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Abstract

With the aim to increase the knowledge of the broadcasting properties under circum-
stances like time reversal, change on refractive index, presence of random obstacles, and
so on, we developed new type of hybrid equations named Maxwell-Fredholm equations.
These new equations fuse the Maxwell equations’ description of the electromagnetic fields
with the Fourier transform of the Fredholm integral equations appropriate for a broad-
casting process. Now we have a new tool, which resembles the Maxwell equations but
including contributions from the Fredholm formulation like the resonant behaviour of the
left-hand material conditions. To illustrate the usefulness of this new class of equations,
we include an academic example that shows the deflection of an electromagnetic beam
traveling among a highly anisotropic and left-handed behaviour media.

Keywords: Maxwell equations, Fredholm equations, left-hand materials conditions,
evanescent waves, broadcasting

1. Introduction

In the previous works [1–3], we arrived at the conclusion that if there is a sudden change of

the refractive index from positive to negative when we have a broadcasting procedure, a

better way to take this phenomenon into account is to formulate the problem through an

integral equation. Indeed, we have described the way in which this change is triggered and

how the so-called evanescent waves [4–6] are liberated when their confinement is broken.

However, the question remains valid about the visualization from the point of view of the

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



traditional formulation of the Maxwell equations. Indeed, there is a qualitative difference

between these two points of views because the integral formulation brings their own bound-

ary conditions immersed on their kernel; meanwhile, Maxwell equations need the imposing

of the particular boundary conditions directly. Now we have a new goal, that is to create a

set of equations with the following properties: first, that preserve the advantage of the

integral formulation when studying the changes in the refractive index of the propagation

media and second, that we can impose some kind of boundary and initial conditions as in

the pure Maxwell equations formulation. Then, we introduce in this chapter Maxwell-

Fredholm equations with the aim to increase the knowledge of the broadcasting properties

under circumstances like time reversal, change on refractive index, presence of random

obstacles, and so on; we do not only obtain new kind of hybrid equations with these

properties but we can apply to new kind of electromagnetic problems involving special

propagating and broadcasting characteristics which occurs when an electromagnetic beam

is strongly deflected in a media with a very high anisotropy and a negative refraction index.

The first step to get the hybrid equations is to leave the time domain and transform our

generalized Fredholm integral equations [7–10] into a system of algebraic equations

through a Fourier transform. We must emphasize that the resonant behaviour associated

with the transformation of the evanescent waves will be considered when we build the new

equations, specifically when we establish the fact that we take a homogeneous equation and

we employ the free Green function. In the other hand, we underline the role played of the

resonance properties like orthogonally [11–14] and recall how we can overcome the fact that

their frequencies cannot be used directly as a mathematical base, so we build the named

information packs. After we obtain the Maxwell-Fredholm equations, we apply them to the

problem of the beam bending inside a left-hand material. As a part of our procedure, we first

show the equivalence of the two formulations that is Maxwell differential equations and

generalized Fredholm integral equations. Then, we properly obtain the hybrid equations and

apply them to the specific problem mentioned above, a very strong deflection of an electro-

magnetic beam.

2. Resonances and the Fredholm’s eigenvalue

First of all, we recall the generalized homogeneous Fredholm’s equations (GHFE) [7–10] taken

from a theorem we have proved [7]:

fm r;ωð Þ ¼ η ωð Þ

ð

∞

0

Km ∘ð Þ
n ω; r; r

0
� �

f n r
0

;ω

� �

dr
0

(1)

Now, we have also proved that when the physical system can be considered as a discrete one,

Eq. (1) can be written as:

fm ri;ωð Þ ¼ η ωð ÞAm,n
i, j Gm ∘ð Þ

n ω; ri; rj
� �

fm ri;ωð Þ (2)

By supposing that we can take a diagonal kernelKm ∘ð Þ
n ω; r; r

0� �

, and that the interactionmatrix is:
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Am,n
i, j ¼ δ ri � rj

� �
(3)

Now, we take fm r;ωð Þ ¼ Em r;ωð Þ in Eq. (1) and by applying the differential operator rot ¼ ∇�

over the non-apostrophe variable r, and we obtain the following equation:

∇� E r;ωð Þ ¼ η ωð Þ

ð∞

0

∇�K ∘ð Þ ω; r; r
0

� �
E r

0

;ω
� �

dr
0

(4)

Now, we use Maxwell equation:

rotE r;ωð Þ ¼ �iωμΗ r;ωð Þ (5)

and, in order to transform Eq. (4), we use the relation:

∇� E r;ωð Þδ rð Þ ¼ D rð Þ � E r;ωð Þ � iωμΗ r;ωð Þ (6)

In Eq. (6), the vector D rð Þ is defined by:

D rð Þ ¼ δ yð Þδ zð Þbi þ δ xð Þδ zð Þbj þ δ xð Þδ yð Þbk (7)

By substituting Eqs. (5)–(7) in Eq. (4), we have after using the derivative properties of the delta

function:

�i
η ωð Þ

ω

ð∞

0

D rð Þ � E r
0

;ω
� �

dr
0

þ η ωð Þ

ð∞

0

K ∘ð Þ ω; r
0

� �
μH r

0

;ω
� �

dr
0

(8)

In Eq. (8), the first term seems to be the current of magnetic monopoles, that is, a source term,

so must be zero, and the final equation is:

H r;ωð Þ ¼ η ωð Þ

ð∞

0

K ∘ð Þ ω; r
0

� �
H r

0

;ω
� �

dr
0

(9)

So, we can see that it is equivalent to use Maxwell equations or the generalized Fredholm

equations. We have shown that the generalized homogeneous fredholm equation (GHFE) can

be written in the following compact algebraic form:

Em
e ωð Þ ¼ ηe ωð ÞG ∘ð Þ ωð ÞA

h im
n
En
e ωð Þ (10)

Hm
e ωð Þ ¼ ηe ωð ÞG ∘ð Þ ωð ÞA

h im
n
Hn

e ωð Þ (11)

We can apply operator rot ¼ ∇� to Eqs. (10) and (11) and by using Maxwell equations

obtaining in terms of the kernels the equations we name Maxwell-Fredholm:

rotEe ωð Þ ¼ �iωμe�ih ωeð ÞK ∘ð Þ ωð ÞHe ωð Þ (12)
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rotHe ωð Þ ¼ iωεeih ωeð ÞK ∘ð Þ
ωð ÞEe ωð Þ (13)

η
e
ωð Þ ¼ eih ωeð Þ (14)

In Eqs. (12) and (13), we must remember that the left-hand side is computed at the final sites,

meanwhile, the right-hand term is computed at the initial sites.

Also, we remember that Eq. (1) can be written for the electric field E r;ωð Þ as:

E r;ωð Þ ¼ η ωð Þ

ð

∞

0

K ∘ð Þ
ω; r

0
� �

E r
0

;ω

� �

dr
0

(15)

which is a form identical to Eq. (9).

At this point, it is important to emphasize that Eqs. (9) and (15) are homogeneous generalized

integral equations that properly allow us to follow the behaviour of a left-hand material media,

that is a media with a negative refractive index; and the Maxwell-Fredholm Eqs. (12) and (13)

also have a structure guided for the same purpose.

3. The role of orthogonality properties

There is a very important property of the resonant solutions for the generalized Fredholm

equations, that is, the orthogonality between different resonances [7]. Indeed, we are giving an

alternative point of view as the established in the work of Li et al. [5] or by Kong et al. [6],

concerning the physical interpretation of a resonance. If the resonances would constitute a

band of resonant states, we could use these properties directly as a mathematical base to

represent any kind of desired broadcasting signal, but the set of resonant solutions is made of

punctual frequencies that only permit a pedestrian kind of information transmission, perhaps

like a telegraph mode in which even a single frequency can be used as a succession of signal,

non-signal intervals. This last kind of information is very far from the goals of an efficient

broadcasting. Nevertheless, if we use some results we have obtained previously like the

definition of information packs, we can reach our desired results. Suppose that we want to

send a signal represented by the function S tð Þ and that we know that the propagating media

bring us a set of resonances one of which we can name r so that the associated resonant

frequency will be known as ωr. Now we can project the original signal over a sub-space

generated with the aid of Communication theory [15–20] by the rule:

Sr tð Þ ¼
X

∞

�∞

Pm,r

sin π 2ωrt�m
� �� �

π 2ωrt�m
� � (16)

In expression (16) the span coefficients are:

Pm,r ¼ S
m

2ωr

� 	

(17)
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So, we have a collection of signals that are projections of the original S tð Þ. Then, we can emit

simultaneously the different projections Sr tð Þ and when they arrive to their destination, we can

decode and rebuild the original S tð Þ. There is a limitation that comes also from communication

theory about the frequencies appeared in every pack, that is, these frequencies cannot be major

than the respective resonant frequency ωr. During the broadcasting, the orthogonality proper-

ties of the resonances and the structure of the information packs guarantee that there is no

interference between the different projections.

In this chapter, we do not show how we can apply Eq. (16) explicitly, but we suppose that the

signal we enter through the initial electric and magnetic fields comes from the building of

information packs. In this manner, we are using resonances in two different ways, first by using

the Maxwell-Fredholm equations created for an explicitly homogeneous situation and second,

by the projection of the original signal over the sub-spaces generated with the rules (16) and (17).

4. Academic example

We have obtained a new type of algebraic equations named the Maxwell-Fredholm equations

as our principal goal, in which we incorporate the resonant behaviour and we can apply them

in the following academic special case, in which we suppose the media has very large left-

handed material properties also with a very large inhomogeneity that force a light beam

to follows a circular trajectory and we describe the phenomena with the aid of parabolic

coordinates. We also suppose that we know the tensor ε [21, 22] in an appropriate form that

directly operates over a space of parabolic coordinates ξ; η;φð Þ. The specific relation between

the new and old systems is depicted in the following equations:

bi ¼ ξffiffiffi
2

p
ξj j
bξ0 þ bη0

� �
(18)

bj ¼ ξ

ξj j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4þ π2

p
ffiffiffi
2

p bξ0 þ
ffiffiffi
2

p
bη0 þ πbφ0

� �
(19)

bk ¼ 2 ξbξ0 �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1

4
� ξ2

r
bη0

 !

(20)

We underline that the vectors bξ0, bη0 and bφ0 are functions of the coordinates ξ; η;φð Þ.

Also we have:

x ¼
ffiffiffiffiffiffi
ξη

p
cos φð Þ (21)

y ¼
ffiffiffiffiffiffi
ξη

p
sin φð Þ (22)

z ¼ 1

2
ξ� ηð Þ (23)

And, the rotational of a vector V in parabolic coordinates is:
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∇�V ξ; η;φð Þ ¼

1

ξ2 þ η2
� �

ξη
ξ2 þ η2
� �1=2bξ0 ξVφ þ ξη

∂Vφ

∂η
� ξ2 þ η2
� �1=2 ∂Vη

∂φ

� �

� ξ2 þ η2
� �1=2 bη0 ηVφ þ ξη

∂Vφ

∂ξ
� ξ2 þ η2
� �1=2 ∂Vξ

∂φ

� 	
�

þξηbφ0 ξ ξ2 þ η2
� ��1=2

Vη þ ξ2 þ η2
� �1=2 ∂Vη

∂ξ
� η ξ2 þ η2

� ��1=2
Vξ � ξ2 þ η2

� �1=2 ∂Vξ

∂η

� �
g (24)

Let us take Eq. (13) and make in the left-hand term:

rotHe

0

ωð Þ ¼ iωε
0

E0
e
ωð Þ (25)

So we arrive to the equation:

iωEe

0

ωð Þ ¼ iωεeih ωeð ÞK ∘ð Þ ωð ÞEe ωð Þ (26)

Now, we suppose that the electric field points towards the unitary vector bξ0 that implies that

Eq. (26) becomes (see Figure 1):

E
0

e
ωð Þ ¼ εeih ωeð ÞK ∘ð Þ ωð Þbξ0Eξ ωð Þ (27)

Figure 1. Electric and magnetic fields in parabolic coordinates and the beam trajectory.
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Defining the permittivity tensor:

ε (28)

In principle, there is a dependence on the frequency ω but, for convenience, we bequeath this

to the kernel, in order to easy look the contribution of the tensor ε, which operates on the

column vectors in the ξ; η;φð Þ space bending the beam trajectory (see Figure 1):

ε ¼ ε

0 �1 0

1 0 0

0 0 �1

0

B@

1

CA (29)

In terms of this last tensor, Eq. (26) can be written as:

E
0

e ωð Þ ¼ eih ωeð ÞεK ∘ð Þ ωð Þbξ0Eξ ωð Þ (30)

For simplicity, we propose that we have only two punctual emitters with the kernel given by:

K ∘ð Þ ¼
1K ∘ð Þ 0

0 2K ∘ð Þ

" #

(31)

On matrix (23), the elements are:

1;2K ∘ð Þ ¼

sin ω� ωp

� �
δ

� �

ω� ωp

� �
δ

0 0

0 1 0

0 0 1

2

6664

3

7775 (32)

As we have said, we suppose that the electric fields at the two initial points only have a ξ

component, for example:

Eξ r1ð Þ ¼ Eξ r2ð Þ ¼ E0 cos ω0ð Þ (33)

In Eq. (25), we impose the condition that the rotHe
0

ωð Þ does not have φ or η components. Also:

Hξ
0

¼ 0 (34)

and

Hφ
0

¼ 0 (35)

which means that Hη
0

satisfy the partial differential equation:

∂Hη
0

∂ξ
¼ �

ξ

ξ2 þ η2
Hη

0

(36)
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and then

Hη
0

¼ C0
φ

ξη
e�

1
2ln ξ2þη2ð Þ (37)

In (29), C0 is a constant determined by the field at the starting point in Eq. (25).

The field He
0

has the components:

Hη
0

¼ C0
φ

ξη
e�

1
2ln ξ2þη2ð Þ (38)

Hξ
0

¼ 0 (39)

Hφ
0

¼ 0 (40)

Now, because of Eqs. (31)–(33):

E
0
e ωð Þ ¼ εeih ωeð Þ

1
K ∘ð Þ 0

0 2
K ∘ð Þ

" #
bξ0Eξ ωð Þ (41)

So, the electric field at the final points is:

Eξ
0

r1,2ð Þ ¼
1

ε
0 C0

φ
0

ξ01,2η
0
1,2

e�
1
2ln ξ01,2

2þη01,2
2ð Þ ¼ εeih ωeð Þ sin ω� ωp

� �
δ

ω� ωp

� �
δ

cos ω0ð ÞE0 (42)

The value of E0 is really a function of ξ; η;φð Þ that is, we know that:

E0 ξ1,2; η1,2;φ1,2

� �
¼ D0

φe�
1
2ln ξ1,2

2þη1,2
2ð Þ

ξ1,2η1,2
(43)

and we obtain from (34):

1

ε
0 C0

φ
0

ξ01,2η
0
1,2

e�
1
2ln ξ0

1,2
2þη0

1,2
2ð Þ ¼ εeih ωeð Þ sin ω� ωp

� �
δ

ω� ωp

� �
δ

cos ω0ð ÞD0
e�

1
2ln ξ1,2

2þη1,2
2ð Þ

ξη
(44)

We can see that in parabolic coordinates there is a strong dependence on the specific values of

the vectors ξ; η;φð Þ and ξ
0

; η
0
;φ

0
� �

. But we can say that all the initial conditions depend on the

non-primed variables and put in a named constant factor E0:

That is

1

ε
0 C0

φ
0

ξ01,2η
0
1,2

¼ εeih ωeð Þ sin ω� ωp

� �
δ

ω� ωp

� �
δ

cos ω0ð ÞD0E0 (45)

From (37), we can see that we must calculate C0 for every selected ξ
0

; η
0
;φ

0
� �

.

Then the fields can be calculated through the Eqs. (38)–(43) and (45).
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5. Conclusions

We have seen how it is possible to use the hybrid Maxwell-Fredholm equations to understand

some kind of problems like the bending of a light beam inside a left-hand material described

with an extremely deflective tensor ε. So a light beam begin his trajectory measured at the two

points r1, r2 and we determine with the aid of the Maxwell-Fredholm equations the electromag-

netic fields at the final points r1
0
and r2

0
given by the Eqs. (33)–(45). Explicitly, we have shown

howwe can point towards the permittivity tensor as responsible for the beam deflection because

in the kernel of the Maxwell-Fredholm equations only appear the free Green function G
∘ð Þ. In

this chapter, we have showed how we can add several tools to observe the behaviour of general

devices and we have obtained that the Maxwell-Fredholm equations results in an appropriate

tool in some interesting physical situations as the academic example illustrates. It is shown how

we can select an appropriate system of coordinates as in the specific case of parabolic coordinates

that we used in the example. Even if we do not establish an explicit link between the building of

the named information packs and proper use of the Maxwell-Fredholm equations, we suppose

that the initial signal is indeed a mix of different information packs and then it is possible to

conclude that implementation of both cause a better achievement of signal transmission. In

addition, we can say in advance that in a near future, the Maxwell-Fredholm equations could

be used in extremely different problems like the nanofluid flux [23] providing we can establish a

left-hand materials propagation condition for the electromagnetic field inside the nanofluid and

others like a system of split ring resonators [24].
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