
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

185,000 200M

TOP 1%154

6,900



Chapter 1

Introductory Chapter: Power System Harmonics—
Analysis, Effects, and Mitigation Solutions for Power
Quality Improvement

Ahmed F. Zobaa, Shady H.E. Abdel Aleem and
Murat E. Balci

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/intechopen.76628

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons 
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, 
distribution, and reproduction in any medium, provided the original work is properly cited. 

Analysis, Effects, and Mitigation Solutions for Power 

Ahmed F. Zobaa, Shady H.E. Abdel Aleem and 
Murat E. Balci

Additional information is available at the end of the chapter

1. Introduction

Nowadays, electrical utilities and consumers are paying much attention to enhance the qual-
ity of the generated and distributed electrical energy. The main aims are to produce clean 

electrical power and to distribute it to the end customers with acceptable power quality per-

formance in a cost-effective manner. Nowadays, the importance of power quality aspects 
has increased due to the booming developments in power-electronic devices and renewable 
energy resources under the umbrella of smart grids. Besides, the deregulation of the electricity 

market resulted in a competitive market in which multiple utility companies try to deliver the 
best products (generated electrical energy) for the customers who have the chance to choose 
the utility company that provides them with electrical energy with the highest quality level. 
In consequence, power quality will play an essential role in modern electrical power systems. 
However, there are also difficulties before wider applicability is possible for the power quality 
performance limits. One difficulty is that, to date, there is no single commonly approved defi-

nition of power quality because of the various power quality perspectives and phenomena 
[1]. As well, power quality has dissimilar interpretations for people in various electric entities. 
Some express power quality as the voltage quality, others express it as the current quality, 
and some practice power quality as the system reliability. Furthermore, IEEE Std. 1100 [2] 

defines power quality as “the concept of powering and grounding sensitive electronic equip-

ment in a manner suitable for the equipment.” One can say that everyone describes it from 
his own perspective.

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
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On one side, voltage quality focuses on variations of voltage from its ideal waveform (i.e., 
characterized by a sine wave of constant magnitude and frequency), while current quality is 
concerned with the deviation of the current from the ideal sinusoidal waveform. On the other 
side, discrimination of power quality as a voltage quality or current quality is an ambiguous 
way of thinking as a deviation in voltage can result in a deviation in current and vice versa. 
Thus, in order to keep generality, and as the power is mathematically the voltage times cur-

rent, power quality should be the combination of both voltage and current qualities [3] and 

is signified by a set of electrical limitations (reference boundaries/margins) that enable an 
equipment to operate in its planned manner without major operating losses [4, 5] to long live 
as possible.

2. Disturbances

All electrical equipment may fail or malfunction when come across power quality distur-

bances, depending on the severity of the disturbance. It is essential for engineers, technicians, 
manufacturers, and power system operators to well understand and face the several power 
quality disturbances.

Power quality issues include voltage variations (dips, interruptions, flicker, etc.), transients 
(surges, lightning, and switching events), and grounding issues. Figure 1 summarizes the 

common power quality problems.

Figure 1. The common power quality problems.
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To generalize, power quality issues cover many power system problems like impulsive and 
oscillatory transients, different types of interruptions, voltage sags and swells, imbalance, 
under and over voltages, notching, noise, harmonics and interharmonics, voltage fluctuations 
and flickers, and power frequency variations [6]. In the following sections, these power qual-
ity problems are presented.

2.1. Over voltages and under voltages

Over voltages are defined as any voltage greater than the equipment nominal operating volt-
age when the equipment is specified to operate at for a time period that exceeds 1 min. While, 
the under voltage can be defined as any voltage below the nominal operating voltage of the 
equipment for a time period that exceeds 1 min.

Over-voltage phenomenon has many causes in power system networks such as sudden 
changes in the system operating settings, abrupt load rejection, series/parallel harmonic reso-

nance cases, sudden line-to-ground faults, improper earthing schemes, poor voltage regula-

tion throughout the system, and overcompensation of the reactive power support provided 
by capacitor banks. Under voltages can result from improper power cables sizing, long feeder 
routes with high loading capacities, and large motor starting conditions.

Over voltage has a serious impact on electrical equipment and power systems as it stresses the 
equipment’s insulation and may damage it, in addition to protective devices tripping because 
of dielectric failure. Also, over voltage may lead to flashover between line and ground at the 
weakest point in the system and can cause breakdown of the equipment insulation. On the 
other hand, under voltage causes an increase in the system losses and results in voltage stabil-
ity problems. Also, different operational problems may arise due to under voltages such as 
motor starting problems and protection relay tripping [7].

2.2. Voltage flickers

Voltage flickers are defined as a continuous rapid variation of input supply voltage sustained 
for an appropriate period to enable visual recognition of a variation in electric light inten-

sity. Flicker is a power quality problem in which the magnitude of the voltage or frequency 
changes at a rate that is to be noticeable to the human eye [6]. The main causes of the voltage 
flicker are the loads that draw large starting currents during initial energization such as eleva-

tors, arc furnaces, and arc welders. If load starting cases are rapidly repeated, then light flicker 
effects can be quite noticeable. The severity of voltage flickers is measured using short-term 
and long-term flicker severity terms, where an expected flicker severity over a short duration 
(typically 10 minutes) is known as P

st
, and that evaluated over a long duration (typically 2 

hours) is known as P
lt
. Thus, P

lt
 is a combination of 12 P

st
 values.

   P  
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   =  √ 
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 are the surpassed flicker levels during 0.1, 1, 3, 10, and 50% of the 

surveillance period. By definition, a value of one for P
st
 expresses a visible disturbance, a level 
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of optical severity at which 50% of persons might sense a flicker in a 60-W incandescent lamp. 
Excessive light flicker can cause a severe headache and can lead to the so-called ‘sick building 
syndrome.’

2.3. Voltage unbalance

Voltage unbalance problem is an important power quality issue that can be defined as “a 
condition in a three-phase system in which the root-mean-square (rms) magnitudes and/or 
phase angles of the fundamental components of the phase voltages are not all equal” [7]. 

The principal reason of voltage unbalance in a system is the unbalanced loads among the 
three phases of the network. This asymmetric loading causes unequal phase currents to flow 
through the electrical network, and causes unsymmetrical voltage drop on system feeders [8]. 

Voltage unbalances result in additional power losses in the system and cause more losses in 

electric motors, so that it cannot be completely loaded up to its nominal power. In addition, 

excessive voltage unbalances can lead to protection system tripping and cause electrical sup-

ply interruption.

The IEEE 112 [9] defines the voltage unbalance using a factor called the phase voltage unbal-
ance rate (PVUR), is given in (2), where V

dev
 expresses the phase voltage variation from the 

average line voltage (Vaverage) [10].

  PVUR =   
 ( V  

dev
  ) Max

 ________ 
 V  
average

  
   × 100  (2)

2.4. Voltage sags

Voltage sags or (American English says sag while British English says dip) According to 
the IEEE-1159 [11], voltage sag is defined as “a reduction in the rms voltage from 0.1 to 0.9 
per unit (pu) for a period of 0.5 cycles to 1 minute.” Voltage sag can be categorized into 
three types, according to its time duration, to instantaneous, momentary, and temporary 

sag [12].

Voltage sag results from sudden system faults and switching events of large loads having 
excessive starting currents such as large motors. Voltage sags impact on sensitive electrical 
devices such as personal computers and communication equipment, as well as excessive sag 
events may cause loss of data and nuisance operation of protection devices. In addition, pro-

grammed industrial processes such as paper-making industries, chip-making machinery, etc. 

can suffer from power supply shutdown in case of severe voltage sags.

Voltage sags can be calculated using various formulas. For example, Detroit Edison’s sag 
score (SS) method defines the “sag score” from the amplitudes of the three-phase voltages. A 
larger SS indicates the more the severity of the event [13].

  SS = 1 −  (  
 V  
A
   +  V  

B
   +  V  

C
  
 _________ 

3
  )   (3)
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2.5. Voltage swells

Voltage swell can be defined as a rise in the root mean square (rms) voltage for periods that 
range from 0.5 cycles to 1 minute. Swells are usually produced by electric faults (single line-
to-ground), upstream supply failures, heavy load rejection events, and switching off shunt 
capacitor banks. Voltage swell is categorized, according to time duration, into three types: 

instantaneous, momentary, and temporary swells. In addition, voltage sags and swells are 
produced when loads are shifted from one supply source to another such as the transfer 

from the utility source to the standby emergency generator during a loss of the normal utility 

power source [14].

Voltage swell has harmful effects on electrical power system operation as it leads to aging of 
electrical connections, flickering of lights, semiconductor damage in power-electronic devices, 
and insulation deterioration of the equipment.

2.6. Transients

In general, most power quality problems are thought as transient events if they exist for 
a short duration. Impulsive and oscillatory are the main categories of transients. They are 
briefed as follows:

A. Impulsive transients

Impulsive transients are abrupt high magnitude actions that cause voltage and/or current lev-

els to rise in either a positive or a negative direction for a very short period fewer than 50 ns.

B. Oscillatory transients

An oscillatory transient is an abrupt variation in the steady-state voltage, current, or both, 
fluctuating at the natural frequency of the system at both the positive and negative directions.

Events causing transients occur from different reasons such as lightning strikes, poor ground-

ing system, electrostatic discharge, inductive load switching, and fault clearance. Transients 
may lead to probable data loss in computers, malfunction of electronic equipment, and micro-

processor-based protection relays.

2.7. Interruptions

Interruption is a randomly event that occurs with zero-magnitude voltage or current for a 
particular time period, where the magnitude of voltage or current is less than 0.1 pu. It is clas-

sified in terms of duration and standards as follows:

A. Classification according to prior planning

According to EN 50160 [15], the electrical interruptions can be categorized into two types, 

namely, pre-organized interruptions at which the customers are informed (planned interrup-

tions) and accidental interruptions at which sudden failure of equipment or transient fault 
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take place and it may take a long time to restore the electrical supply. This may be long inter-

ruption or short interruption based on the fault.

B. Classification according to interruption duration

According to IEEE 1250 [16], the electrical interruptions can be categorized into four types 

according to the duration of the interruption as present in Table 1.

Momentary interruptions may cause a complete loss of voltage, while sustained interruptions 
are generally noticed in case of permanent short-circuit faults.

2.8. Frequency deviation

The fundamental frequency varies from its rated (50 or 60 Hz) value. This frequency devia-

tion is infrequent in stable and stiff interconnected power system networks. However, it can 
be noticed in weak power systems fed from local generators especially during sudden load 

application or rejection conditions.The operating frequency range should be kept within ±1% 
the rated frequency for 95% of week and -6%/+4% for 100% of week [15, 16]. The ratio of fre-

quency deviation (RFD) can be defined as follows:

  RFD =   
  |  f  
m
   −  f  

r
   |  
 _____ 

 f  
r
  
   × 100  (4)

where f
m
 is the measured frequency which is time-varying quantity and f

r
 is the rated system 

frequency.

2.9. Power system harmonics

Most of today’s power system waves are distorted. By definition, “any periodically distorted 
waveform can be represented as a sum of pure sine waves in which the frequency of each 
sinusoid is an integer multiple of the fundamental frequency of the distorted wave. This mul-
tiple is called the harmonic of the fundamental.” The sum of sinusoids is referred to as a 
“Fourier series.”

In the last years, all have focused on power system harmonic distortion, because it has adverse 
impacts on both the utility and consumers, alike. Sometimes, when the terminology of power 

Type of interruption Duration starts at Duration ends at

Instantaneous 0.5 cycles 30 cycles

Momentary 30 cycles 2 s

Temporary 2 s 2 min

Sustained Longer than 2 min

Table 1. Electrical interruptions categorized based on their durations.
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quality arises, some people routinely predict that the issue is related to power system har-

monic distortion. In the past, the terms of power quality and power system harmonics have 
been incorrectly interchanged.

2.9.1. Harmonics sources

At present, as a consequence of the extensive use of power electronic-based components in all 
power system applications, most of today’s loads are nonlinear. To generalize, three catego-

ries can be recognized as primary sources of harmonics in power systems [6]. They are given 
as follows:

• Magnetic core-based equipment as electric motors, power transformers, and generators.

• Arc and induction, and arc welders.

• Power electronic-based equipment.

On one hand, if the power system is characterized by series and shunt elements; thus, the 

nonlinearities exist in the system are mainly introduced by the shunt elements, such as loads. 

On the other hand, a series impedance of the power delivery system (impedance between the 
source and the load) is particularly linear, that is, short circuit or Thevenin impedance of a 
system. Even within a power transformer, the shunt branch (magnetizing impedance) of the 
standard T model is the source of harmonics, while the series leakage impedance is consid-

ered as a linear element.

Today, the most prevailing harmonic sources are:

• Converters (rectifiers and inverters).

• Switch-mode power supplies.

• The different forms of pulse modulation which are employed in active power and voltage 
control in transmission circuits.

• High-frequency converters needed for induction heating.

• Thyristor controlled reactors.

• Rectifiers and inverters of grid-connected solar photovoltaic cells and windmills.

• Magnetizing currents of the transformers.

• Excitation currents of the rotating machines.

• Flexible AC transmission systems (FACTS).

• Uninterruptible power supplies.

• Rectifiers and inverters of HVDC systems.
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• Static power converters using thyristor to control speed and torque of variable speed drives.

• Controlled arc welders, controlled furnaces, and ovens.

• Induction motors working in the saturation region.

• Electrolysis loads (aluminum smelters and battery-charging plants).

• Ballasts in high-power fluorescent discharge lamps.

2.9.2. Harmonics effects

Impact on harmonics can range from degradation of performance of equipment to its serious 
failure. The effects of power system harmonics can be clustered into two broad groups: as 
effects on power system networks and equipment and effects on telecommunication systems.

The most common consequences on the different sectors of an electrical system are summa-

rized below [17].

• Excessive energy losses due to the high nonsinusoidal currents, thus leading to high elec-

tricity bills.

• The presence of current in the neutral wire with additional losses. An overheating problem 
may occur.

• Equipment failure, standstill of motors, overloading of conductors, blowing of fuses, and 
blackouts of lamps.

• Errors in metering of energy consumption.

• Interference with telecommunication systems and networks.

• Data loss in data-transmission systems.

• Malfunction of control and protection system performance.

• Series and parallel harmonic resonance, which may cause system component damage, 

equipment failure, and service interruption.

• Harmonic instability which leads to the damage of generator shafts.

• Audible noise in transformers, rotating machines, and motor vibrations.

• Computer and programmable logic controllers’ lockups and in correct operation.

• Malfunctioning of voltage and generator regulators with frequent maintenance issues.

• Premature aging of equipment.

• UPS sizing issues.

• Worsening of loads’ power factor with its adverse consequences and utility’s imposed 
penalties.
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3. Solutions

A thorough understanding of electrical system related problems is helpful to implement good 

power conditioners and custom power devices to enhance the power quality. Today, it is 
assumed that the most of our electrical loads become nonlinear in nature. Generally, power 

factor improvement and other power quality-based equipment are the two main groups of 
solutions that can enhance the power quality performance in a system, thus:

A. Power factor improvement equipment [17–24]

• Power factor correction capacitors.

• Harmonic filters, especially passive filters.

These solutions certainly guarantee energy bill savings from reduction of low power factor 
penalties, not power or energy savings [24].

B. Other power quality-based equipment [17, 24–27]

• Inline reactors or chokes.

• Harmonic mitigating and K-factor transformers.

• Neutral blocking filter.

• Negative sequence current reduction.

• Passive, active, and hybrid filters.

• Surge protection.

• Soft starters.

• Zigzag reactors.

• Conservation voltage reduction.

• Green plug filters, FACTS, and D-FACTS.

• Multiple pulse converters.

These solutions can enhance the power quality but with no real savings [24].

Each power quality solution has its own merits and drawbacks at different circumstances. 
Consequently, selection of a precise solution to solve a power quality problem necessitates 
familiarity with the different technologies to ensure that it is the proper techno-economic 
solution for an application.

Besides, as the grids transition toward low-carbon technologies, the use of power electron-

ics becomes widespread. Also, renewable sources may introduce harmonic distortions which 

may adversely affect consumer equipment, but also monitoring and controlling devices that 
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maintain the operational status of the grids themselves, which can lead to large-scale black-

outs and significant losses in power networks. Therefore, it is imperative that novel solutions 
be sought to enable networks to cope with future developments.

Finally, power quality issues cover many power system problems such as under and over 
voltages, voltage sags and swells, transients (impulsive and oscillatory), interruptions, volt-
age unbalance, harmonics and interharmonics, voltage fluctuations and flickers, and power 
frequency variations. In this introductory chapter, a quick brief on power quality concepts 
and issues are presented.
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