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Abstract

Photovoltaic-thermoelectric hybrid (PV-TE) systems combine photovoltaic (PV) cells and
thermoelectric cooling (TEC) modules to improve the system performance. PV panels
efficiency is undesirably influenced by temperature rise, reducing power outlet from PV
cells. As a countermeasure, cooling methods have been widely suggested. In this chapter,
we provide an overview of both technologies, as well as an analysis of thermoelectric
cooling as a possible solution to temperature rise in PV panels. Energy and exergy bal-
ances of hybrid system are conducted to determine if the thermoelectric cooling is viable
for a self-sustaining system. Our results show that copper indium gallium selenide (CIGS),
crystalline silicon (c-Si), amorphous silicon (a-Si), and cadmium tellurium (CdTe) PV
panels are unsuitable candidates using the TE cooling. Even though exergy losses dimin-
ish with temperature decrease in CIGS, c-Si, and a-Si, the power consumption of the TEC
has shown to overcome power generation from PV panels.

Keywords: thermoelectrics, cooling, photovoltaics, hybrid, exergy

1. Introduction

When talking about photovoltaics we are referring to a technology that generates a direct

current from semi-conducting materials arranged in cells when they are illuminated by photon

particles [1]. These cells generate electrical power for as long as light is shined upon them.

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



PV effect was first observed by Heinrich Hertz in the late 1800s and has come across

power generating devices by early 1900s [2]. It only became more relevant with positive-

negative (pn) junction discovery, consolidating the development of solar photovoltaic

panels [1]. Ever since, efficiency has been a paramount factor to be optimized and, as

technology advanced and efficiency increased, the diffusion of PV panels has reached

worldwide popularity.

1.1. Basic concepts of PV cells

Incident light can be conceived as a stream of photons at a determined frequency. A photon,

is a particle of electromagnetic energy, this energy contained by the photon follows the

equation:

Ephoton ¼ hν (1)

where Ephoton is the energy of the photon, h is Planck’s constant (6:626∗10�34 JsÞ, and ν is the

light frequency [3]. When photons with an appropriate frequency, incoming from the shined

light, hit a metal surface, electrons in the metal absorb the photons’ energy and are knocked

off. This energy of the photon transferred to the electron is conserved. An amount is used to

knock off the electron (Φ), this term is known as work function and varies according to the metal

employed, and the remaining energy is transformed into kinetic energy for the electron

(Kelectron).

Ephoton ¼ Kelectron þΦ (2)

This work function Φ is the minimum energy required to knock off an electron from a metallic

surface, and its value is given by the metallic material. As photons’ energy is determined by

their frequency, the minimum frequency required to match the work function is known as the

threshold frequency (ν0), and for frequencies greater than ν0, electrons hit will be ejected [3],

producing a current flow.

As depicted in Figure 1, the frequency of red light (left) is a lesser value than the threshold

frequency (ν0) required to knock off electrons, so none are ejected. The green and blue frequen-

cies of moderate and short wavelengths respectively have (ν > ν0) causing photoemission.

Higher frequencies correspond to higher kinetic energy acquired by the electrons as they are

ejected.

Figure 1. Different frequencies/wavelengths result in none, slower or faster electron ejection from the metal surface as

protons collide with it [4].
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1.2. PVefficiency as a function of temperature

As discussed before, materials are determinant for the energy amount required to knock off

electrons and start a current flow. Different material compounds will possess distinctive photo-

electric properties. We can think of this diversity as the stress resistance an alloy possesses;

different alloys will have diverse behaviors when submitted to stress conditions, just as different

material combinations will allow various photoelectric characteristics.

The paramount property when looking for photoelectric materials is efficiency (η). With higher

efficiencies, more incident sunlight will be effectively converted into exploitable electrical

power. This relationship between the net electrical power delivered by the PV panel (PPV ) and

its efficiency (ηPV ) can be expressed as:

PPV ¼ ηPVQsolar (3)

where Qsolar is the total incident sunlight shined upon the panel’s surface.

Nonetheless, PV panel efficiency is influenced not only by the material’s properties, but it

can also vary due to temperature changes regardless of the material composition. The

drop in efficiency as temperature rises can be traced to the influence upon current and

the voltage; as it turns out, the thermally excited electrons begin to dominate the electrical

properties of the semi-conductor [5] describing a linear relation for the PV efficiency in the

form:

ηPV ¼ ηTref
1� γ Tcell � Tref

� �� �

(4)

in which ηTref
is the cell efficiency at the reference temperature Tref , typically 25�C, and γ

represents the temperature coefficient, which can be found in Table 1 for the several types of

PV modules analyzed. These values are usually given by the manufacturer, but can also be

calculated with:

γ ¼

1

T0 � Tref
(5)

for which T0 is the temperature at which the PV panel’s efficiency drops to zero.

1.3. Why choose PV panels?

Back in 1997, the largest panels available were 100 W panels, each was around 9% efficient; the

cost oscillated around $1300 apiece. Today, solar panels can be up to 24% efficient and cost 25

times less. They also have a higher capacity and a longer life expectancy. Of course, there is

more to the installation cost than just the solar panels alone. Cabling, inverters, batteries,

mounting brackets and time all cost money, and most of those prices have increased in the

past 20 years, but the fact remains that solar has been transformed from an obscure niche

product to mainstream energy generation because of incredible leaps in the technology that

has made solar more efficient and affordable [6].
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Nonetheless, several studies throughout the years have established that temperature increase

in PV cells result in efficiency decrease [7–10]. Hence, power output of a PV panel decreases

with temperature increment. This is the reason for cooling devices as key component of an

integrated hybrid generation system. As PV panels are only capable to convert sunlight or

luminous energy into electrical energy, any heat contained in the system will result in an ill

temperature rise with counterproductive results. For this purpose, thermoelectric technology

Parameters Symbol Value

Ambient temperature Tamb 293 K

Area of PV panel Acell 0:4 m2

Area of thermoelectric module ATE 0:04 m2

Characteristic longitude LC 0:6325 m

Efficiency of PV panel at reference temperature ηTref

CdTe 27:9%

CIGS 13:3%

c-Si 12:4%

a-Si 5:0%

Emissivity of the ground Eground 0:2

Emissivity of the sky Esky 0:9

Gravity’s acceleration g 9:81 m=s2

Reference temperature Tref 298 K

Reflected radiation fraction ropt 0:12

Stephen-Boltzmann constant σ 5:6704∗10�8 W=m2K4

Solar incidence G 700W=m2

Sun temperature Tsun 6000 K

Temperature coefficient γ

CdTe 0:00205 K�1

CIGS 0:00353 K�1

c-Si 0:00392 K�1

a-Si 0:00110 K�1

Thermal conductivity (air) k 0:02587W=mK

Thermal diffusivity (air) α 0:00002163 m2=s

Thermal expansion coefficient (air) β 0:00324 K�1

Tilt angle θ 45
�

Wind speed w 2 m=s

Table 1. Parameters of the PV-TEC hybrid system.
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has come to our attention, offering a compact solution for the cooling problem that has been

previously discussed.

1.4. Thermoelectrics

An electrical potential, also known as voltage, is generated within two dissimilar conducting

materials subjected to a temperature gradient. The conversion of this electric voltage differ-

ences into temperature gradients and vice versa is known as the thermoelectric effect [11]. It is

composed by three different phenomena: the Seebeck effect, the Peltier effect, and the Thom-

son effect. These can be used to generate electricity, measure temperature, and as a heat source/

pump.

1.4.1. The Seebeck effect

An electrical current is originated when an electrical circuit consisting of two dissimilar metals

has a temperature difference between its joints. This kind of arrangement is known as thermo-

couple and is usually composed of p-doped and n-doped semiconductors, as depicted in

Figure 2a.

The Seebeck effect is a typical example of an electromotive force (emf), modifying Ohm’s law:

V ¼ ∝∆T (6)

where ∝ is the Seebeck coefficient, a property inherent to the local material, also known as

themorpower, and ∆T is the temperature gradient between the heat source and the cool side.

1.4.2. The Peltier effect

Complementary to the Seebeck Effect, when a current is passed through an electrical circuit

consisting of two dissimilar metals, heat may be generated or removed at the junction as

shown in Figure 2b. Heat generation or removal will alternate in the junctions if the direction

of the current flow is reversed.

Figure 2. A thermoelectric circuit composed of dissimilar materials, configured as a thermoelectric generator (a) [12] and

as a thermoelectric cooler (b) [13].
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The Peltier heat generated at the joints per time unit is:

_Q ¼ ΠA �ΠBð ÞI (7)

where _Q is the heat flow, ΠA and ΠB are the Peltier coefficients of conductors, and I is the

electric current (from A to B).

1.5. TECs performance as a function of temperature

Thermoelectric modules can operate as electrical energy generators or heat pumps, commonly

known as cooling devices. The efficiency for these modules benefits from high temperature

gradients (∆T) while generating electrical energy, somewhat around 300�C for most devices.

On the other hand, cooling thermoelectric coefficient of performance (COP) is increased when

small temperature gradients are present between the body that’s been cooled and the ambient

temperature.

While on cooling mode, TEC modules consume energy, removing heat from a particular

source and releasing it into the medium. This heat removal and energy consumption differ

greatly in behavior depending on the thermocouple materials. For the analysis presented here,

a commercial module HP-199-1.4-1.15 from TE Technology, Inc. has been implemented. The

technical specifications and fitting data were taken from its datasheet presented in Figure 3.

Equations (8) and (9) have been fitted to this data, considering a hot side temperature of 50�C

and 10.2 V circuit voltage.

Qremoved ¼ �1:4557∆T þ 67:004 (8)

ITEC ¼ �0:0185∆T þ 3:213 (9)

Additional to this heat removal, TEC module consumes energy, which is not necessarily the

same amount as heat removes. This power consumption is the product of the circuit voltage

(VTEC) and the input current (ITEC).

Figure 3. Amount of heat removed (a) and magnitude of current demanded (b) by a commercial HP-199-1.4-1.15

thermoelectric cooler as a function of the temperature gradient between the heat source (Tcell) and the heat sink (Tamb) as

specified by its data sheet.
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Pmodule ¼ VTECITEC (10)

Equations (9) and (10) account only for a single TEC module. For calculating the number of

TEC modules required, the heat to be removed must be found (Qcool) from Eq. (14). Then the

quotient from Qremoved and Qcool can be used to determine the number of TEC modules (nTEC)

required for the cooling, and then multiplied by each individual consumption to find the total

power consumed by the array.

nTEC ¼

Qcool

Qremoved

(11)

PTEC ¼ PmodulenTEC (12)

where Pmodule is the power consumed by each TEC module, and PTEC is the total power

consumed by all TEC modules for cooling.

1.6. Why choose thermoelectrics?

It is established by the Peltier effect that heat is absorbed or liberated when current crosses an

interface, given the direction of the current flow, between two different conductors [11], laying

the foundations for TEC modules. These constitute miniature devices, unlike conventional

vapor systems, energized by a DC power input. Additional to the weight and space savings

carried by TECs, their solid-state construction is fluid free to operate and highly reliable,

offering also a precise temperature control [14].

In this chapter, we will structure a theoretical frame for the energy inputs and outputs of

a PV+TEC hybrid as a brief overview. Then, we will turn out attention to the operational

feasibility of the hybrid system, using an energy and exergy balance as assessment.

Finally, results of our simulations as well as conclusions will be presented and discussed

in depth.

2. Theoretical frame

First, we consider the studied system to be analyzed: a solar PV panel shined upon by sunlight,

while cooled through a commercial thermoelectric module (HP-199-1.4-1.15) with previously

defined working conditions, see Figure 4. Normal convection and radiation take place, as well

as sunlight rejection from the PV panel’s surface. Also, the system has reached a steady-state

condition, meaning that the previously mentioned variables defining the system are unchang-

ing in time.

During steady-state conditions, the total amount of energy remains constant; thus, the total

energy change in the system equals zero (∆Esys ¼ 0) [15]. In consequence, the amount of

energy entering the system must be equal to the amount of energy leaving the system. And

so, the general energy balance is reduced to:

Feasibility and Numerical Analysis of Hybrid Photovoltaic (PV) Panels with Thermoelectric Cooling (TEC)…
http://dx.doi.org/10.5772/intechopen.75441

337



_Ein �
_Eout ¼ 0 (13)

Different energy inputs and outputs are outlined entering and leaving the hybrid PV-TEC

system, as can be appreciated in Figure 5. The sunlight irradiates the panel (Qsolar) continu-

ously, this luminous energy is either absorbed or reflected (Qopt) by the PV panel surface. The

absorbed fraction is then transformed into electrical energy (PPV ) and heat. Some of this heat

will be dissipated passively, this means that no energy inputs will be required to extract it from

Figure 4. Schematic of the PV+TEC assembly.

Figure 5. Schematic of the PV+TEC energy inputs and outputs.
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the system, on each side of the cell by natural cooling mechanisms such as convection (Qconv)

and radiation (Qrad).

If we left the system to cool passively, a temperature around 60–80�C is expected to be reached

[16]. But in this scenario, a cooling system is implemented to reduce its temperature even

more. The thermoelectrical cooler will extract another energy fraction (Qcool) from its contact

surface with the PV panel at TC, while consuming electrical power, and release it to its

surroundings passively through its rear end at TH , no additional components passive or active

are considered heat extraction, for example heat exchangers. Thus, considering Eq. (13), the

energy balance equation for the hybrid system in steady-state conditions can be written as

follows:

Qsolar ¼ Qopt þQconv þQrad þ PPV þQcool (14)

Each term is determined by several factors, such as panel characteristics, ambient temperature,

wind speed, solar radiation conditions, etc. [17]. These system parameters are shown in Table 1

and will be employed in further equations. Each term in Eq. (14) is determined by a theoretical

model which will be described in the sections to come.

2.1. Solar radiation model

Solar irradiance varies significantly from one place to another and changes throughout the

year [6]. The values considered for this model in Table 1 were selected considering a standard

setting for solar irradiance and tilt angle. This selected data is input into the following equation

to calculate Qsolar and Qopt.

Qsolar ¼ GAcell (15)

It is to be noted that part of Qsolar is reflected by the solar panel materials, thus never entering

the system. This fraction of reflected radiation is commonly expressed as ropt and used to

calculate the optical losses (Qopt) of sunlight radiation.

Qopt ¼ Qsolarropt (16)

As stated before, the net solar energy (Qsolar �Qopt) entering the system will be transformed

into electrical power (PPVÞ and heat. This heat is dissipated by several mechanisms such as

convection, radiation, and the thermoelectrical cooling module.

2.2. Convective heat model

As heat accumulates in the system, temperature rises, creating a temperature differential

between the system and its surroundings. This originates a heat exchange between the system

and the surrounding air known as convective heat loss. There are two phenomena accountable

for heat loss: forced and natural convection; these must be considered for the front and the rear

faces as the air surrounds the plate from both sides.
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Natural convection is related to the temperature difference between the outside air and the

panel, which includes the movement of the fluid due to the local density gradients. In calm or

little windy days, the contribution of natural convection becomes significant, even more in

cold climates where temperature differences between the panel surface and ambient air can be

relatively large [17]. Forced convection, in the other hand, relates to the presence of the wind.

There are numerous studies on the evaluation of the heat transfer coefficients due to this

phenomenon, some are studies in wind galleries, others on field measurements, nonetheless

several authors found that the theory usually underestimates the presence of different objects

near the panels (other panels, trees, soil, buildings, etc.) [17].

The small area in between the two faces is rendered negligible, and the plate is considered as

an isothermal surface for simplification purposes [18]. This allows us to define the convective

heat loss as:

Qconv ¼ Qconv, front þQconv, rear (17)

Qconv, front ¼ hconv, frontAcell Tcell � Tambð Þ (18)

Qconv, rear ¼ hconv, rearAcell Tcell � Tambð Þ (19)

where hconv is the overall convective heat coefficient, Acell is the PV panel surface, and

Tcell � Tambð Þ is the temperature gradient between the cell surface and the ambient tempera-

ture. Acell, Tcell, and Tamb are constant values that can be found in Table 1 as system parameters.

Nonetheless hconv must be calculated, considering natural and forced convection into the same

coefficient for each panel side:

hconv, front ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hnatural, front
3 þ hforced, front

33

q

(20)

hconv, rear ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hnatural, rear
3 þ hforced, front

33

q

(21)

To determine forced convection heat transfer coefficient, wind speed (w) is a key variable, this

parameter can also be found in Table 1. A model developed by Sharples and Charlesworth

methodology [19] is applied to the system.

hforced, front ¼ 3:3wþ 6:5 (22)

hforced, rear ¼ 2:2wþ 8:3 (23)

This leaves natural convection heat transfer coefficient remaining. For it, the Nusselt (Nu)

number concept must be analyzed first. The Nusselt number, named after Wilhelm Nusselt,

establishes the ratio of convective to conductive heat transfer [20] and, as it may be inferred,

it’s dimensionless.

Nu ¼
Qconv

Qcond

¼
Lchnatural

k
(24)
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where hnatural is the natural convective coefficient for the fluid, k the fluid’s thermal conductivity,

and Lc the characteristic longitude of the surface. Nusselt numbers are usually determined

empirically for different configurations such as horizontal or inclined flat surfaces, spherical

and cylindrical objects, enclosures, etc. The PV panel configuration resembles that of an inclined

plane, for which Fujii and Imura model [21] as well as Churchills and Chu’s [21] are suggested to

be implemented.

Nufront ¼ 0:14 Rað Þ
1
3 � Racrð Þ

1
3

h i

þ 0:56 Racr cosθð Þ
1
4 (25)

Nurear ¼ 0:825þ
0:387Ra

1
6

1þ 0:492
Pr

� �9
6

h i 8
27

2

6

6

4

3

7

7

5

2

(26)

where θ is the tilt angle between the ground and the rear surface of the panel, Ra is the Raleigh

number for the fluid’s conditions, and Racr is the critical Raleigh number at which the Nusselt

starts deviating from the laminar relationship (Racr ≈ 10
9Þ.

Ra ¼
g∗β Tcell � Tambð ÞLc

3

να
(27)

where g is gravity’s acceleration, β is the fluid’s thermal expansion coefficient, ν is the fluid’s

kinematic viscosity, and α is the fluid’s thermal diffusivity. These values are given as system

parameters in Table 1 for air as work fluid.

2.3. Radiation heat model

Thermal radiation is associated with the rate at which matter emits energy as a result of its finite

temperature [20]. The assessment of the radiation heat model contemplates radiation emitted to

the sky and radiation emitted to the ground from the front and rear faces of the PV panel. This,

as seen before in the convective model, divides the heat flow into several components.

Qrad ¼ Qrad:sky, front þQrad:sky, rear þQrad:ground, front þQrad:ground, rear (28)

This radiation emissions are originated by the energy released due to oscillations of the many

electrons constituting the matter [20]. Different bodies will emit different amounts of radiation,

even at the same temperature, introducing the concept of emissivity (E), which is the ratio

between the emitted radiation by a body’s surface at a given temperature and the radiation

emitted by a black body at the same temperature [22]. This black body is defined as the perfect

emitter and absorber body, emitting a radiation per area unit of:

Eb Tð Þ ¼ σT4 (29)

where σ ¼ 5:670∗10�8 W=m2K4, known as the Stephen-Boltzmann constant. Using equation

along with emissivity values found in Table 1, and a geometrical factor F considering an

incline plate, the radiative model components can be written:
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Qrad, sky, front ¼ Fsky, frontEskyσAcell Tcell
4 � Tamb

4
� �

(30)

Qrad, sky, rear ¼ Fsky, rearEskyσAcell Tcell
4 � Tamb

4
� �

(31)

Qrad,ground, front ¼ Fground, frontEskyσAcell Tcell
4 � Tamb

4
� �

(32)

Qrad,ground, rear ¼ Fground, rearEskyσAcell Tcell
4 � Tamb

4
� �

(33)

for which the geometrical factor F is given as:

Fsky, front ¼
1

2
1þ cosθð Þ (34)

Fsky, rear ¼
1

2
1þ cos π� θð Þð Þ (35)

Fground, front ¼
1

2
1� cosθð Þ (36)

Fground, rear ¼
1

2
1� cos π� θð Þð Þ (37)

3. The hybrid system

This work’s goal is to elaborate a net energy balance between PV generated energy and

TEC consumed energy. In fact, we show that TEC’s consumed power is greater than PV

generated power in all temperature ranges, except for the CdTe PV panel at some temper-

ature ranges. Other works focus in the PV efficiency increase only, disregarding TEC

energy consumption associated to it, which makes difficult to assess the energy balance of

the hybrid system.

Some of this works can be traced to authors like Najafi and Woodbury [23] who use a

modeling approach. Likewise, Borkar, Prayagi and Gotmare [24] report, from a MATLAB

simulation model, that increase in life span and efficiency can be achieved by PV + TEC

systems without mentioning the net hybrid system energy balance.

Another example of this is the work of Kane and Verma [25] model, with reported results of

0.45% increase in efficiency per �C. This behavior is already expected from a solar PV panel, as

explained by Eq. (4), where any temperature decrease will result in a power increase from the

module; raising the question: does the increment in power generation results convenient in compar-

ison with power consumed by TEC cooling to reduce temperature in the PV module?

Additionally, an experimental montage was elaborated by Benghanem, Al-Masharaqi and

Daffallah [26] with a 0.5% of efficiency increase per �C decreased, conducted at Madinah,

Saudi Arabia, where panel temperatures rise to 83�C. Results show great resemblance to those

of Kane and Verma, but continue to leave aside the analysis for the energy consumption of the

active cooler.
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Analogue considerations to the work developed by Bjørk and K. Nielsen [27] Analysis for PV

and thermoelectric generator (TEG) systems were employed throughout this chapter, where the

efficiency of such a hybrid system cannot be considered as single stand-alone units and thus its

power generation characteristics are not known. In addition to this approach, it is to be noted

that TEGs were replaced with TECs, and real approximation conditions were considered along

with an exergy analysis.

A combined PV+TEC system is analyzed regarding a real approximation. The goal for this kind

of system is to be a source of electrical power, meaning that power generated by the PV panel

must overcome energy consumption from the TEC at all times to ensure its operational validity,

otherwise the system will be consuming a greater amount of power than it is able to generate.

Pgen > Pcons (38)

Wnet ¼ Pgen � Pcons > 0 (39)

For the proposed system and its limits, as depicted in Figure 6, the means for power genera-

tion are the PV cells, and the power consuming means are the TECs. The system proposal

Figure 6. Schematic of the PV+TEC hybrid system limits and energy balance.
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intends to assess for the PV panels change in efficiency as temperature is lowered following the

working principles of Eqs. (3) and (4) and with the energy consumption of the increasing

number of TECs, determined by Eqs. (11) and (12). As active and passive cooling mechanisms

extract heat from the hybrid system, energy losses are intended to be found, watching Wnet’s

behavior to determine if the hybrid system is generating enough energy to compensate and

justify its active cooling means and account for its feasibility as a power generating system. A

net metering method of produced and consumed energy will allow us to determine if

PPV > PTEC, which must be fulfilled to ensure a Wnet > 0.

3.1. Hybrid system exergy balance

Additional to the energy balance simulations, exergy analysis is undertaken. Considering the

same operational temperature range as the energy balance simulations, the temperature of

least entropy is intended to be found by the model.

As we know, every engineering processes performance is degraded by system irreversibilities

associated to non-ideal conditions. Entropy is a quantitative measure of this irreversibilities;

with greater irreversibilities comes greater entropy generation, which means valuable energy

is lost in the process [15]. Of course, not all lost energy can be recovered, as the system

conditions are not those of a theoretical reversible machine, nonetheless exergy analysis pro-

vides a tool for analyzing the minimum entropy generation that can be achieved by a real

model, and thus the maximum energy output that can be obtained.

Exergy balance for the PV + TEC hybrid system contemplates all the exergy entering (Xin) and

exiting (Xout) the system, and the destroyed exergy (Xloss), by irreversibilities, during the process:

Xin ¼ Xout þ Xloss (40)

The only input to the system, as shown in Figure 6 and Eq. (14) is solar radiation, expressed as:

Xin ¼ GAcellψs
(41)

where ψ
s
is the exergy efficiency of solar radiation [28]. This exergy efficiency is the maximum

efficiency ratio of the solar emission, and can be calculated with:

ψ
s
¼ 1þ

1

3

T0

T

� �4

�
4

3

T0

T

� �

(42)

for this case of study, temperature of the radiation source T, is the Sun’s surface temperature

(Ts), and T0 is the baseline temperature at which the system is referred (Tamb) [29].

Heat is an unorganized form of energy, and there’s just a limited amount that can be

transformed into organized energy such as work. It is always possible to produce work from

a temperature source whose temperature is higher than the surroundings, in response, this
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heat transfer, will always come with exergy transfer [15]. A heat flowQ coming from a thermal

source of temperature T will always be accompanied by an exergy transfer Xheat of the amount:

Xheat ¼ 1�
T0

T

� �

Q (43)

Exergy is a unit for measuring the potential useful work, meaning that any exergy transfer

done by work will be equal to the amount of work itself.

Xwork ¼ W (44)

Irreversibilities such as friction, mixing, chemical reactions, heat transfer, expansion, compres-

sion, etc., will always generate entropy, and everything that generates entropy destroys exergy

[15]. Exergy losses represent the wasted work potential, caused by the irreversibility of the

process of energy conversion. Any real process will have destroyed exergy, while only ideal

scenarios will present Xloss ¼ 0. The hybrid system involves several exergy losses such as:

Xloss ¼ Xloss,opt þ Xloss, sur þ Xloss, solar þ Xloss,TEC (45)

Each process in which energy is transferred and transformed presents irreversibilities, thus

every term enlisted in Eq. (45) has exergy loss due to these inefficiencies in energy conversion.

The first term (Xloss,opt) we called optical loss caused by the absorption and reflection of

sunlight. The second term (Xloss, sur) is caused by the heat exchange between the system and its

surroundings by the convective phenomenon, both natural and forced. The third term

(Xloss, solar) is generated when the high-grade solar radiation is converted into low-grade ther-

mal energy. Finally, the last term is caused by the TEC module consuming electric power,

which is defined as exergy itself, and expelling heat from the hybrid system.

Xloss,opt ¼ GAcellψsropt ¼ Xinropt (46)

The surface of the hybrid system is always at a higher temperature than its surroundings, thus

the heat exchange remains continual if sunlight keeps irradiating the PV panel surface.

According to the definition of exergy transfer as heat flow, and using the ambient temperature

as reference the following can be obtained

Xloss, sur ¼ Qrad þQconvð Þ 1�
Tamb

Tcell

� �

(47)

note that the higher the difference between Tcell and Tamb, the more exergy is lost.

The process of transforming solar radiation into electrical power and thermal energy is an

irreversible process, and its exergy loss can be calculated with

Xloss, solar ¼ GAcellψs � Xloss,opt � Xloss, sur � PPV �Qcool 1�
Tamb

Tcell

� �

(48)

Feasibility and Numerical Analysis of Hybrid Photovoltaic (PV) Panels with Thermoelectric Cooling (TEC)…
http://dx.doi.org/10.5772/intechopen.75441

345



Finally, exergy is defined as useful work, and the TEC consumes electrical power to operate, as

well as it expels a given heat flow. Thus, an exergy loss is being held at it. To consider this into

the balance, the following relation was used

Xloss,TEC ¼ Qcool 1�
Tamb

Tcell

� �

þ PTEC (49)

4. Simulations

We now focus our attention on PPV in Eq. (3), PTEC in Eq. (12), and the energy balance as well as

Qcool in Eq. (14). The Qcool heat flux determined by the energy balance of the system will define

the amount of TEC modules required to cool the system, enhancing the PPV efficiency as

established in Eqs. (3) and (4).

A temperature interval from 333 to 298 K was used for the system evaluation. This interval was

chosen regarding the average temperature of a PV panel without cooling (333 K) [16] and a

typical value for reference temperature used for PV panel evaluation (298 K).

Based on an energy analysis, the system’s feasibility was assessed. We compared the PV panel

power generation and the TEC energy consumption for each type of PV module. The power

is shown in Figure 7a for a TEC+CIGS PV coupling, Figure 7b for TEC+c-Si, Figure 7c for

TEC+a-Si array, and Figure 7d for TEC+CdTe. A general PV power generation increase of

10.22% is observed. If we put this quantity in perspective with each �C decreased we’ll obtain

Figure 7. The energy generation for a PV panel compared to the consumption of the TEC in the same system montage. (a)

TEC+CIGS power generation vs. consumption, (b) TEC+C-SI power generation vs. consumption, (c) TEC+A-SI power

generation vs. consumption, (d) TEC+CDTE power generation vs. consumption.
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a 0.292% climb in PV efficiency per �C, comparable to the results found by Kane and Verma

[25] and Banghanem, Al-Mashraqi and Daffalah [26].

As can be seen from the figures, except in the case of CdTe, the cooling modules demand a

much higher amount of power than what has been produced by the system at all tempera-

tures; even when the efficiency of the PV panel does climb and the TEC consumption

decreases, the ratios are not as elevated as it would be necessary for Wnet to be positive at any

point, as intended, according to Eq. (39). The diminishment in TECs power consumption can

be traced to net power consumed and number of modules employed, where: CIGS decreased

9.14% the power consumption from the highest to the lowest temperature and reduced 1.238

TECs (nTEC) use needed to cool the system, using Eqs. (8) through (12). These results were

consistent with c-Si with 12.97% reduction in power consumption and 1.45 fewer TEC mod-

ules, as well as a-Si with 33.43% less power consumption and 3.195 unneeded modules.

Regarding the abnormal behavior of TEC+CdTe system, the curves shown in Figure 7d explain

that the TEC consumption plummets at high ∆T values. If we concentrate our attention in each

term of the system’s energy balance (Eq. (14)) we can notice that Qsolar and Qopt are not

temperature dependent, whereas Qconv and Qrad will contribute in heat dissipation in the same

amount for any type of PV+TEC system, leaving PPV andQcool to account for this odd behavior.

After a careful analysis we can only conclude that a small amount of heat removal is required

at initial ∆T values. Contrary to the other systems, TEC energy consumption increases when

the system approaches (Tamb), resulting astoundly counterproductive.

Contrary to the rest of the systems, CdTe doesn’t decrease the TECs consumption as it cools, on

the opposite, results report almost 9.5 times more energy consumption due to the cooling, and

7.5 more modules required than it did at initial temperatures (333 K). When approximating

ambient temperature (298 K) in Figure 7b, almost all power generated by the PV panel can be

appreciated to be matched by the consumption of the cooling device.

Exergy loss defined in Eq. (45) determines the amount of energy lost due to irreversibilities in

the system. Figure 8a shows its behavior for the PV+TEC hybrid system as temperature

decreases; being obvious that cooling helps reduce the system’s exergy losses for three types

of PV panels, excepting CdTe. Nonetheless, as shown in Figure 8a the total exergy delivered by

the system results in a negative amount for CIGS, c-Si, and a-Si. This model is backed by the

data found in Figure 7a, b, and c, establishing that, in these cases, the system demands more

energy for operation than it generates.

Figure 8. The exergy loss and exergy output for the proposed PV+TEC systems. (a) Exergy loss of OV+TEC systems, (b)

Exergy output of OV+TEC systems.
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On the other hand, CdTe+TEC system shows to decrease the exergy loss at high ∆T values. The

high efficient material properties of the CdTe panel not only locate it in the least exergy loss at

all temperature ranges, but also, supported by Figure 8a information, indicate that less exergy

is used to feed the TEC, as ∆T increases. We must remember that exergy was defined as useful

work in Eq. (44), meaning that feeding a cooling system destroys exergy, which is reflected in

Figure 8b.

These numbers are consistent with the deficit in the exergy output. Only at some ranges, CdTe

generates enough energy to result in positive values. TEC consumption increment elevates

exergy losses up to a 32.77% at low ∆T values. Furthermore, at high ∆T, exergy loss is

decreased, and exergy output is maximized.

For CIGS, c-Si, and a-Si group, cooling increases exergy output generation: 13.69% for CIGS,

21.42% for c-Si, and 36.92% for a-Si as shown in Figure 8b. Also, exergy losses can be noted to

diminish with the system cooling, 4.03% for CIGS, with a minimum exergy loss temperature

range from 313.8 to 305.7 K; 5.34% for c-Si with a minimum exergy loss temperature range

from 310.8 to 301.0 K; 13.91% for a-Si with a minimum exergy loss temperature from 298.8 to

298.0 K. It is to be noted that every temperature range where exergy loss is minimal differs

from reference or ambient temperatures for PV panels, meaning that excessive cooling can also

be counterproductive.

5. Conclusions

In this chapter we have shown that, if we consider the power consumption of the thermoelec-

tric modules, the general energy balance for the whole hybrid PV+TEC system results in a

higher energy consumption than energy generation for most systems. Additionally, the exergy

analysis shows that for this system there will always be exergy loss, rendering the feasibility of

the hybrid PV+TEC system impossible.

Also, the conditions for minimum exergy loss have been determined for diverse types of PV

panels, while using thermoelectric cooling modules to decrease temperature. These tempera-

ture ranges can be considered as the optimal working conditions, and they all differ from the

lowest temperature analyzed for CIGS, a-Si, and c-Si, meaning that reducing the system all the

way to ambient temperature (Tamb) is not necessarily the best energetic option for the hybrid

systems. It is to be noted that this temperature ranges of minimum exergy loss are held within

realistic parameters that can be obtained for the system.

We have concluded from these simulation results that the PV+TEC hybrid system is not a

viable self-sustaining system. Even though the self-sustenance of the hybrid PV+TEC system is

inviable, the conditions for minimum exergy loss allow us to determine the best performance

of the system. These optimal operational conditions can be observed from the obtained results,

with minimum exergy losses, that can be useful in future studies.

Although the results show that hybrid PV + TEC systems are inviable, thermoelectric tech-

nology has a wide range of impact from electronics and telecommunications to medical
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equipment. Mostly employed for temperature control of critical parts and components of

different lathes and machines; as a cooling method it is precise and reliable technology, with

a fluid free compact design requiring only current and voltage for its operation which are

easily regulated.

This work shows that a more detailed analysis must be included for the realistic implementa-

tion of thermoelectric cooling in photovoltaics. Most works have been realized considering

thermoelectric generating (TEG) modules, and just a few around TECs, where an obvious lack

of attention has come to the power consumed by the TECs.
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