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Abstract

The dentate gyrus (DG), an important part of the hippocampus, plays a critical role in 
consolidation of information from short-term to long-term memory, and also in spatial 
navigation. Neural stem/progenitor cells (NSPCs) exist throughout life in the subgranu-
lar zone (SGZ) of the DG, where they develop into granular cells and establish synaptic 
connections with nearby cells. Granular cells of the DG sprout axons targeting neurons 
in the cornu ammonis 3 (CA3) area of the hippocampus, forming a neural trisynaptic 
circuit, an important part of the neural network in the hippocampus. Thus, the DG and 
the neurogenic cells it contains are of importance in controlling formation of memories, 
learned behaviors, and also in the maintenance and restoration of functions of the hippo-
campus. According to reports, both in vivo and in vitro neurogenesis in the DG are regu-
lated by a variety of endogenous and exogenous factors at different stages. Therefore, a 
better understanding of the factors in NSPC niches and the intracellular molecules regu-
lating/directing adult DG neurogenesis is needed to fully realize the potential of NSPCs 
in the treatment of hippocampal-related disorders. This chapter systematically summa-
rizes the factors reported in regulating adult DG neurogenesis in mammals. Specifically, 
neurotransmitters, hormones, trophic factors, and others will be discussed.

Keywords: dentate gyrus, hippocampus, neurogenesis, neural stem and progenitor cell, 
regulation

1. Introduction

The dentate gyrus (DG) is an important structure within the hippocampus and plays critical 

roles in consolidation of information from short-term memory to long-term memory, as well 

as spatial navigation. Neural stem/progenitor cells (NSPCs), which undergo neurogenesis, 
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are present throughout life in the subgranular zone (SGZ) of the DG. Approximately 700 

newborn granular neurons are formed every day in the adult human DG [1]. NSPCs in the 

SGZ, which differentiate into granular cells, are anchored within the granular layer of the DG, 
and following differentiation, establish synaptic connections with neighboring neurons, and 
maintain the function of the hippocampus. Granular cells in the DG sprout axons targeting 

neurons in the cornu ammonis 3 (CA3) area of the hippocampus, forming a neural trisynap-

tic circuit, an important part of the neural network in the hippocampus. Thus, the DG and 

the neurogenic cells it contains are of importance in controlling the formation of memories 

and learned behaviors. A better understanding of the factors regulating neurogenesis in the 
DG is therefore needed to fully understand the mechanisms involved in the differentiation 
of NSPCs in the hippocampus. Indeed, adult DG neurogenesis is regulated by a variety of 

endogenous and exogenous factors at different stages of differentiation. This chapter reviews 
the effect of regulation factors, including chemical cytokines, signals, and also of physiologi-
cal and pathological factors on the neurogenic potential of NSPCs in the adult DG.

2. Neurotransmitters

Neurotransmitters are specific chemicals that act as a “messenger” in synaptic transmission. 
As neurobiology has developed, a large number of neurotransmitters have been found in 
the nervous system. It was shown that the presence of many neurotransmitters influences 
neurogenic niche.

2.1. Serotonin (5-hydroxytryptamine, 5-HT)

The 5-HT is a monoamine neurotransmitter of the central nervous system (CNS) and is syn-

thesized primarily by the lower midbrain and the raphe nuclei of the medulla oblongata 

(reviewed in [2]) from the amino acid tryptophan. Fibers of serotonergic neurons project 

throughout the brain, including afferent to the hippocampus. A role for 5-HT in the enhance-

ment of adult hippocampal neurogenesis was first identified through the use of selective 
serotonin reuptake inhibitors (SSRIs), which were used as antidepressant drugs [3]. Chronic 

administration of SSRIs was shown to markedly increase adult neurogenesis [4, 5], but inter-

estingly, was reduced or blocked in aged models [6]; this suggests that actions of SSRIs on 

neurogenesis may depend on the age of the treated individual and that the therapeutic 

effects of antidepressants in elderly patients are not mediated by neurogenesis modulation. 
Furthermore, neurogenesis in the adult hippocampus in aged mice was enhanced when cen-

tral 5-HT levels were reduced specifically in adulthood (reviewed in [7]). These findings col-
lectively suggested that aging was a key factor affecting adult hippocampal neurogenesis and 
that this is important in effect of serotonin. With regard to 5-HT receptors, several studies 
showed that 5-HT1A and 5-HT4 receptor agonists increased adult cell proliferation in the 

DG [8–12], while 5-HT1A receptor antagonists decreased proliferation and survival of new-

born cells in the DG [13, 14]. Interestingly, both receptors have been shown to have putative 

antidepressant activity [15, 16], possibly partially depending on the receptor mediating hip-

pocampal neurogenesis [12]. These reports also found that brain-derived neurotrophic factor 
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(BDNF) isoforms may act as a bridge between serotonin and its pro-neurogenic effects in the 
DG, because BDNF has the ability to enhance neurogenesis and its level can be up-regulated 

by serotonin ([17]; as reviewed below).

2.2. Dopamine (DA)

CNS-derived DA is mainly secreted by dopaminergic neurons in the substantia nigra pars 

compacta (SNc) and the ventral tegmental area (VTA). Dopaminergic fibers from the SNc and 
VTA have been shown to partially target the hippocampal subventricular zone (SVZ) [18, 19]. In 

addition, ultrastructural evidence showed that highly proliferative precursors in the adult brain 

express dopamine receptors and receive dopaminergic afferents [20]. Together, these results 

implicate that DA participated in regulating adult neurogenesis. Moreover, evidence indicated 

that destruction of DA neurons in SNc and VTA, or deletion of dopamine through neurotoxic 

1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) or 6-hydroxydopamine (6-OHDA) injec-

tion, all reduced proliferation of NSPCs in both the SVZ and SGZ [18, 20]. It has also been 

demonstrated that pramipexole, a D2-like selective DA agonist, enhanced the proliferation of 

hippocampal NSPCs and also enhanced the proportion of neuronal differentiation in the DG of 
adult mice [21]. In contrast, Egeland et al. found that pharmacological or genetic blockade of the 

D3 receptor increased neurogenesis in the hippocampus of adult mice [22]. Taken together, these 

studies showed that the DA system plays an important role in adult hippocampus neurogenesis.

2.3. γ-Aminobutyric acid (GABA)

GABA, the major inhibitory neurotransmitter in the adult brain, exerts its roles via two main 
receptor types, GABA-A and GABA-B [23]. GABAergic signaling modulates the spatially and 

temporally regulated network activities underling hippocampus-dependent memory [24]. 

The previous studies have shown that the GABA-A receptor is expressed in NSPCs in vitro 

[25, 26]. In addition to findings that GABA influences postnatal neurogenesis in the SVZ and 
striatum [27, 28], a role in hippocampal neurogenesis has also been suggested. Deletion of 

distinct GABA-A receptor subunits, γ2 and α4, reduced adult hippocampal neurogenesis [29, 

30]. In contrast, pharmacological inhibition of the GABA-B receptor stimulated NSPC prolif-

eration, and genetic deletion of the GABA-B receptor increased NSPC proliferation and also 

differentiation of neuroblasts in vivo [23]. These findings propose that the GABAergic system 
is an important regulator of adult neurogenesis in the DG, and that different GABA receptor 
subtypes provide different or opposing effects on neurogenesis and neuronal maturation in 
the adult hippocampus.

2.4. Acetylcholine (ACh)

ACh is an important transmitter in the basal forebrain cholinergic system, located primarily in 
the medial septum, nucleus basalis of Meynert, vertical limbs of the diagonal band of Broca, 

and substantia innominate, which project their fibers to the hippocampus, thalamus, olfactory 
bulb, and cortical regions (reviewed in [31]). In particular, the septo-hippocampal pathway 

from the medial septal nucleus and diagonal band to the hippocampus plays a significant role 
in both learning and in cognitive deficits that are associated with aging and Alzheimer’s disease 
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(AD) [32]. Neurons in the DG and olfactory bulb abundantly express nicotinic acetylcholine  

receptors (nAChRs) and metabotropic muscarinic acetylcholine receptors [33, 34]. It was 

shown that cholinergic fibers innervated and synapsed on immature neurons in the DG [35]. 

Thus, it is possible that cholinergic afferent fibers in the DG contribute to the control of neu-

rogenesis as well as neuronal activity. Previous studies reported that deletion of forebrain 

cholinergic input using the selective neurotoxic, 192 IgG-saporin, reduced DG neurogenesis, 

whereas administration of physostigmine, the cholinergic agonist, increased DG neurogen-

esis in adult and aged rodents [36, 37]. Furthermore, deletion of the β-2 subunit of nAChRs 
reduced cell proliferation by ~43% in the DG, and was accompanied by a significant decrease 
in both DG area and granule cell layer length [38]. Similarly, stimulation of α-7nAChRs pro-

moted hippocampal neurogenesis, including neuronal differentiation, maturation, integra-

tion, and survival [39, 40]. ACh released in synapses is usually removed through hydrolysis 

by acetylcholinesterase (AChE) and both pharmacological inhibition of AChE activities and 

transgenic deletion of AChE increased proliferating cells and the survival of newborn neu-

rons in the DG, while increased AChE levels induced apoptosis [41]. Interestingly, pharmaco-

logical activation of muscarinic receptors reversed the deficits in hippocampal neurogenesis 
following cholinergic denervation [42]. These data suggested that in the cholinergic system, 

the levels of ACh and its interactions with AChRs are important in controlling adult neuro-

genesis in the hippocampus.

2.5. Glutamate

Another neurotransmitter associated with hippocampal neurogenesis is glutamate, an impor-

tant excitatory neurotransmitter. Previous studies indicated that glutamate can regulate 
adult neurogenesis in the DG [43, 44]. Among the eight metabotropic glutamate receptors 

(mGluRs), mGluR5 is highly expressed in NSPCs [45, 46]. The mGluR5-induced neurogen-

esis may contribute to the markedly ameliorated cognitive impairment through stimulating 

mGluR5 receptors, but not mGluR2/3 [47]. Although the mechanism of these pro-cognitive 

effects of mGluR5 was not elucidated, mGluR5 activation most likely partially contributed to 
the increased neurogenesis found in these studies.

3. Hormones

3.1. Ghrelin

Ghrelin, a unique 28-amino acid peptide hormone synthesized primarily in the stomach, has 

various physiological actions such as stimulating growth hormone release and regulating the 

function of the gastrointestinal tract [48–51]. Recent studies have shown that the ghrelin recep-

tor mRNA is widely expressed in the brain, including the CA2 and CA3 areas of the hippo-

campus, as well as in the DG [52–54]. Furthermore, researchers found that exogenous ghrelin 

passes through the blood-brain barrier and binds to neurons located in areas of the hippocampus 

[55] where NSPCs expressed ghrelin receptors [56]. Interestingly, hippocampal neurogenesis 

was shown to be enhanced in adult rodents treated with systemic delivery of ghrelin [57–59]. 

Furthermore, ghrelin knockout decreased the number of NSPCs in the DG of mice [60]. Of more 
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significance was the discovery that ghrelin restored impaired hippocampal neurogenesis in an 
AD animal model, 5× FAD mice [61], indicating that it is a potential candidate for treatment 

of AD. However, unlike systemic administration that exerted positive neurogenic effects, local 
intra-hippocampus ghrelin infusion showed no effects on adult neurogenesis, and even impaired 

spatial memory formation [58]. Although causes for this phenomenon remain unclear, it is pro-

posed that systemic administration of ghrelin is more like the physiological condition; therefore, 

the effect of ghrelin may be mediated by different mechanisms compared to local administration.

3.2. Thyroid hormone

Thyroid hormone is synthesized by the follicular cells of thyroid gland and is released into 

blood as the precursor thyroxine (3,30,5,50-tetraiodothyronine; T4), and also as the active form 

of thyroid hormone (3,30,5-triiodothyronine; T3) [62, 63]. The process of transporting thyroid 

hormones into the brain is regulated by the transporters, monocarboxylate transporter-8 and 

transthyretin, among others [64–67]. Reports indicated that thyroid hormone perturbations 

resulted in decreased hippocampal progenitor proliferation and survival, while the adult hip-

pocampal progenitors exhibited enhancement of proliferation, survival in response to thyroid 

hormone in adult rat [68–70]. The thyroid hormone receptors (TRs), TRα and TRβ comprise 
distinct isoforms, TRα1 and TRα2, TRβ1, and TRβ2 [71]. Research has indicated that TRs 

also influence adult hippocampal neurogenesis. TRα1 receptors are involved in regulating 
survival and differentiation of post-mitotic progenitors in adult hippocampus [72], while loss 

of TRβ may contribute to the increased progenitor proliferation and differentiation in adult 
hippocampus [73]. These data suggested that the thyroid hormone system plays a role in the 

regulation of adult hippocampal neurogenesis.

3.3. Sex hormones

Several studies have shown that there are differences in hippocampal neurogenesis in adult 
rodents depending on sex. For example, adult female rodents had higher levels of cell prolif-

eration than males in the DG [74, 75]. These sex differences in hippocampal neurogenesis may 
be dependent on the natural fluctuations of gonadal hormones.

3.3.1. Androgens

Androgens, the predominant gonadal hormones in males, include testosterone, and rostene-

dione, and 5a-dihydrotestosterone (DHT). They are primarily produced in the testes Leydig 

cells and carried elsewhere through the blood system. Androgen receptors (ARs) are expressed 

throughout the male and female rat brain, including the hippocampus [76–78]. Within the rat 
hippocampus, ARs are expressed primarily in the pyramidal cell layer of CA1 and stratum 

lucidum of CA3, but not in the adult DG [78–80]. Several studies have shown that androgens 

influence DG neurogenesis. Long-term exposure to androgens increased neurogenesis in the 
DG of adult male rodents [81], whereas removal of testicular hormones resulted in the reduc-

tion of newly generated neurons in the DG [80, 82, 83]. Androgenic regulation of neurogenesis 

in the DG may be associated with the activation of ARs in rodents. Administration of testos-

terone metabolite DHT with higher affinity for ARs than testosterone, resulted in increased 
neurogenesis, which was subsequently blocked by the AR antagonist, flutamide. Moreover,  
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testosterone treatment did not enhance neurogenesis in rats with a mutation in the AR gene [80]. 

Mahmoud et al. speculated that androgens binding with ARs in the CA3 region may induce ret-

rograde signaling of survival factors from CA3 and promote neurogenesis in the adult DG [84].

3.3.2. Estrogen

Estrogen is secreted primarily by follicular cells of the ovary (but also from the testis, placenta, 

and adrenal gland), and promotes the development of primary and secondary sexual organs 

in women and maintains normal sexual and reproductive functions. Three forms of estro-

gens exist, estradiol, estrone, and estriol, with estradiol being the most abundant. Reports 

have confirmed that estrogen, especially estradiol, regulates adult neurogenesis in the hip-

pocampus [81, 85]. Estradiol carries out its physiological effects by binding to the classical 
estrogen receptors (ER), ERα and ERβ, and the G protein-coupled estrogen receptor (GPER) 
[86–88]. The fact that ERα and ERβ receptors are both expressed in the hippocampus [89–91] 

indicates that hippocampus is the important target of estrogens. Treatment with the ERα- or 
ERβ-selective agonists resulted in an increase of cell proliferation in the hippocampus of adult 
ovariectomized female rats, while it was shown that estrogen receptor antagonists reversed 

estradiol-induced increase in cell proliferation [92, 93]. Interestingly, treatment with a GPER 

agonist G1 and antagonist G15, respectively, decreased and increased cell proliferation in 

adult ovariectomized rats [94], indicating the estradiol independent role of GPER on hip-

pocampal neurogenesis. Taken together, these studies suggested that the estrogen system 

participates in the process of neurogenesis in the adult hippocampus.

4. Trophic factors

4.1. BDNF

It has been reported that BDNF modulates neuronal development in the hippocampus and 

participates in the maturation of GABAergic inhibitory networks in the cortex [95–97]. In adult 

macaque brains, the highest levels of BDNF were shown to be in the hippocampus [98]. Further 

studies found that neurogenesis was attenuated by BDNF knockdown in the adult DG [99], but 

was increased in response to exogenous BDNF injection [100]. Dendritic growth in adult hippo-

campal neurons was also decreased by BDNF deletion and increased by BDNF overexpression 

[101]. Increases in proliferation were reported in heterozygous BDNF knockout mice [102, 103].  

Specifically, it was shown that proliferation of SGZ NSPCs increased in mice with BDNF con-

ditional knockout in hippocampal neurons [104]. These conflicting results have not yet been 
fully reconciled, although it was suggested that developmental and/or behavioral differences 
between the strains used in these studies may have contributed to the divergent findings [105].

4.2. Neurotrophic growth factor (NGF)

Early studies confirmed that NGF is crucial for neuronal survival and growth [106], especially 

for cholinergic neurons and neurotransmission in both CNS and peripheral nervous system 

[107, 108]. Recent reports indicated that continuous NGF infusion promotes proliferation and 

synaptogenesis in the hippocampus and enhanced survival of new neurons in the DG granule 
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cell layer of young adult rats [109, 110]. Neurogenic conditions in the hippocampus may be 

enhanced by the synergistic interactions of NGF and its receptor, TrkA, as well as by NGF-

mediated cholinergic regulation. Finally, intracerebroventricular NGF infusion rescued hip-

pocampal neurogenesis deficiencies in a transgenic mouse model of Huntington’s disease 
[111], suggesting that NGF may be a valuable therapy in treatment of this disease.

4.3. Vascular endothelial growth factor (VEGF)

VEGF is an angiogenesis factor with neurotrophic and neuroprotective effects [112–115]. 

Additionally, it is increasingly clear that VEGF plays a crucial role in neurogenesis in the adult 

hippocampus. Jin et al. found that intracerebroventricular administration of VEGF into adult rat 

brains increased proliferation and neuronal differentiation in the SVZ and SGZ [114]. In addi-

tion, adult hippocampal NSPCs are known to secrete large quantities of VEGF, which function-

ally maintains the neurogenic niche [116]. Specific loss of VEGF in NSPC resulted in impairment 
of stem cell maintenance although VEGF produced from other cell types was still present [116]. 

Evidence from knockout mice indicated that hippocampal neurogenesis was impaired in VEGF 

B-KO mice, whereas intraventricular administration of VEGF B restored neurogenesis to control 

levels [117]. Moreover, delivery of VEGF via VEGF-secreted cells in microcapsules or VEGF-

loaded poly (lactic co-glycolic acid) nanospheres increased the proliferation of neuronal pro-

genitors [118, 119]. These findings suggested that VEGF is involved in neurogenesis in the adult 
hippocampus. Indeed, increasing evidence has shown that VEGF acts as a molecular mediator 

for adult hippocampal neurogenesis and is upregulated by antidepressant treatments includ-

ing drugs, electroconvulsive seizure [120, 121], exercise, and enriched environments [122, 123],  

indicating that VEGF is a promising target for treatment of neural disorders.

4.4. Fibroblast growth factor-2 (FGF-2)

In the adult CNS, FGF-2 and its receptors (FGFR) are expressed by astrocytes and neurons 

located in the SVZ and SGZ, although their expression is also found in many other brain 

regions [124, 125]. After birth, FGF-2 is concentrated primarily in the hippocampal subfields 
CA1-3, and in neurons of the medial septum and the vertical limb of the diagonal band nuclei. 

The adult pattern of neuronal FGF-2 is restricted to particular populations, such as those in 
the cingulate cortex and hippocampus. Within the mature hippocampus, the CA2 region is the 
primary area of neuron-derived FGF-2 expression [126], suggesting that FGF-2 may play a role 

in the development and function of the adult hippocampus. In particular, use of FGF-2 knock-

out mice showed that loss of FGF-2 caused decreases in adult hippocampal neurogenesis and 

that these defects could not be rescued by exogenous FGF-2 [127]. Yoshimura et al. reported 

that hippocampal neurogenesis increased in normal adult mice after brain injury, but this 

phenomenon did not appear in FGF-2 knockout adult mice [128]. These results indicated that 

endogenous FGF-2 is necessary and sufficient to stimulate NSPC proliferation and differentia-

tion in the adult hippocampus. In the adult rat CNS, FGF-2 receptors, FGFR1 and FGFR4, were 

shown to be predominantly expressed on neurons, whereas FGFR2 and FGFR3 were more 

highly expressed on oligodendrocytes and astrocytes, respectively [129, 130]. Genetic deletion 

of FGFR1 resulted in reduced proliferation of hippocampal NSPCs and reduced hippocampal 

volume during embryonic and postnatal development [131]. These studies suggested that the 

functions of the FGF-2/FGFR system may promote neurogenesis in the adult hippocampus.
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5. Signaling pathways

5.1. Wingless (Wnt)

The Wnt pathway is one of the principal developmental pathways and is involved in body 
axis specification, morphogenesis, and stem cell proliferation, and differentiation [132]. To 

date, 19 Wnt proteins have been confirmed in mammals. Studies by Lie et al. showed that 
Wnt signaling components and their respective receptors have been shown to be expressed in 
the adult hippocampus. When Wnt3 was overexpressed, neurogenesis was increased, while 
blockade of Wnt signaling was reduced [133]. Evidence also suggested that β-catenin plays an 
important role in the dendritic development of adult hippocampal neurons [134]. These data 

suggested that Wnt signaling may be a regulator of adult hippocampal neurogenesis.

5.2. Notch

Studies have shown that Notch molecules (four in mammals) and their associated signaling 

pathway are crucial for the maintenance, proliferation, and differentiation of stem cells [135]. 

In adult mice, overexpression of Notch1 increases hippocampal cell proliferation and mainte-

nance of GFAP-expressing NSPCs [136]. Abrogation of Notch signaling leads to a decrease in 

cell proliferation and a shift in differentiation of newly born cells toward a neuronal lineage 
[137]. This evidence suggested that, in particular, Notch1 signaling is required to maintain a 

reservoir of undifferentiated cells and ensure continuity of adult hippocampal neurogenesis. In 
addition, Notch1 signaling modulates the dendritic morphology of newborn granule cells by 

increasing dendritic arborization [137]. Furthermore, the expression of Notch1 signaling com-

ponents (including Jag1, NICD, Hes1, and Hes5) are increased in parallel with hippocampal 

neurogenesis in adult rats after chronic fluoxetine (antidepressant) administration [138]. These 

findings suggested that Notch1 signaling is involved in adult hippocampal neurogenesis.

5.3. Bone morphogenetic protein (BMP)

BMP, an extracellular signaling molecule, regulates cell proliferation and fate commitment 

throughout development and in the postnatal SVZ and SGZ neurogenic niches [139, 140]. It 

has been shown that BMP signaling inhibits neurogenesis and promotes NSPC glial differentia-

tion in the adult SVZ [140]. However, in the adult hippocampus, BMP signaling inhibits NSPC 

proliferation and promotes their maintenance in an undifferentiated and quiescent state [141]. 

Specifically, Gobeske et al. found that exercise reduced levels of BMP signaling in hippocam-

pus, and that blockade of BMP signaling reproduced the effects of exercise on learning and 
neurogenesis in adult mice [142]. These studies showed that BMP decreases adult neurogenesis 

and that inhibition of BMP can partially rescue neurogenesis in the adult hippocampus.

5.4. Sonic hedgehog (Shh)

Shh is crucial for the expansion and establishment of postnatal hippocampal progenitors [143]. 

The Shh receptors, patched (Ptc) and smoothened (Smo), were detected in the DG, including 
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the neurogenic niche of the SGZ and NSPCs derived from adult hippocampus [144, 145].  

In adult rats, overexpression of Shh in the DG increased cell proliferation and survival [145]. 

However, inhibition of Shh signaling with the inhibitor, cyclopamine, reduced cell prolif-

eration [145, 146]. In addition, the loss of Shh signaling results in SVZ cells undergoing pro-

grammed cell death [147]. These studies emphasized the importance of the Shh signaling 

pathway in adult neurogenesis. Furthermore, in electroconvulsive seizure-mediated adult rat 

hippocampal neurogenesis, the Shh signaling cascade was found to be activated [146].

5.5. PI3K-Akt

The PI3K-Akt signaling pathway is a downstream pathway of neurotrophic and growth factor 

receptors, as well as monoamine receptors [148]. It has been potentially implicated in a num-

ber of different functions and is especially associated with cell survival through inhibition of 
the activation of proapoptotic proteins and transcription factors [149]. It was shown that Akt1 

and Akt2 (two members of the Akt protein kinase family) knockout mice had lower levels of 

hippocampal cell proliferation compared to wild-type animals, but only Akt2 knockout mice 

had impaired survival of adult born hippocampal progenitors [150]. Reports also showed that 

PI3K/Akt participated in the enhancement of adult hippocampal neurogenesis via activation 

by other factors [151], VEGF [152] and intermittent hypoxia after ischemia  [153].

5.6. Reelin

Reelin is an extracellular matrix glycoprotein and aides in neural migration and brain develop-

ment [154–156]. It is preferentially secreted by GABAergic interneurons located in the cortex 

and hippocampus of the mammalian brain [157]. Gain and loss of function studies indicated 

that the reelin pathway regulated adult hippocampal neurogenesis and dendritic matura-

tion orientation [158]. In addition, using retroviral tracing and 3D-EM, it was shown that the 

reelin/Dab1 pathway controlled adult granular cell spinogenesis and synaptogenesis [159].  

Recent studies suggested that changes in reelin expression contribute to the pathogenesis 

of several neurological diseases that display abnormalities in granule cell neurogenesis and 

organization [160–162]. These studies indicated that reelin signaling participates not only in 

the development of the embryonic brain, but also in multiple processes of adult hippocampal 

neurogenesis, and enhanced cognitive ability [163].

6. Physiological and pathological factors

6.1. Exercise

Exercise exerts many effects on brain functions, including enhancement of adult hippocampal 
neurogenesis [164]. Increased blood flow due to exercises most likely facilitates delivery of 
trophic factors to the neurogenic niche. Furthermore, running has been shown to influence all 
aspects of hippocampal neurogenesis, including cell proliferation, survival, differentiation, and 
recruitment in the DG [165–167]. Studies suggested that exercise increases peripheral and central 

levels of BDNF and FGF-2 [168–171], which were both reported to be involved in neurogenesis  
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in the developing and adult brain [170, 172]. Peripheral VEGF produced by skeletal muscles 

after exercise may also play an important role in exercise-induced adult hippocampal neuro-

genesis, because the increased number of newborn neuronal precursor cells in the hippocam-

pus were not present in adult conditional skeletal myofiber-specific VEGF gene-ablated mice 
[173, 174], suggesting that VEGF expressed by skeletal myofibers may directly or indirectly 
regulate hippocampal neurogenesis, as well as blood flow.

6.2. Enriched environment (EE)

Running and exposure to an enriched environment (EE) are two of the most common ways to 

increase adult neurogenesis, which provide sensory, social, and motor stimulation. Researchers 

discovered that there was no effect on cell proliferation in mice exposed to EE, but these mice 
showed significantly higher numbers of total granule neurons in hippocampus compared with 
controls [175]. In order to determine the long-term effects of EE, 10-month-old mice were housed 
in an EE for 10 months (roughly half of their life) [176] and consistent with the above results, 

neuronal differentiation of newborn cells significantly increased in these mice, but not prolif-
erating cells. More recently, several reports suggested that the notable EE-induced increase in 

adult neurogenesis was attributed to physical activity associated with exercise [177, 178].

6.3. Aging

Aging is a natural process associated with cognitive decline and functional and social 

impairments, and is also very closely associated with changes to hippocampal formation. 

Indeed, the number of newborn neurons in the SGZ declines with age [179–181]. During the 

aging process, reduction of hippocampal volume [182], degeneration of hippocampal ves-

sels, [183] and decrease in hippocampal blood flow [184] may all contribute to the reduced 

neurogenesis seen in the aged hippocampus. In addition, increase in microglial activation 

with age was observed in the hippocampus of both rats and humans [185, 186]. This microg-

lia-mediated neuroinflammation and subsequent neuronal damage also likely contribute 
to decline neurogenesis with age. Furthermore, several neurotrophic factors such as FGF-2 

[187], BDNF [188, 189], VEGF [187, 190], and NGF [191] exhibit considerable decline with 

age, all of which play an important role in hippocampal neurogenesis (as reviewed above). 

Therefore, an overall reduction of these factors may also contribute to deficits in hippocam-

pal neurogenesis with age. Interestingly, although hippocampal neurogenesis declines with 

age, it persists in certain pathological conditions. Darsalia et al. reported that hippocampal 

neurogenesis was observed in aged rats with stroke, but maturation and survival of these 

newborn neurons in the DG were approximately one-third less compared to the young DG 

[192]. As the decline of hippocampal neurogenesis with age cannot be explained by only one 

factor, there is likely a complex regulation of different factors associated with this decline.

6.4. Stress

Stress is a threat-induced response associated with the homeostasis of an organism and sub-

sequent physiological and behavioral responses. Individuals experiencing this phenomenon 

exhibit differential responses to various stress-inducing factors (stressors). Increasing evidence  
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suggested that exposure to stress at different life stages leads to distinct alterations in hippo-

campal neurogenesis. Studies have shown that chronic and acute stressors reduce cell prolif-

eration, survival, and neuronal differentiation in the adult DG [193–196]. Yet, the correlation 

between stress and reduced neurogenesis is more complex. Changes induced by prenatal 

stress may depend upon genetic background [197, 198]. Susceptibility and resilience to stress 

highlight that gene-environment interactions may modulate adult stress-altered hippocampal 

neurogenesis. Using animals with different genetic backgrounds, it was shown that they could 
be segregated into subgroups of stress-susceptible animals that showed depression-like behav-

iors, stress behaviors, and stress-resilient behaviors that showed no or little response to stress-

ors [199]. Interestingly, this difference in the stress response has been linked to hippocampal 
volume. Hippocampal volume increased in resilient animals after stress, while susceptible ani-

mals exhibited a decrease in volume [200]. Whether adult hippocampal neurogenesis occurred 
specifically in animals that were more resilient or more susceptible to stress remains unclear, 
but susceptible behaviors were reversed by increased hippocampal neurogenesis [201, 202]. 

It will be important to carefully examine how adult hippocampal neurogenesis contributes 

to stress resilience or susceptibility and to the process of developing effective treatments for 
stress-related psychiatric disorders according to individual genetic backgrounds.

6.5. Ischemia

Ischemia has been noted to produce enhanced neurogenesis in neural proliferative regions of 

the adult rodent brain. The first description, in 1998, showed that transient global ischemia in 
adult gerbils increased neurogenesis in the DG [203]. Subsequent findings in adult mouse and 
rat also proved that transient focal or global ischemia enhanced hippocampal neurogenesis 

[204–207]. Tsai et al. indicated that post-ischemia intermittent hypoxia in adult rats induced 
hippocampal neurogenesis and synaptic alterations, and actually alleviated long-term mem-

ory impairment, which may be contributed by the increased neurogenesis [152]. All of these 

studies suggested that neurogenesis may be a compensatory, adaptive mechanism mediating 

functional recovery after ischemia in adult mammals.

6.6. Traumatic brain injury (TBI)

As the hippocampus is particularly vulnerable to brain trauma, TBI can induce immature neu-

ronal death in the DG and result in learning and memory dysfunctions [208–210]. However, 

many studies have confirmed that NSPC proliferation is actually increased after TBI in the adult 
hippocampus of both rodents and humans [211–213], indicating an innate repair may be occur-

ring in the hippocampus [212–215]. As expected, levels of neurogenesis after TBI correlated 

with injury severity [215]. This innate repair cannot always completely compensate for cell loss, 

resulting in permanent functional deficits in numerous TBI survivors [216]. Further research is 

needed to fully understand the mechanisms involved in TBI-related hippocampal neurogenesis.

6.7. Seizures

Seizures are characterized as the periodic and unpredictable occurrences of epilepsy. Studies 

have shown that acute seizures abnormally increased the amount of hippocampal neurogenesis  
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and induced aberrant migration of newly born neurons into the DG hilus and molecular layer 

[217–220]. Furthermore, recurrent spontaneous seizures also led to dramatically reduced neu-

rogenesis [219, 221], which is concurrent with learning and memory impairments and depres-

sion in epilepsy patients. However, a modest increase in neurogenesis was observed 2 months 

post status epilepticus in a lithium-pilocarpine model of epilepsy using postnatal day 20 rats 

[222]. These data suggested that seizures can not only disrupt both the structure and the func-

tion of the hippocampus, but also increase neurogenesis in the hippocampus. These seemingly 

contradictory results may be related to the type and severity of epileptic seizures.

7. Conclusions

Differentiation of static radial glial cells (RGC) to mature granular cells occurs in a series of mor-

phologically and genetically identifiable stages, including the slowly dividing RGC stage, the 
rapidly proliferating NSPC stage, commitment to a neuronal fate, immature to mature neuronal 

progression, and finally, survival and projection of axons to target cells. Findings also indicated 
that the regulatory effects of different factors are defined at different steps in the overall differen-

tiation process. For example, the transmitter serotonin exerts its effects at the proliferation stage, 
while GABA and DA are known to induce neuronal commitment, and glutamate and ACh play 

positive roles in the survival of newborn neurons. With regard to extrinsic factors, exercise may 
enhance proliferation of NSPCs, although this process is likely inhibited by stress. Learning and 

EE induce neuronal differentiation and survival. Taken together, a more complete understanding 
of the intrinsic and extrinsic factors regulating/directing different stages of adult hippocampal 
neurogenesis will aide in the development of exogenous and endogenous NSPCs as a thera-

peutic tool in the treatment of neural disorders. In addition, these findings have increased the 
likelihood of using hippocampal neurogenesis in the treatment of adult mammalian neurologi-

cal diseases. Although the exact mechanisms involved in adult neurogenesis have not been iden-

tified, emerging technology will likely advance our understanding of the processes involved.
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