimulating factor (G-CSF) and macrophage 
colony-stimulating factor (M-CSF). (6) Type II superfamily contains the interferons (type I, II 
and III) and the IL-10 subfamily (IL-10, IL-19, IL-20, IL-22, IL-24 and IL-26) [54].

2.4. Inflammatory response and phagocytosis

Inflammation is a protective response to infection, tissue stress and injury [71]. This inflam-

matory response is characterized by its clinical signs such as redness, heat, swelling, pain and 

dysfunction [72]. The inflammatory response is triggered by inducers such as PAMPs derived 
from bacteria, viruses, fungi and parasites; and DAMPs derived from cell damage, as well 
as toxic cellular components or any other harmful conditions [73]. Then, these inflammatory 
inducers are detected by “sensors,” which are present in several immune cells. These sensors 
are PRRs such as TLRs, NLR and RIG-like receptors [52, 74]. Subsequently, the PRRs induced 
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the synthesis and release of soluble mediators such as cytokines [75]. Cytokines, as opti-
mal protection against pathogens, provide the necessary signals to initiate an inflammatory 
response, through the differentiation and proliferation of the immune system cells, adapting 
their effector functions as necessary to promote protective immunity, and once the inducers 
are eliminated, they suppress the inflammatory response, promoting tissue repair and return 
to homeostasis [54]. The inflammatory response is characterized by successive phases [76]: (1) 
silent phase, where cells reside in the damaged tissue releases in the first inflammatory medi-
ators; (2) vascular phase, where vasodilation and increased vascular permeability occur; (3) 
cellular phase, which is characterized by the infiltration of leukocytes to the site of injury; and 
(4) resolution of inflammation, which is the process to return tissues to homeostasis [77–79].

Phagocytosis is the physiological process carried out by phagocytic cells to identify, digest 
and eliminate foreign substances or pathogens (Figure 1). Infection with pathogens is the 
most common cause to trigger this immune mechanism. The pathogens proliferate releasing 
small peptides with chemotactic activity, dispersing in the areas of underlying tissue and 

blood vessels. These chemotactic peptides come into contact with the endothelial cells that 
form the blood vessels and phagocytes that are found in the invaded tissue (macrophages 
and/or dendritic cells), as well as those found in the blood (neutrophils and monocytes). 
Endothelial cells initiate the synthesis of cell adhesion proteins, as do phagocytes found in 
the blood. The adhesion proteins allow the phagocytes of the blood to bind to the endothe-

lial cells, causing them to roll on the surface until finding an exit between the cell junctions, 
migrating to the extravascular space by a process known as diapedesis. The phagocytes that 
were close to the area of infection and those that migrated from the blood move toward the 

focus of infection attracted by the chemotactic peptides. The microorganisms have structural 
components (the receptor for IgG (FcR) and PAMPs, among others) that are recognized by 
PRRs found in phagocytes [80, 81].

The interaction of these surface molecules causes the invagination of the cell membrane and 

the formation of cellular prolongations that end up involving the foreign pathogens in a 

phagocytic vacuole or phagosome. The chemical interaction of the molecules on the mem-

brane surface of microorganisms and phagocytes activates diverse receptors, including those 

of Gq proteins that activate phospholipase C, an enzyme that degrades membrane phospho-

lipids to produce inositol triphosphate (IP3) and diacylglycerol (DAG). The IP3, among many 
of its functions, is responsible for regulating cell movement by the cytoskeleton through the 

release of calcium ions by the endoplasmic reticulum. On the other hand, the DAG activates 
a protein kinase C (PKC), which activates the cytosolic proteins p40, p47 and p67, which, 
supported by ras-related protein Rap-1A (RAP1A), interact with cytochrome B558, one of the 
components of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase. Activated 
NADPH oxidase promotes the release of ROS, molecules highly toxic to cellular compo-

nents. NADPH oxidase captures high amounts of oxygen, transforming them into superox-

ide anions (O2−), which in turn promote the formation of dangerous ROS such as hydrogen 
peroxide (H

2
O

2
), hydroxyl (OH−) and oxygen singlet (1O

2
). The ROS react with the biomol-

ecules that make up the structures of the microorganisms (lipids, polysaccharides, proteins 
and nucleic acids), causing their death. Simultaneously, the phagocytes fuse lysosomes to the 
vacuole in which the microorganism is internalized, forming the phagosome, also releasing 

many hydrolytic enzymes that favor the digestion of the microorganism components [82].
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Lysosomes contain myeloperoxidase, an enzyme that hydrolyzes hydrogen peroxide for the 
formation of halogenating radicals such as hypochlorous acid, hypochlorite and hypoiodite, 

which increase the damage to microorganisms. Finally, cell debris has two purposes: (1) to be 
eliminated by exocytosis, (debris are evacuated into the bloodstream to be eliminated by renal 
route); and (2) to transport certain antigenic components to the cell membrane to be presented 
to T and B cells and be able to give the process of acquired immunity (mainly in the case of den-

dritic cells and macrophages) [82].

3. Adaptive immune system

The adaptive immune system has the capacity to generate a wide range of specific antigen 
receptors, through somatic mechanisms of gene rearrangement. These mechanisms create a 

Figure 1. Phagocytosis. (1) Recognition of structural components of pathogens by the PRRs of phagocytes. (2) 
Invagination of the cellular plasma membrane that causes the internalization of the pathogens, forming the phagosome. 
(3) Fusion of the lysosomes with the phagosome, promoting the digestion of the pathogens by hydrolytic enzymes. In 
addition, ROS are released that contribute to the degradation of biomolecules. (4) Destruction of the pathogens. (5) The 
activation of phospholipase C causes the activation of PKC. (6) PKC activates NADPH oxidase. (6) ROS are produced 
by NADPH oxidase. (7) ROS are directed to the phagosome, contribute to the degradation of pathogens. (8) Release by 
exocytosis of the pathogens residual.
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random repertoire of receptors that are clonally distributed in T and B lymphocytes. This 
gives it the advantage of having a wide repertoire of specific antigen receptors, which can be 
recognized, without these having to be encoded in the host genome, allowing the recognition 

of almost any antigenic structure. The activation of lymphocytes requires two types of sig-

nals: (1) a signal induced by the antigen receptor itself when recognizing its related antigen, 
and a costimulatory signal by professional antigen-presenting cells (APCs). Therefore, the 
innate immune system, as already explained earlier, determines the origin of the antigens by 

means of a non-clonal system of receptors, PRRs, encoded in the germ line, which controls 
the expression of costimulatory molecules and effector cytokines, while the adaptive immune 
system does it through antigenic receptors [83, 84].

3.1. T lymphocytes

During the hematopoiesis that is generated in the bone marrow, it gives rise to the precur-

sors of all the lineages and states of differentiation of the T cells. These precursors, called 
thymocytes, travel through the peripheral blood and reach the thymus, where they mature 

in T lymphocytes. Later, they will differentiate into CD4+ T lymphocytes (cooperators) or 
CD8+ T lymphocytes (cytotoxic). Once they are differentiated, they travel through the blood 
circulation until they are activated by means of the surface receptor they present, when they 

encounter a specific antigen. This receptor, known as T cell receptor (TCR), binds to the 
major histocompatibility complex (MHC), a complex expressed by antigen-presenting cells, 
in which the antigen is presented in the form of peptides. Depending on the T cell to which 
the antigen is presented, MHC class I or MHC class II will be used. To present an antigen to 
the CD4+ T lymphocyte, a presentation through the MHC-II will be required; while for the 
activation of a CD8+ T lymphocyte, it will be necessary through the MHC-I [84, 85]. T lympho-

cytes are responsible for cellular adaptive immunity. The activation of CD8+ T lymphocytes 

allows the destruction of infected cells through the release of perforins, which are proteins 

responsible for forming pores in the membrane of the target cell that causes the passage of 

water and ions, inducing an osmotic lysis of the infected cell. Similarly, CD8+ T lymphocytes 

release toxic enzymes such as the granzyme that passes through the pores formed in the cell 

membrane, which causes the induction to cell death by fragmenting the DNA of the infected 
cell. Activation of CD4+ T lymphocytes allows cooperation with other immune cells for their 

activation. As the case of macrophages, B lymphocytes and other T lymphocytes, through 
costimulatory molecules and the release of cytokines, this causes a powerful cellular activa-

tion and therefore an effective immune response. In addition to this, CD4+ T lymphocytes can 

differentiate into cellular subpopulations with specific action. Mediated by the secretion of 
cytokines, they can be differentiated into Th1, Th2, Th9, Th17 and Th22 types [86].

In addition, memory T lymphocytes have a long life, functionally inactive but respond to 
new exposures of the same antigen quickly and efficiently. There is another population of 
T lymphocytes, the regulatory T lymphocytes [86]. This cellular population is responsible 
for eliminating autoreactive T cells that escaped the process of negative selection or central 

tolerance; with the purpose, to avoid the development of an autoimmune response [87]. 
Other lymphocytes, such as LTγ/δ, are another very rare cell type that represent about 10% 
of intraepithelial lymphocytes of the small intestine but increase drastically under certain 
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allergic or inflammatory conditions. In addition, they recognize complete proteins without 
needing to be processed to be presented through the MHC molecules [88].

3.2. B lymphocytes

The B lymphocytes are originated from the same precursor that gives origin to the T lym-

phocytes and the NK cells. However, the absence of certain cell membrane receptors in B 
lymphocytes leads to their differentiation in this cell line, a process that takes place in bone 
marrow. Up to this point, the B lymphocytes are immature, and it will be until they migrate 
from the bone marrow into the spleen to undergo positive and negative selection and thus 

produce a mature B lymphocyte [89]. B lymphocytes can be activated: (1) by a foreign agent 
through the TCD4+ lymphocytes collaboration; (2) or in specific circumstances independent 
of CD4+ T lymphocytes. In the case of CD4+ T lymphocytes collaboration, it occurs through 

the MHC expressed in its cell membrane, which binds to the B cell receptor (BCR), to initiate 
the antigenic presentation that will end in the synthesis of antibodies [90]. B lymphocytes are 
cells that participate in humoral adaptive immunity, since once activated they proliferate in 

response to the antigen and differentiate into plasma cells to produce antibodies against the 
specific antigen [91]. Likewise, activated B lymphocytes can differentiate into memory cells, 
acquiring a capacity for survival for long periods of time, up to more than 10 years, approxi-
mately [92, 93]. However, various co-stimulatory receptors that are expressed in B cells can 
induce their proliferation and survival, as well as the regulation of the production of specific 
antibodies that contribute to a breakdown of immunological tolerance, triggering autoim-

mune diseases [94].

3.3. Antibodies

Antibodies, also known as immunoglobulins (Ig) are structurally composed of two heavy 
polypeptide chains identical to each other and two light chains also identical, joined by one 

or more disulfide bridges. They have a variable region with two domains (VH, VL) and a 
constant region with four domains (CL, CH1, CH2 and CH3) [95]. The segments of the vari-
able region originate through a somatic recombination, which allows having the diversity in 

the repertoire of antibodies, since at least 1026 of different specific antibodies are generated. 
They have a Fab fragment (fragment antigen binding) and an Fc fragment (crystallizable frac-

tion). The Fab portion is an antigen-binding zone, while the Fc is a constant zone where the 
interaction with cellular receptors and the effector part of the biological functions presented 
by the antibodies occurs. Among these biological functions are crossing the placental barrier, 
activating complement, neutralizing antigens, joining phagocytic cells and acting as opsonin; 

all to generate protection and eliminate pathogens or elements harmful to the host [96].

There are 5 classes recognized up to the moment of antibodies: IgA, IgG, IgM, IgE and 
IgD. Most are monomeric, but they can be presented pentameric as IgM and only IgA can 
be present in both dimeric and monomeric forms. There are 4 subclasses for IgG (IgG1-IgG4) 
and 2 for IgA (IgA1 and IgA2). This is due to variations in the constant regions, which causes 
functional differences between the antibodies of the same class [97]. Among the functions of 
IgG is complement activation, with subclass IgG3 having the greatest effect, whereas IgG4 
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cannot activate it. It is the antibody in greater amount circulating in the blood and more 
increases during a secondary immune response. It can cross the placenta and, in the newborn, 
favors its immunological protection. It helps in phagocytosis through opsonization, as well as 
in the neutralization of pathogens with great effectiveness [98]. IgA is found in greater con-

centration due to its location in epithelia, in body secretions such as saliva, tears, colostrum, 

respiratory, gastrointestinal and genitourinary secretions; which allows it to generate a broad 

protection against pathogens and allergens. In blood circulation, it is found in a monomeric 
way; but in mucous, it is found in a dimeric form behaving as secretory IgA [99]. The IgE 
antibody is found in very small concentrations in the bloodstream. The majority is bound to 
a surface receptor of mast cells, eosinophils and basophils, which causes it to be involved in 

allergic reactions in humans, since it induces the release of pro inflammatory cytokines when 
IgE recognizes specific antigens [100]. It also causes degranulation of the aforementioned 
cells, causing the release of vasoactive substances such as histamine, causing an inflammatory 
response. Also, it can increase the production of this antibody by the effect of allergens such 
as those that can be found in food, some drugs and seasonal allergens, which causes allergic 

reactions. This immunoglobulin is very effective in the defense against parasitic infections 
[101]. In the case of IgM, it is the first antibody that appears with immune response reactions. 
It is the first antibody that is expressed on the surface of B lymphocytes and the one that 
predominates in primary immune reactions. It is the largest, due to its pentameric formation, 
which allows it to bind several antigens (approximately, 6 antigens per IgM) and is the main 
activator of the complement system [102]. Finally, IgD is the immunoglobulin that is also 
found on the surface of B lymphocytes, being a marker of their maturity. However, at the 
time of contact with the antigen, IgD is lost during antigenic stimulation. It participates as an 
antigen receptor and signaling transmitter inside the cell and, in blood circulation, it is found 
in very small amounts and is not produced by plasma cells [103].

4. Histocompatibility

The molecules of the major histocompatibility complex (MHC), also called human leukocyte 
antigens (HLA) [104, 105], are the product of a set of genes responsible for the lymphocytes 

rejecting transplanted tissues and detecting foreign elements. These molecules also partici-
pate in the induction of the specific immune response, through the presentation of the antigen 
to the T lymphocytes [104]. In the mammalian genome and, more specifically, in the human 
genome, the most variable region known forms the MHC that carries a great number of differ-

ent loci coding for functional genes [106]. The classical MHC encompasses approximately 3.6 
megabasepairs (Mb) and is divided into three subregions: the telomeric class I, class III, and 
the centromeric class II regions [107]. In humans, the MHC region is approximately 4000 kb  
long, located on the short arm of chromosome 6 [105, 106].

Molecular markers, located on the cell surface, help to externalize the intracellular environ-

ment and give the individual a specific tissue identity, recognized by their immune system. 
Under normal conditions, the MHC molecules reach the cell membrane bound to their own 
elements, so when they are presented to the T lymphocytes, they do not activate them; when 
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by infection or pathological changes of the cell, they emerge, carrying a foreign molecule 

instead of their own, the T cell is activated and responds immediately [108]. The function 
of MHC molecules is to bind peptide fragments derived from pathogens and display them 
on the cell surface for recognition by the appropriate T lymphocyte. The consequences are 
almost always deleterious to the pathogen—virus-infected cells are killed, macrophages are 

activated to kill bacteria living in their intracellular vesicles, and B lymphocyte are activated 

to produce antibodies that eliminate or neutralize extracellular pathogens [105].

4.1. Major histocompatibility complex (MHC-I)

The genes, whether expressed, are arranged in three genomic regions or classes. The more distal 
region corresponds to MHC class I, which carries the genes that code for the classic (1a) class I 
HLA-A, -B, and -C heavy chains, all nucleated cells express class I molecules on their cell sur-
face [109]. They present cytoplasmic or endogenous antigens (synthesized intracellularly, those of 
viral or tumoral origin and processed by the proteasome) to the CD8+ T lymphocyte [110]. MHC-I 
is a molecule made up of an α polypeptide chain, with three domains (α1, α2 and α3) and the β

2
 

microglobulin subunit. In the cleft that is formed between α1 and α2, it is added  the antigenic 
peptide that is going to present [108]. The classical molecules MHC-I (A, B and C) are expressed 
on the surface of all cells, except those of the trophoblast, erythrocytes and neurons. Its main 
function is the presentation of antigens to the CD8+ T lymphocyte [111]. The MHC-I is formed in 
the endoplasmic reticulum and interacts with the chaperone molecules: calnexin and calreticulin, 
which help it to bind with the β

2
 microglobulin and confer stability on it. A third molecule, the 

capsid, helps transporting antigen processing peptides (TAP)-1 and TAP2 to form the channel 
that allows the passage of the antigenic peptide from the cytoplasm to the endoplasmic reticulum, 

where it binds to the MHC-I. This complex (MHC-I-antigenic peptide) leaves the endoplasmic 
reticulum in a vesicle, travels through the cytoplasm and is finally exocytosed. On the cell sur-

face, the MHC molecule and the antigenic peptide that it carries bind to the CD8+ T lymphocyte 

receptor and it is through this union that the so-called “presentation” is made. If the presented 
peptide corresponds to a molecule of its own, the lymphocyte does not respond. If the presented 
peptide is foreign, accessory signals are transmitted through costimulatory molecules such as 
B7-CD28, CD40-CD40L, etc., which activate CD8+ T lymphocyte. The activated cytotoxic lympho-

cyte, through the firing of cytolytic enzymes and the induction of apoptosis, destroys the host 
cell, carrier of endogenous antigens such as viruses or tumor cell elements (Figure 2, right) [108].

4.2. Major histocompatibility complex (MHC-II)

The MHC class II genes, coding for both chains that will form the functional heterodimer, 
HLA-DR, HLA-DQ, HLA-DP, HLA-DM, and HLA-DO are in the more centromeric portion 
of the MHC region [109]. They exhibit restricted expression, being predominantly expressed 
on antigen-presenting cells (APC), such as macrophages, DCs, Langerhans and Kupffer cells, 
as well as B lymphocytes [112], also intravesicular or exogenous antigens (synthesized extra-

cellularly and processed by lysosomes) to CD4+ T lymphocyte [110]. CMH-II is composed of 
two polypeptide chains: α and β, both with two domains. The antigenic peptide binding site 
it presents is located between α1 and β1 [105, 108]. The antigen, for its presentation, must be 
processed by the cell that captured it and be reduced to small peptides, since the sites to which 

Immunoregulatory Aspects of Immunotherapy12



it binds both in the MHC and in the T lymphocyte, can only host molecules with a smaller 
size to 25 amino acids [108]. The classical molecules MHC-II (DP, DQ and DR) are expressed, 
constitutively, on the surface of the cells participating in the “immune response” (phagocytes 
and lymphocytes), but by activation with INF-γ, they can be expressed in other cells that, 
like fibroblasts, keratinocytes, barley and endothelial, also participate in this response [111]. 
The MHC-II is synthesized in the endoplasmic reticulum and portal a molecule: the invari-
ant chain (Li or CD74) that protects the site that the antigen will occupy, favors its exit of the 
reticulum and takes it to endosomes where it meets the antigenic peptides. In this place, vari-
ous cathepsins break the Li chain, which leaves the site corresponding to the antigen free and 
allows its binding to MHC, the Li residues (CLIP) are removed by the DM molecule. Finally, 
the antigenic peptide emerges to the surface linked to MHC-II, a molecule through which it 
makes contact and is presented to the CD4+ T lymphocyte. If the presented molecule is strange, 
the T-helper cell cytokines are activated and secreted. These cytokines can activate the host 
cell and lymphocytes and cells surrounding (Th1 predominant response), as well as stimulate 
the production of antibodies (Th2 predominant response). The class of secreted cytokines and 
therefore, the function that they do, depends on the type of Th cell that responds. In all cases, 
there is a regulation that, at the end of the Antigenic stimulus: slows the response, induces 
apoptosis activated cells, inhibits inflammation and initiates repair (Figure 2, left) [113].

5. Immune tolerance

5.1. Central tolerance of lymphocytes T and B

The “immunological tolerance” was established in 1954, as an acquired state learned during the 

development of the immune system by exposure to antigens in its immediate environment [114].  

Figure 2. Processing and presentation of antigen. In the MHC class I pathway (right), the proteosomes process the protein 
antigens in the cytoplasm, which are transported to the endoplasmic reticulum (ER), where they bind to the MHC class 
I molecules. Subsequently, these are presented to the T lymphocytes, to induce a CD8+ phenotype. In the MHC class 
II pathway (left), the extracellular protein antigens are introduced into the antigen-presenting cell by endocytosis, in 
vesicles, where the antigens are processed, and the peptides bound to the MHC class II molecules, which are present to 
the T lymphocytes to induce a CD4+ phenotype.
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A single antigen can induce an immune response or tolerance depending on the context in 
which it occurs. Tolerance is acquired, triggered from the ontogeny of lymphocytes and there 
are different mechanisms to maintain it. One is carried in the primary lymphoid organs, known 
as central tolerance. The other is carried in the secondary lymphoid organs and is known as 
peripheral tolerance [115]. The central tolerance, also known as negative selection, is carried out 
during the development of the T and B cells, when the newly generated cells test their receptors 

for the recognition of antigens in their immediate environment. It consists of a clonal elimina-

tion in the bone marrow of autoreactive B lymphocytes and self-reactive T lymphocytes in 

the thymus. It prevents maturation of those lymphocytes capable of recognizing autoantigens 
through the expression of high affinity receptors and occurs through the recognition of these by 
the antigen-presenting cells through MHC molecules. On the other hand, peripheral tolerance 
allows maintenance in the control of effective immune responses against “self” [116].

5.2. Peripheral tolerance of T and B lymphocytes

After the T and B lymphocytes have passed through the control of negative selection or central 
tolerance and mature, they are directed by blood circulation to secondary lymphoid organs 

such as the spleen and lymph nodes. Lymphocytes require secondary signals to activate and 
generate a positive response against foreign antigens. If the lymphocytes do not generate a 
positive response against these antigens, the lymphocytes become anergic or die by apoptosis. 
Similarly, when lymphocytes are activated by antigens inappropriately (autoreactive), regula-

tory mechanisms are activated that correct such failures through the participation of regula-

tory T lymphocytes (T
regs

) [117].

5.3. Tolerance induced by exogenous antigens

The tolerance for exogenous antigens is due to the lack of immune response against anti-

gens from food and normal flora, as well as inhaled antigens, to avoid triggering an immune 
response that affects the integrity of the individual. This type of tolerance occurs mainly on 
mucous membranes. The participation of IgA immunoglobulin as essential component of 
mucosal immunity, whose function is the neutralization of antigens or immune complexes, 

prevents their absorption and progression of active immune response. Dendritic cells are also 
highly responsible for immunological tolerance toward exogenous antigens. In part, they are 
responsible for their ability to induce the expression of T

regs
 FOXP3+ lymphocytes [118].

6. Immune hypersensitivity

The immune system is an integral part of human protection against disease, but the nor-

mally protective immune mechanisms can sometimes cause detrimental reactions in the 

host. Hypersensitivity diseases include autoimmune diseases, in which immune responses 
are directed against self-antigens, and diseases that result from uncontrolled or excessive 

responses to foreign antigens. Because these reactions tend to occur against antigens that 
cannot be escaped (i.e., self-antigens) and because of positive feedback systems intrinsic to 
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various aspects of the immune response, hypersensitivity diseases tend to manifest as chronic 

problems. The traditional classification for hypersensitivity reactions is that of Gell and 
Coombs and is currently the most commonly known classification system (Figure 3) [119].

6.1. Type I reactions

Immediate hypersensitivity reactions are mediated by IgE, but T and B cells play important 
roles in the development of these antibodies. The allergic reaction first requires sensitization 
to a specific allergen and occurs in genetically predisposed individuals. The allergen is either 
inhaled or ingested and is then processed by APC, such as a DCs, macrophage, or B-cell [120]. 
The APC then migrates to lymph nodes, where they prime naïve T cells that bear receptors for 

the specific antigen. After antigen priming, naïve T cells differentiate into Th1, Th2, or Th17 
cells based upon antigen and cytokine signaling. In the case of allergen sensitization, the dif-
ferentiation of naïve T cells is skewed toward a Th2 phenotype. These allergen-primed Th2 
cells then release IL-4, IL-5, IL-9 and IL-13. IL-5 plays a role in eosinophil development, recruit-
ment and activation. IL-9 plays a regulatory role in mast cells activation. IL-4 and IL-13 act on 
B cells to promote production of antigen-specific IgE antibodies. For this to occur, B cells must 
also bind to the allergen via allergen-specific receptors. They then internalize and process the 

Figure 3. Hypersensitivity reactions. (A) Type I hypersensitivity. The binding of the antigen to preformed IgE antibodies 
bound to the surface of mast cells or basophils, causes the release of inflammatory mediators such as histamine, 
cytokines and metabolites of arachidonic acid, which produces clinical manifestations, such as septic shock, rhinitis 

allergic, allergic asthma and acute allergic reactions to drugs. (B) Type II hypersensitivity. Cytotoxic reactions involve 
the binding of both IgM and IgG antibodies to antigens bound to cells. The antigen–antibody binding results in the 
activation of the complement cascade and in the destruction of the cell to which the antigen is bound. (C) Type III 
hypersensitivity. Immunocomplexes are formed when the antigens bind to the antibodies. They are usually removed 
from the process by phagocytosis. However, the deposition of these immunocomplexes in the tissues or in the vascular 
endothelium can produce a tissue aggression mediated by immunocomplexes. (D) Type IV hypersensitivity. These 
types of reactions are not mediated by antibodies. Delayed hypersensitivity reactions are mediated primarily by T 
lymphocytes (cell-mediated immunity).
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antigen and present peptides from it, bound to the MHC-II molecules found on B cell surfaces, 
to the antigen receptors on Th2 cells. Type I reactions are immediate hypersensitivity reac-

tions involving IgE-mediated release of histamine and other mediators from mast cells and 
basophils (Figure 3A). Examples include anaphylaxis and allergic rhino conjunctivitis [121].

6.2. Type II reactions

Type II or cytotoxic hypersensitivity [119] depends on the abnormal production of IgG or 
IgM directed against tissue antigens or a normal reaction to foreign antigens expressed on 
host cells. There are three main mechanisms of injury in type II reactions: (1) activation of 
complement followed by complement-mediated lysis or phagocytosis and removal by leuko-

cytes; the IgG or IgM antibody can complex with antigens on the surface of cells or extracel-
lular matrix and this complex then may activate complement. Complement activation will 
result in formation of the membrane attack complex (MAC) and cause osmotic lysis of the 
target cell; (2) antibody-dependent cellular cytotoxicity; the second type II reaction is called 
antibody-dependent cell-mediated cytotoxicity IgG antibodies that can bind FcγRIII on NK 
cells and macrophages, thus mediating the release of granzymes and perforin and resulting in 

cell death by apoptosis (ADCC); (3) inactivation of a biologically active molecule; disruption 
of biologically functional molecules can occur when autoantibodies bind to these molecules 

(Figure 3B). An example is antibody produced against acetylcholine receptors in myasthenia 
gravis resulting in increased turnover of the receptor at motor end-plates and subsequent 

muscular weakness or drug-induced hemolytic anemia [122, 123].

Drug-induced immune hemolytic anemia (DIIHA) is rare, and required to provide the opti-
mal serological tests to confirm the diagnosis. The drugs most frequently associated with 
DIIHA at this time are cefotetan, ceftriaxone and piperacillin. DIIHA is attributed most com-

monly to drug-dependent antibodies that can only be detected in the presence of drug. The 
drug affects the immune system, causing production of red blood cell (RBC) autoantibodies; 
the clinical and laboratory findings are identical to autoimmune hemolytic anemia (AIHA), 
other than the remission associated with discontinuing the drug. Some of the mechanisms 
involved in DIIHA are controversial. The most acceptable one involves drugs like penicillin 
that covalently binds to proteins (e.g., RBC membrane proteins); RBCs become coated with 
drug in vivo and, a drug antibody (usually IgG) attaches to the drug-coated RBCs that are 
subsequently cleared by macrophages. The most controversial is the so-called immune com-

plex mechanism, which has been revised to suggest that most drugs are capable of binding 

to RBC membrane proteins, but not covalently like penicillins. The combined membrane plus 
drug can create an immunogen; the antibodies formed can be IgM or IgG and often activate 
complement, leading to acute intravascular lysis and sometimes renal failure; fatalities are 

more common in this group. It is still unknown why and how some drugs induce RBC auto-

antibodies, sometimes causing AIHA [124].

6.3. Type III reactions

Type III reactions (immune-complex reactions) involve circulating antigen-antibody immune 
complexes that deposit in postcapillary venules, with subsequent complement fixation. An 
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example is serum sickness. Type III hypersensitivity is caused by circulating immunocomplexes 
and is typified by serum sickness (a drug reaction in which multimeric drug-antibody aggre-

gates form in solution). Preformed immunocomplexes deposit in various vascular beds and 
cause injury at these sites. Multimeric antigen-antibody complexes are efficient activators of 
the complement cascade through its classical pathway. The vascular beds in which immuno-

complexes are deposited are determined in part by the physical nature of the complexes (their 
aggregate size, charge, hydrophobicity, etc.), and the specificity of deposition at locations can 
be surprisingly precise in some diseases (Figure 3C). Typical sites of injury are kidney, skin, 
and mucous membranes. Type III hypersensitivity is common in systemic lupus erythematosus 
(SLE) and underlies most of the pathophysiology of this chronic autoimmune disease. Some 
inflammatory reactions may blend features of type II and III hypersensitivity with the formation 
of immunocomplexes in situ [125].

6.4. Type IV reactions

Type IV reactions (delayed hypersensitivity reactions and cell-mediated immunity) are medi-
ated by T cells rather than by antibodies (Figure 3D). An example is contact dermatitis from 
poison ivy or nickel allergy, tuberculosis, leprosy and sarcoidosis. In tuberculosis, cellular 
hypersensitivity, the delayed type of allergy, may be defined as an immunological state in 
which lymphocytes and macrophages are directly or indirectly sensitive to tuberculin, acti-

vate macrophages [126], and can passively transfer delayed hypersensitivity to the normal 

host [127]. Lymphocytes, when exposed to tuberculin merely produce a toxic or irritating 
product affecting macrophages, whether they sensitize macrophages to tuberculin [128]. In 
tuberculosis, delayed hypersensitivity is both beneficial and detrimental. In low concentra-

tions, tuberculin stimulates the development of immunity in macrophages. Therefore, the 
presence of hypersensitivity is an asset in preventing pulmonary tuberculosis for only small 

units of one to three bacilli that reach the alveolar spaces where the infections begins. In high 
concentrations, tuberculin kills macrophages and thus is responsible for the liquefaction of 

caseous foci. This process results in tremendous extracellular multiplication of tubercle bacilli 
followed by their spread throughout the bronchial tree and to the other people [129].

7. Pathogenesis of autoimmunity (loss of immunological tolerance)

7.1. Gene base of autoimmunity

Despite the various immunological mechanisms to maintain tolerance to itself, there are cer-

tain individuals who develop autoimmunity. In 1986, the idea was postulated that the T and 
B cells specific for antigens coming from infecting pathogens, also generate a cross reaction 
against autoantigens even though the pathogens are eliminated. This type of response is ini-
tiated by low affinity T cells that have escaped the central tolerance. In addition, there is 
a genetic component capable of initiating and causing a persistence of autoimmunity and, 

therefore, trigger an autoimmune disease. However, epigenetic factors also play an important 
role in their development. They have been classified as a specific organism or systemic, with 

Immune System Disorders: Hypersensitivity and Autoimmunity
http://dx.doi.org/10.5772/intechopen.75794

17



the genetic susceptibility in the alleles of class I and class II molecules, a large part of the cause 
of the occurrence of autoimmune diseases such as systemic lupus erythematosus and type I 
diabetes mellitus [90]. Thus, the appearance of polymorphisms in more than 50 genes, among 
which a small number has been identified that affect the expression of molecules involved in 
the general activation of T cells, causes a high susceptibility to type I diabetes. In the case of 
the presentation of systemic autoimmune diseases, genetic susceptibility occurs in the general 

activation of B lymphocytes, affecting the signaling and survival receptors, which allows the 
autoreactive B cells of higher affinity to escape from the negative selection. Also, the genetic 
deletion of certain TLRs, such as TLR-9, increases the susceptibility to manifest autoimmune 
diseases. Depositions of antigen-antibody complexes in tissues, such as kidney, have been 
an important factor in the manifestation of autoimmune diseases. This is due to the variation 
in certain genes such as those responsible for synthesizing the components of the comple-

ment and its receptors, which can initiate autoimmune pathologies. Another important factor 
that triggers autoimmunity is the loss of certain immunoregulatory mechanisms. Such is the 
case of a chronic stimulation of the TCR, by a persistent antigenic exposure that can deregu-

late the immune response through adaptive tolerance mechanisms. A loss of the anergy of 
autoreactive T lymphocytes, a failure in cell death by apoptosis of autoreactive T cells, the 

loss of suppression of these cells due to T
regs

 lymphocytes, polyclonal activation of autoreac-

tive T lymphocytes, may also occur among other mechanisms that can trigger autoimmunity 

[130]. Finally, autoimmune diseases can affect a specific cell type, several cells or the entire 
organism. Its initiation will depend on the pathways by which the immunological tolerance is 
altered, being of great importance the genetic predisposition that certain individuals present.

7.2. Autoimmune diseases

Autoimmune diseases are a consequence of an immune reaction against an autoantigen. They 
can affect a single organ or cell type; however, they are usually also systemic, as is the case of 
the onset of rheumatoid arthritis or systemic lupus erythematosus.

Systemic lupus erythematosus (SLE) is a rare disease with a prevalence of 3.3 to 8.8 per 100,000 
children. There is a high frequency reported in Asians, African Americans, Hispanics and Native 
Americans; the age at which it usually manifests is between 11 and 12 years of age and about 80% 
of adults who have SLE are women [131]. It is a multisystemic autoimmune disorder character-

ized by extended immunological dysregulation, formation of autoantibodies and immune com-

plexes, resulting in inflammation and potential damage to a wide variety of organs. The clinical 
manifestation presented is nonspecific, such as the appearance of fever, fatigue, anorexia, alope-

cia and arthralgias. Symptoms such as generalized inflammation, including lymphadenopathy 
and hepatosplenomegaly, may manifest during the onset of SLE. However, the hallmark of this 
disease is the appearance of a butterfly-shaped malar rash. This condition can affect any organ of 
the system and its diagnosis is given through clinical manifestations and laboratory tests. Such 
is the case of the search for antibodies such as antinuclear antibodies (ANA), which are present 
in the serum of almost 98% of patients with SLE; Anti-dsDNA antibodies are present between 
61 and 93% of patients with active disease; Anti-Smith antibodies are highly specific, but they 
can be found only in almost 50% of patients; Antibodies such as anti-Ro, anti-La, anti-U1RNP, 
anti-histones and rheumatoid factor, can also be used as a diagnosis of SLE. The indicated treat-
ment is according to the activity of the disease and its severity, as well as the organs affected by 
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the SLE. The immunopathogenesis of this disease is mediated by the recruitment of autoreac-

tive T cells and excessive plasma levels of proinflammatory cytokines. In addition, dendritic 
cells and subpopulations of T cells such as Th1, Th17 and regulatory T cells are significantly 
altered in function and number. However, the fundamental immunological dysfunction in the 
appearance of SLE is the loss of tolerance to nuclear antigens. There are defects that promote 
the presentation of autoantigens and the response to apoptotic residues in an immunogenic 

form; also, those faults that affect the signaling of the T or B cells, which causes the autoreactive 
abnormal stimulation of the lymphocytes; as well as those defects that promote the survival of 

autoreactive lymphocytes. Therefore, the loss of immunological tolerance is a factor that causes 
the presentation of systemic lupus erythematosus [132].

Rheumatoid arthritis (RA) is a chronic inflammatory multisystem disease characterized by 
destructive synovitis, in which all joints can be affected, mainly the small joints of the hands and 
feet. RA is a chronic progressive disease that results in decreased functional capacity and qual-
ity of life. It can manifest in individuals with genetic predisposition; however, it is of unknown 
etiology. It affects 0.2 to 2% of the worldwide, in a population of 40 years old, although it could 
happen at any age [133]. The diagnosis of RA occurs through the presentation of clinical mani-
festations, such as the onset of arthritis of at least 3 joints and morning stiffness of more than 30 
minutes, as well as an exacerbated joint inflammation with the presence of pain. Likewise, blood 
concentrations of C-reactive protein and rheumatoid factor are evaluated, which will be elevated 
depending on the inflammatory activity of the RA. Another determinant with a high probability 
for the diagnosis of the disease is the evaluation of anti-CCP antibodies. The immunopathogen-

esis of RA results from the loss of immunological tolerance, with the consequence of an elevated 
secretion of proinflammatory cytokines such as IL-6, which is found in some patients, in high 
quantities in synovial fluid. In addition, the formations of autoantibodies that attack the joints of 
the entire organism are among the main causes of the presentation of RA [134].

8. Conclusion

The immune system is characterized by a network of complex mechanisms whose main objec-

tive is to protect the body. However, if there is a failure in its regulation, it can generate 
hypersensitivity and/or autoimmunity. For this reason, it is very important to know how our 
immune system works and how these pathologies originate. Currently, anaphylactic shock 
and skin reactions are the most frequent hypersensitivity reactions affecting organs and tis-

sues. There are several mechanisms and factors involved which triggers hypersensitivity 
reactions. On the other hand, although autoimmune diseases are relatively common and our 
current knowledge about the mechanisms involved in their pathogenesis is very limited.
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