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Abstract

The results of work on creating methods, models, and computational algorithms for
remote preventive health-monitoring systems are presented, in particular, cardiac preven-
tive monitoring. The main attention is paid to the models and computational algorithms
of preventive monitoring, the interaction of the computing kernels of a remote cluster with
portable ECG recorders, implantable devices, and sensors. Computational kernels of
preventive monitoring are a set of several thousand interacting automata of analog of
Turing machines, recognizing the characteristic features and evolution of the hidden pre-
dictors of atrial fibrillation(AF), ventricular tachycardia or fibrillation (VT-VF), sudden
cardiac death, and heart failure (HF) revealed by them. The estimation of the time for
reaching the heart events boundaries is calculated on the basis of the evolution equations
for the ECG multi-trajectories determined by recognizing automata. Evaluation time of
heart event (HE) boundaries to achieve is calculated on the basis of the evolution equa-
tions for ECG multi-paths defined by recognizing machines. Ultimately, the computa-
tional cores reconstruct the ECG of the forecast and give temporary estimates of its
achievement. Cloud computing cluster supports low-cost ECG ultra-portable recorders
and does not limit the possibilities of using a more complex patient telemetry containing
wearable and implantable devices: CRT and ICD, CardioMEMS HF System, and so on.

Keywords: preventive monitoring, heart failure prognosis, remote calculating cluster,
optimize drug therapy

1. Introduction

The growing interest in remote cardiac-monitoring systems is associated primarily with the

need for an early prognosis in the development of heart failure (HF) disease [1] and an early
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prognosis of developing against the background HF of such heart events as atrial fibrillation

(AF), ventricular tachycardia or fibrillation (VT-VF), and sudden cardiac death [2]. In addition,

on the assumption that remote monitoring systems can effectively cope with prognostic tasks,

the next call to remote monitoring systems occurs namely the development and optimization

of risk reduction strategies and the strategy of drug or device cardioversions. It is about the

management of the patient’s cardiac condition through a drug or a device therapy, determin-

ing the degree of effectiveness of therapy and predicting the results of treatment [3]. However,

despite the significant advances and new promising results [4] in the field of management and

effective prevention, there are a significant number of problems associated with the lack of a

physiologically justified mathematical model of management. There is some analog of the

problems described earlier in the problems of engineering asset management (EAM). The basis

of ЕАМ is Prognostics and Health Management (PHM) systems, including also algorithms of

predictive analytics, big data, deep learning, and so on. Another component of ЕАМ is

represented by Intelligent Maintenance Systems (IMS); here the main goal is to develop

systems of preventive maintenance, self-maintenance, and self-recovery systems. Technical

systems are somewhat simpler than biomechanical systems, so the mathematical PHM

models, developed for the prognosis, are more formalized, including in the field of physics of

failure. A simple mechanical transfer of PHM models is hardly possible, but some useful

analogies are appropriate. In particular, in setting the tasks of calculating optimizing strategies

for preventive maintenance, estimating the time to reach the boundaries of the mechanisms

dysfunction and the failure boundary, and so on. In this chapter, some useful formulations and

models of the PHM will be used as applied. The noted analogy can be supplemented by fact

that used in cardioversion the devices are both wearable and implanted also need a prognosis

of their failures and dysfunctions. As a result, the complex task of constructing PHM models

for the system “biomechanical object plus implantable device or sensor” is relevant for the

further development of preventive cardiac-monitoring systems.

Finally, the goal of PCM applications in medicine, using mHealth and eHealth platforms with

telemetry transfer capabilities to a remote server and a large computational resource in the form

of distributed computing systems, the cloud computing service, is reduced to the following:

1. based on the chronological database of each patient and current data, to calculate the

parameters or predictors that characterize the evolution of HF;

2. on the same database, predict the appearance of hidden HF predictors (i.e., the appearance

and evolution of those ECG signal characteristics that precede the appearance of HF);

3. to reveal the hidden predictors of cardiac events, namely AF, VT-VF, and sudden cardiac

death;

4. to determine evolutionary equations for hidden predictors and estimate the time to reach

the predicted characteristics of the ECG.

Similarly, remote systems of preventive monitoring should be aimed at solving management

tasks, that is, constructing a strategy for variable parameters with drug therapy or program-

ming CRT, IDC devices.
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If to consider the problems noted earlier in the context of preventive monitoring, then the

question of developing the systems of preventive maintenance strategies must be raised.

Thus, the prognosis of heart conditions is now reduced to the identification of predictors (ECG

characteristics) cardiac events, which, in fact, have to answer the question of how likely the

presence and numerical characteristics of ECG predictors provide the appearance of cardiac

events. Such predictors include the length of the CT of the interval, the CT dispersion, the

P-wave index, and so on. A new trend, known as nonlinear dynamics methods, adds to the

existing predictors of the entropy characteristics commonly used in nonlinear dynamics for the

classification of trajectories of dynamic systems. These include fractal, dimensional, and

entropy characteristics, for example, information dimension, approximation entropy, and so

on. The methods of symbolic dynamics are also used, the essence of which is reduced to the

study of dynamical systems on the basis of the analysis of symbolic cascades. There are some

results in the cases where the cascade is a topological Markov chain. At the same time,

transferring results from cascades to a dynamic system requires that the dynamic symbolic

system is the factor system.

In addition, there is no model of cardiac activity tied to a specific system of dynamic equations.

Ultimately, the prediction achieved by measuring or calculating the predictors mentioned

requires a number of conditional transitions, that is, the fulfillment of a multitude of conditions

involving various facts from an anamnesis, the general state of the organism, the presence or

absence of a range of diseases, which reduces the effectiveness of the prediction up to the

phrase “positive prognosis“ and “negative prognosis.“.

Section 1 briefly describes the basic model of the propagation of the action potential (AP). The

presented equation for the AP is purely a model, more realistic models; for example,

Microdomain model [5] is not considered since the main purpose of this section is to demon-

strate the result of numerical simulation of the propagation of AP on the basis of bundle

cellular automata. Equations for ion currents are placed in the bundle of automata, which

makes it possible to locally vary the parameters of the ion current models, the degree of

anisotropy, and the local geometry of the cardio tissue [6]. In the context of this chapter, this

section allows to refer to the microscopic theory of ion currents and action potential, without

which the formal operation with this series of ECG wavelet coefficients is enriched by an

innumerable number of possible scenarios for constructing recognizing automata.

Section 2 describes the evolution of wavelet coefficients in models of random walking on a

multidimensional lattice and on a multidimensional continuum. With some realistic assump-

tions, it is possible to estimate the time to reach the boundaries of cardiac events or HF. The

transition to high dimensions is also due to attempts of detection predictors of trajectories for

the prognosis of rotors in AF.

Approximation entropy is given considerable attention in [7]. However, approximation entropy

in principle is conceived as some estimate of Kolmogorov complexity. Moreover, K-complexity

is an algorithmically unsolvable quantity, which encourages researchers to seek estimates for

K-complexity in the form of various kinds of entropies, for example, Shannon entropy.
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It should be noted that in reality, an estimate of not K-complexity but of conditional

K-complexity is required, which induces the transitions from the time series of wavelet coeffi-

cients to vector processes.

There are other good reasons to go to the vector process in connection with the prognostic

tasks and estimation of the time to reach. The automatic transfer of the random walk theory

over multidimensional lattices and the multidimensional continuum [8, 9] is hampered by the

fact that these models were created for problems in the theory of polymers, where the length of

the jump is constant and equal to the length of the monomer. The situation is partly saved by

the introduction of the distribution function of jumps along the lengths. For the visibility of

finite formulas, it was necessary to introduce the averaged length of the jump. However, the

main goal of this section is to construct multidimensional state spaces and then sets of trajec-

tories on them. In such spaces of HF regions, the cardiac events are clearly distinguished by

wavelet coefficient values. However, the Euclidean metric is not quite suitable for estimating

the closeness of trajectories. Therefore, in Section 2, we give an example of the bifurcations of

the distribution of density function on the basis of the elementary catastrophe theory.

Section 3 describes the construction of family of recognition automata and gives an example of an

evolution equation for the internal states of automata. Here, the models described in Sections. 1

and 2 contribute to the understanding and further formalization of the principles of constructing

recognizing automata and their operation. Since in algorithmic realizations of automata, only

principles are laid down. All their further activities including reproduction, an increase in com-

plexity, self-learning, and adaptation (in the context of personalized cardiology) should occur as a

result of self-organization based on the principles laid down in the algorithms.

Section 5 describes the interaction of recognizing automata with peripheral devices, wearable

or implanted, and also possibly other body sensors. It shows how the transmission and

processing of ECG signals occurs and as a family of automata forms signaling automata and

places them on portable devices. In turn, the automata, delivered to the device, control the

calculations on a remote family of automata.

Section 6 is devoted to verification and discussion of the results and conditions for a correct

prognosis.

Section 7 is devoted to the formalization of trajectories management tasks. The management

model is outlined in the language of homotopy theory and the theory of infinite loop spaces. It

considers the set of all admissible trajectories and the possibility of continuous deformation of

some trajectories into others, as well as possible obstacles to such deformation. It is intuitively

clear that the singularities that arouse in the model must be associated with the birth of

filaments in models AF-VТ. However, this fact is not rigorously proved in this chapter. Hope

is encouraged by the fact that filaments, like singularities in the base space, are of a homotopic

nature in both cases and, therefore, are invariant with respect to any deformations, which

means that they can be recorded by ECG analysis on the body.

The traditional approach to the diagnosis and prognosis of heart event (HE) based on an ECG

can be found in [10, 11] and references cited therein. Summarizing the goal of PHM applica-

tions in preventive cardiac monitoring is reduced not only to accurate estimates of the time to

Medical Internet of Things (m-IoT) - Enabling Technologies and Emerging Applications106



reach the boundaries of cardiac events. One of PHM tasks is managing the state of complex

systems and determining optimal management strategies to extend the lifetime of complex

technical objects. Consequently, in the PHM cardiac applications, the PHM task is also the

creation of models and management algorithms, that is, the retention of multitrajectories of

cardiac states in classes of trajectories without cardiac events. How much such task is possible

is discussed in the last section of this chapter in the framework of the topological model of

trajectory management.

2. Basis

The construction of automata recognizing hidden, early predictors of cardiac events is deter-

mined by a set of requirements that follow from the basic models and representations. The

basic principles should include the basic models describing the propagation of the action

potential in cardio tissue [12, 13] and the models of ionic membrane currents [14]. Formula (1)

represents a simplified equation for the action potential

∂V r; tð Þ

∂t
¼ �D∆V r; tð Þ þ Iion rð Þ (1)

V is the transmembrane potential, D is the homogeneous pseudo-diffusion constant of the

intracellular gap junctional coupling, Iion (r) is the total transmembrane ionic current, and ∆ is

the Laplace operator.

There are also more general models that take into account inhomogeneous cellular structure,

mentioned in Section “Introduction.”

Using the models of ion transport through biological membranes based on models of statistical

thermodynamics of nonequilibrium processes [13], a digital model of bundle cellular automata

is created. The bundle cellular automata in their continuum limit represent a smooth fiber

bundle [15]. In this case, the diffusion part of the “reaction–diffusion” equation is determined

in the base manifold of the bundle. In the fibers, the anisotropic architecture of myocardial

regions was modeled. Different fibers of bundle cellular automata corresponded to different

degrees of anisotropy and different geometric configurations. The results of numerical simula-

tion are shown in Figure 1.

The main result obtained by numerical simulation is reduced to demonstrating the growth of

wavefront fluctuations and fluctuations in the curvature of the wavefront after repeated pas-

sage of the front along the same macroscopic myocardial regions, that is, the model of bundle

cellular automata, and in the continuum limit of smooth fiber bundle is an acceptable approx-

imation in the problem of macroscopic description of the evolution of the wavefront of the AP,

taking into account the changes taking place on the cellular, microscopic scale, when changing

the microgeometry of cell bonds and the variation in the parameters of the microscopic model

of intercellular conductivity by multiplicative noise, as was done in the work [16] in the model

of Khodzhin-Huxley axon with Markov dichotomous voltage noise.
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Models of the AP by individual cells and its conduction from cell to cell through intercellular

gap junctions are discussed in the work in [12].

3. Model

Another basis for constructing prediction algorithms and recognizing automata is the random

walk model on a multidimensional lattice or in a multidimensional continuum. Thus, at each

set of R-R intervals of a fixed ECG length, the signal is represented as a set of its wavelet

coefficients

k
HistW

N
i, j

n

g, N ¼ 1, 2, 3,…, N ∗ (2)

N is the number of R-R cycle, i, j are indexes of wavelet decomposition, Hist is the heart rate

histogram column index, and k is the numbering of vectors from wavelet coefficients of

dimension N∗.

Moreover, for all fixed indices except N, stochastic process with discrete time, N cascade, is

determined. Further, fixing the limiting value N as N∗ is determined by a set of vectors of

dimension N∗, chosen from the consistent values of the process under consideration with

discrete time. As a result, the space RN
∗

is determined, consisting of all possible finite segments

of dimension размерности N∗

Rkf g≝ k
HistW

N
i, j

: k N ∗ ≤N≤ ðkþ1 ÞN∗
;k¼0;1;2;3…

n o

, Rk ∈R
N

∗

(3)

The total number of such spaces RN
∗

corresponds to the product of the number of elements of

sets Histf g, if g, jf g:

Figure 1. The results of numerical simulation.
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Thus, the formed product of spaces contains the set of all admissible values of any ECG signals

(set of admissible states). In this set, there is a subset containing sequences of cardiac

events (CE) и HF predictors. Such a subset is formed by wavelet coefficients from the ECG

database of cardiac events и HF predictors. Thus, each finite segment of any process is typed

by elementary transitions in each coordinate Rk ∈R
N

∗

, if the probability of such transition is

known. For the transition, one vector of dimension N
∗ to another is required, N∗ transitions.

As a result, the initial vector goes into another vector. If the probabilities of elementary

transitions are known, the probability from vector to vector is determined by the product of

elementary coordinate-wise probabilities. Successive transitions from one vector to another

form of the trajectory in space of the product. In each product space, the probability density of

the transition is determined, expressed as a Feynman path integral. A vector in each fixed

product space is defined as a state, and a sequence of vectors determines the state trajectory.

The set of states in the product of spaces defines a multistate, a multitrajectory, respectively.

The introduction of the probability density of transition from one state to another is interpreted as

a random walk of a trajectory in state spaces. Thus, the problem of predicting cardiac events is

reduced to the calculation of the probability of transition to the boundary of the region obtained

by mapping the ECG from the base of cardiac events into a product of spaces. In addition to a

subset of cardiac events clearly expressed by their ECG (AF-VF) in the space of events, regions

corresponding to various changes in the point-wise Holder regularity are also separated rela-

tively to the regularity characteristics for the ECG norm. The procedure of allocation of such

regions is performed during the monitoring and based on two microlocal spaces [17]. Therefore,

the prognosis is reduced to calculating the probability density function (PDF) for transition

probabilities from one state to another (Rk!Rkþ1Þ. Since the regions of cardiac events and the

irregular behavior of the ECG signal are separated, the probability of transition of the state to the

boundary of the “critical” regions in L (L is the continuous analog of the number of cardiac cycles)

steps is calculated. At the difficulty of calculating the probability density function, calculations are

carried out for the moments of the PDF or the cumulants. The time required to reach the “critical

region” is determined from explicit analytical expressions for the second moment of PDF.

Evolutionary equations for the probability density are derived from the Feynman representation

of the PDF under certain limiting assumptions, in particular, the Fokker-Planck equation, and the

equations for single-step processes. The calculation of the Feynman integral also reduces to

solutions of the Hamilton-Jacobi equation, the Schrödinger equation, and the WKB method [18].

However, in the multidimensional case, the solution of the equations is possible only numeri-

cally and generates some computational problems.

In [19], on the basis of modification of random walk models [8, 9], the PDF of transition

probabilities (probability function of end-to-end distribution) представлено as the Feynman

path integral

P R0;RL; Lð Þ ¼

ð

r Lð Þ¼RL

r 0ð Þ¼R0

D r sð Þ½ �exp �

ð

L

0

ds ξh i
L
r
2

L
sð Þ

� �

(4)

rL sð Þ is the parameterization of polygonal ∆Ri; i ¼ 1; 2; 3…f g and L is the continuous analog of

the number of cardiac cycles.
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On the basis of such representations, second moments of the PDF are analytically calculated,

which allows to determine the average time to reach the HE boundaries, represented by

formulas (6)–(8). Presented cases of analytical expressions take into account not all possible

scenarios for the evolution of states, in particular, the fact of the appearance of obstacles to the

realization of certain types of trajectories, as a result of degradation of the cardio tissue, is not

taken into account.

To solve these problems, we introduce a one-step cascade operator, defined as follows:

r1,…rm,…rN∗, rN∗,þ1ð ,…) - cascade

Ω
∗ ::mi::ð Þ ¼ mi þ 1 (5)

Ω
∗ð ÞN

∗

Rk ¼ Rkþ1,∀k

The introduced operator has an analog in the symbolic space on the basis of which the

recognizing automata, which is presented in the next section, are constructed.

Within the framework of the presented model of the segment wander from the wavelet

coefficients of the ECG signal and in the performance of the Markov property, the prediction

and estimates of the time to reach the boundaries of the regions of dysfunctions or cardiac

events of AF-HF type are obtained by inferring the probability density from the Feyman

representation. In some cases, the Fokker-Planck equations are obtained. By solving these

equations, or by calculating the end-to-end distribution function by the methods described in

the paper [8, 9], the following estimates of the time to reach the boundaries (Ltime) events are

obtained:

1. Models of the free random walk.

Ltime ¼
< RC
�

�

�

�

2
>2

N∗ � 1ð Þ ξh i
, (6)

1. Models of random walk with constraints. Under condition of confirmation of hypothesis

of model of random walk with constraints, the estimation of Ltime is determined as a

solution of equation

< Rck k2 >¼ 2 ΘLtime �Θ
2 1� e�Ltime =Θ
h in o

,Θ ¼
const

ξh i N∗ � 1ð Þ
(7)

1. Models of random walk in a non-simply-connected domain. Under condition of confirma-

tion of a hypothesis of model of random walk in a non-simply-connected domain, esti-

mates of Ltime is determined as a solution of equation

< Rck k2 >¼ ξh i
1 N∗þ2ð Þ= N∗ þ 2

3

ffiffiffiffiffiffiffiffiffi

2 ξh i

N∗

r

Ltime

 !6 N∗þ2=

(8)

where RC
∈ border of HE,HFf g, < Rck k2 > 2-th moment probability function of end-to-end

distribution; ξh iis the average length of an elementary transition.
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Similar to the previous ones, it is advisable to construct the space of events and the symbolic

space for a continuous analog of the wavelet transform. The transition to the continual version

requires much computing power, but it has some advantages. Figure 2 shows the value of the

wavelet coefficients of the continuous wavelet transformation. Only in this case is the devel-

opment successful of the multiscale fluctuations of the QRS complex by the scaling variable in

a patient with persistent AF. The prognosis of the development of such fluctuations and the

time to reach the value by the wavelet coefficients of fields of strong irregularity according to

Hölder are also modeled in terms of a random walk on a multidimensional lattice or in a

continuum.

Let us return to the one-dimensional processes of wavelet coefficients with a fixed quadruple

of indices. The PDF of these processes determines the probability of an elementary jump under

the action of the shift operator by one step, that is, eventually the probability of a transition for

L steps, as in the case of the vector process considered earlier. The type of distribution density

thus affects the construction of the trajectory of the vector process. Here, it is necessary to note

the following: in those cases when the one-dimensional process under consideration is a

Markov diffusion process, and on the part of the wavelet coefficients of the ECG signal it is.

The distribution density function here is a stationary solution of the Fokker-Planck equation.

Also assume, for example, that the stationary solution is expressed as an exponential function

of some potential function [16].

Ps xð Þ ¼ const∙exp U xð Þð Þ (9)

where x is some wavelet cascade in a continuum limit.

Figure 2. Continuous wavelet transformation of ECG with AF and ethalon.
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In this case, it is possible to calculate possible rapid transformations of the PDF of one type,

another type using elementary constructions from the theory of catastrophes (Poston Stewart)

For this, the potential function or the neighborhood of its maximum is approximated by a

polynomial of the fourth order. As a result of standard transformations (Poston), the so-called

bifurcation set on the plane of the approximating polynomial coefficients is constructed, as

shown in Figure 3.

4. Recognizing automata

For each cascade k
HistW

N
i, j

n o

, N ¼ 1, 2, 3,…, N*, an additional symbolic affine space Snþ1 is

defined, the dimension of which is determined as n + 1 number of columns of the cascade

histogram, that is, each histogram of the wavelet coefficient values with a fixed triplet of

indices (Hist, i, j) is a point in the symbolic space Sn. This point determines the internal state

of the automata. An elementary shift operator, shifting the segment k
HistW

N
i, j

n o

, N ¼ 1, 2, 3,…,∞

by one in the direction of index N* growth, is also defined at preservation of a segment of

length N*. In this case, the internal state of the automata changes, the point in space shifts. The

state of the automata changes with an elementary shift by the transition of elementary value

from one coordinate to another, that is, in the case of a shift, the transition of elementary value

Figure 3. The sets of bifurcations or catastrophes and the changing of type of the PDF.
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from one column of the histogram to another column is carried out. By construction, the

elementary transition is equivalent to the shift operator of some initial segment in segment

k
HistW

N
i, j

n o
, N ¼ 1, 2, 3,…,∞ by a unit step. In a symbolic space, the elementary shift corre-

sponds to the multiplication of affine matrix of the form

Ωi,k

n1

n2

:

ni

nk

1

0

BBBBBBBBBBB@

1

CCCCCCCCCCCA

≝

1 0

0 1

0 0

0 0

0 0

0 0

: :

0 0

: :

1 0

: :

0 1

0 0

0 0

0 0

0 0

1 �1

0 1

0

BBBBBBBBBBB@

1

CCCCCCCCCCCA

n1

n2

:

ni

nk

1

0

BBBBBBBBBBB@

1

CCCCCCCCCCCA

¼

n1

n2

:

ni þ 1

nk � 1

1

0

BBBBBBBBBBB@

1

CCCCCCCCCCCA

(10)

on the set of coordinates of the state point. The consistent application of the shift operator ofN∗

times ensures a transition from one segment of length N∗to the next segment of the length N*

in the state space. In a symbolic space, such a transition for N∗steps will correspond to a

sequence of matrices of the form.

ΩN∗≝
YN∗

1

Ωi,k

 !

for ∀ i; kð Þ (11)

The N∗-fold multiplication of the matrices ΩN∗ determines the matrix of frequency for each

elementary transition and, accordingly, the transition probabilities matrix bwm,k.

Assuming that the transition probabilities obey the stationary properties, the prognosis is

carried out as follows:

First, in a symbolic space, the problem of the wandering of a point for N∗ elementary steps is

formulated. Further constructions of model and prediction algorithms have many options, and

this set is determined by the characteristics of the observed signal as sequences of indexed N

and fixed triple of remaining indices. These properties include the Markov property,

stationarity, and ergodicity of each cascade of wavelet coefficients.

The presence of these properties must be checked either by direct calculations based on

manipulations with wavelet decompositions or by the calculation of the entropic, dimensional

(information, capacitive, dimensionality, etc.) characteristics of the observed trajectories, their

correlation radius. In addition, it is necessary to analyze the conditions of point-wise Hölder

regularity of the observed and predicted trajectory on the basis of two microlocalizations.

Thus, the vector n1;…nkð Þ is defined as the internal state of the automaton, and this vector

corresponds to the frequency histogram of the vector k
HistW

N
i, j

;N¼1;2;3;…;N ∗n
g⊂RN ∗

, Matrix

operator ΩN
∗ determines the transition frequencies. If to move from frequency representations

to probabilistic standard renormalization ni ! pi
� �

, then the evolution equation for pi looks as

follows in the continuous representation in time:
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∂pm
∂t

¼

X

k

bwk,mpk � bwm,kpm
� 	

(12)

where bwk,m is the transition probabilities defined by the operator ΩN
∗. Eq. (12) is the so-called

kinetic equation, the master equation or, by its nature, the balance Equation [18]. The change in

the internal state of the automaton is described by the solution of Eq. (12). On the other hand,

the change in the internal state of automaton is defined as the walk of a point along N∗
� 1

dimensional simplex Σ
N∗

�1, defined by condition
P

i ni ¼ N∗ and transitions Ωi,k are defined

on the one-dimensional faces of the simplex.

The solution of Eq. (12) gives sufficient information for solving the problem of random walk in

the space W≝ k
HistW

N
i, j

n o
in the representation of the probabilities of the transition from one

vector of space to another in the form of a Feynman path integral. In many cases, to implement

the tasks of the prognosis и and time estimates of reaching the boundary of the region of

cardiac events, it is only sufficient to solve Eq. (12), that is, the solution of the problem of a walk

on the simplex Σ
N∗

�1. This is possible in cases where the early predictors are expressed in the

singularities of walking on the simplex Σ
N∗

�1. As in the space of trajectories, such predictors

distinguish regions of the simplex for such predictors.

However, in the space formed by the cascade wavelet coefficients of the ECG, from the

construction itself follows that in the normal operation of the heart in the transition from one

state vector to another, the solution of equation must be stationary, if not for all cascades, then

for some subset of them. Taking into account biological rhythms and other cyclic processes in

the body from experimental tests, it follows that in fact the solutions of Eq. (12) satisfy the

stationarity condition (13) in the “average”

bwk,m ¼

X

m

bwm,k (13)

That is, fluctuations of the stationary solution whose amplitude is determined from the chro-

nological database are allowed. Thus, the loss of stability of the stationary solution with

subsequent transitions to another stationary solution changes the nature of a walk in space W

and leads the trajectory to the boundary of the region of cardiac events. In this case, the nature

of the fluctuations and their amplitude varies, and the analogy of such changes is the dynamics

of the fluctuations during phase transitions. In addition, this is only one of the prognosis

scenarios. Another scenario corresponds to the violation of the stationarity conditions and the

time-dependent solutions of Eq. (12). This scenario will be discussed in the next section.

In conclusion, a few words about early predictors are discussed. In order for this class of

predictors not to be empty, it suffices to point out violations of stationarity conditions and

conditions of point-wise Holder regularity, in particular, on the change of Holder exponent of

the ECG signal at the time t0. The conditions for such events, the so-called two-microlocal

conditions, are also defined on the wavelet coefficients [17] and, consequently, are present in

space in the form of regions determined by various kinds of inequalities that limit the set of

admissible values of wavelet coefficients.
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Let us give some examples. When the stationarity condition is satisfied, the prediction problem

reduces to the problem of the wandering of point on the multidimensional lattice Zn. Here, the

method of constructing a symbolic space allows to correctly move to the continuous model and

uses the technique Feynman path integral. In this case, the probability of reaching a pre-assigned

point of symbolic or basic state space is estimated. The time estimates in terms of the number of

elementary steps to achieve a pre-determined state are given subsequently. These states also

include the ranges of values of wavelet coefficients that do not satisfy the conditions of homoge-

neous or point-wise Hölder regularity. As can be seen from the formulas, the estimates vary

depending on the characteristics of the observed ECG signal or its wavelet coefficients. For

example, if the effect of excluded volume is taken into account, when forbidden trajectories

appear in a set of admissible trajectories. Such a phenomenon is possible when the fragments of

the cardiac myocyte sequences are turned off as a result of local myocardial degradation, when

groups of conducting cardiac myocytes no longer can fully or partially perform their conductive

functions. The effect of excluded volume significantly changes the properties of the considered

processes.

For example, the Chapman-Kolmogorov equation becomes unjust, the system is no longer a

Markovian system, and so on. Such phenomena on the one hand are themselves predictors; on

the other hand, for correct estimates, it is necessary to introduce the transition probabilities and

PDF containing more variables.

In this situation, the change in the properties of a myocardial tissue is associated with the

discrepancy between the observed and predicted ECG parameters of the wavelet coefficients,

which is a signal for automatic complication of the model by the birth of new automata. In

concrete example, the appearance of forbidden trajectories (the effect of excluded volume) is a

command to construct three-dimensional histograms and multidimensional transition func-

tions. However, the further principles of the operation of automata remain unchanged. The

same multiplication of automata can occur at searching for hidden predictors. For example, in

estimating the change in the properties of regularity, smoothness, and so on, trajectories as a

criterion are often inequalities that contain sums over the time index j.

Thus, when the stationarity conditions are fulfilled, the prognosis is reduced to estimates to

reach the critical regions by a trajectory or a class of trajectories. Depending on the character-

istics of the process, the estimate may vary, and a correction of the prognosis is necessary. It is

this fact that determines the monitoring regimes, their frequency, and duration. In this case, the

degree of deviation of the observed trajectory from the predicted trajectory, or its characteris-

tics: moments, properties, conditions of Holder, and so on, is also estimated.

If the quasi-stationary conditions are violated at the first step, taking into account the trends of

transition probabilities, a new PDF is determined on the basis of the kinetic equation; then,

taking into account the changes in the PDF and the trends of transition probabilities, trajecto-

ries or their new characteristics are recalculated. However, under the conditions of fulfilling

the quasi-stationary conditions, a change in the structure of the transition probabilities, an

increase in the amplitude of their fluctuations, and a change in the structure of the set of

transition functions are possible. In this case, the algorithms calculate the change in the

positions of the values in the space of the PDF approximation parameters, their proximity to
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the bifurcation set. Taking into account the approach speed of the approximation parameters

with the bifurcation set, a further prediction in the state space is corrected. Trajectories in this

case means a set of trajectories in a set of spaces, and the earliest signs can appear for the

coefficients of only one class of trajectories with a fixed triplet of indices. Subsequently, pre-

dictors can appear on the remaining classes of trajectories with other fixed indices.

5. Interaction with devices

The interaction of the remote monitoring system with implantable and portable devices is built

according to the following scheme:

1. Initially, there is a set of statistical data in a chronological database. In view of the pecu-

liarities of the set of statistics, it is necessary that the samples for all fixed indices be

representative both at rest and in the state of motion.

2. At such set, the automata create a database of valid trajectories in small dimensions.

3. With the full set of chronological database, automata begin calculations according to the

algorithms described earlier.

The further mode of preventive monitoring is determined by automata and is based on the

requirement of sufficiency of statistics. After that, the automata determine the further monitor-

ing strategy. During the operation of automata, numerous additional hidden predictors are

identified, the earliest. If the development of hidden predictors leads to the emergence and

development of existing predictors, a minimal subclass is allocated as signal and management

automata from the whole class of automata. Their volume should correspond to small com-

puting resources of implantable or portable devices. Further, this minimal subset is transferred

to the device’s memory and further serves as a signal device that controls the calculations on

the remote server. The described scenario allows to optimize costs and the preventive moni-

toring modes.

6. Verification

The experimental verification of the capabilities of the set of recognizing automata presented in

this chapter is carried out continuously during the last 4 years [19–21]. The ECG signal is

selected as an initial observed signal for the analysis and prediction of cardiac events. The

standard scheme for measuring the ECG signal by a recorder in 12 leads with a variable

sampling rate of 1–2 kHz and a 24-bit resolution is considered.

The wearable ECG set has DSP compute block on-board to partially offload cloud infrastruc-

ture and to monitor cardio events in real time. The particular set of automata computed locally

depends on power demand-reaction time tradeoff, which in turn depends on particular

patient’s case. In any case, all the collected data are compressed and transferred to the cloud.
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Currently, Wi-Fi is used for communication. Mobile connectivity in spaces where Wi-Fi infra-

structure is not present is achieved via mobile Wi-Fi tethering with smartphone (mostly to get

rid of multiple sim cards burden). Also, the device carries Bluetooth LE which is used for

settings transfer and standard on-site real-time monitoring via tablet software or PC software

if one carries BLE receiver. A schematic diagram of the cluster work is presented in Figure 4.

Figure 4. A schematic diagram of work of remote preventive cardiac-monitoring cluster: ECG device and on-board

recognizing automata for the realization of signal function and management by recognizing automata in the cloud (I);

database, chronological database of patient, database of HE (II); smartphone for text-graphic messages of cluster (III); 1—

space W; 2—the set of interacting automata parallel to the processing of W-cascades and defining bwk,m; 3—two-microlocal

analysis; 4—check of the quasi-stationarity; 5—prognosis in the symbolic space ΣN∗
�1 using automata from block 2; 6—

check of stability of the prognosis; 7—constructing the prognosis in the state space W.
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The check consists of two stages. At the first stage, a chronological ECG database for patients

is used to predict cardiac events. In doing so, the ECG is used both for cardiac events and for

the ECG of the control group. Chronological databases of patients with a long history from

the occurrence of cardiac events, and their subsequent treatment of drug or catheter ablation

were also used. Monitoring was carried out both before ablation and after it during a long

period of drug support. At the first stage of checking, the effectiveness of recognizing

automata and the ability of automata to predict cardiac events were tested. In those cases

when the automata did not predict a cardiac event, the automata returned to the beginning of

the recording, they became more complicated, and the process was repeated. It should be

noted that the main purpose of the described experiments and the basic principles laid down

in the algorithms of automata are aimed at preventive monitoring, that is, on the detection of

the earliest predictors of cardiac events with subsequent time estimate of the evolution of these

predictors until the appearance of later predictors, already known, such as dispersion QT

interval, P wave index, increased QT interval duration, and so on. The main problem, because

of which there were gaps of cardiac events by automata, is as follows. If to analyze the results

of each automaton individually, then during the evolution of their states, there was no approx-

imation of the state trajectory to the boundaries of the regions of cardiac events in any of the

selected metrics, but the event was happening. The analysis showed that the predictor of the

event in these situations is not a violation of the quasi-stationary conditions, but a change or a

mismatch in the structure of transition probabilities for some subset of automata. The revealed

mismatch can be characterized in terms of conditional entropy. Ultimately, conditionally entro-

pic characteristics were used in the approximation of conditional K-complexity, since the

calculation of K-complexity is an algorithmically unsolvable problem. Another way to solve

the problem is to reduce the complexity of automata in dimension, which has an analogy in the

transition from single-particle PDF to multiparticle PDF.

Figure 5 shows changes in the states of automata under the action of the operator

ΩN∗ ¼

Q

N∗

1

Ωi, k


 �

considered in Section 3. The figure reflects the mixing nature of the actions

of the operatorΩN∗ and the temporal evolution of transition functions, entropic, informational,

and dimensional characteristics of which determine the earliest predictors.

By changing the consistency of the state trajectories of a certain subset of automata, it is

implied in this case that early predictors are defined as differences in the structure of operators

Figure 5. Changes in the states of automata.
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ΩN
∗ . However, here we are talking about the earliest predictors or automata, distinguishing

trajectories, leading to cardiac events from trajectories without cardiac events.

If to consider traditional predictors associated with the estimation of the duration of intervals,

the characteristics of the QRS complex of the alteration, P- wave, dispersion of P-wave index,

then in this case, the automata predict rather successfully the evolution of the listed predictors.

This is important for drug treatment of persistent AF and optimization of drug therapy, as for

many other cardiac applications.

7. Task of management of the trajectories

We now return to discuss the management problem mentioned in Section “Introduction.” The

set of admissible trajectories is sufficiently variable. Depending on many factors, these changes

are associated with cardiovascular degradation, changes in conductivity at cell scales, changes

in the architecture of a set of conductive paths between sets of conducting cells, and so on. The

very set of trajectories is so factorized into equivalence classes, regarding the action of groups

of process symmetries, the type of the PDF process, and the set of transition probabilities. In

view of the factors mentioned earlier, there are prohibitions on transitions from one state P to

another. Thus, some trajectories in classes become forbidden when all these factors are taken

into account, or the probability of some trajectories becomes small.

In fact, the task of controlling trajectories reduces to changing the class of trajectory or to the

task of keeping a trajectory in a given class by means of variable management parameters. The

management parameters include all parameters on the macro- and microlevel, which can be

varied in various ways. Such methods include drug therapy with AF-AT events, and AV and

VV programming of the CRT device [22, 23]. The same goals are pursued with ablation or

defibrillation. Within the framework of the presented model, all possible ways to change the

class of trajectories to the class of trajectories that do not terminate HE are formalized as shown

in Figure 6, where the management loop is mapped into a state space or trajectories.

Passing to formal language of homotopy theory and theory of infinite loop spaces [24], the

process of management defined by the mapping

S : ∂I
kþ1

! ∂C
k (14)

k + 1 is the dimension cube, k is the number of management parameters, k + 1 is the parameter

—time.

At each fixed time t and with the variations of other к parameters, a mapping the boundary of

k—dimension cube to the area homotopically equivalent k-dimensional sphere in K is defined

S
�

: ∂I
k
! ∂C

k
⊂K (15)
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Definition 1.

The management task is solvable if and only if.

1. The set of homotopy classes ∂I
k
,

h

∂Ck� is trivial or.

2. The mapping S� belongs to the trivial element of the set of homotopy classes.

In these examples, the set of homotopy classes has a group structure and is defined as the

k-homotopy group of the k-dimensional sphere ∂I
k
; ∂Ck

h i

¼ πk ∂Ck
� �

.

In other words, the management problem is solvable if, with the help of a variation of

management parameters, the observed trajectory can be deformed into a predefined trajectory

if and only if there is no forbidden trajectory or other topological obstacles between them. A

little more optimism is given by the following statement: if the management problem is not

solvable with this set of management parameters, then changing the number of management-

led parameters can possibly translate the problem into a class of solvable management prob-

lems. In the version of recognizing automata, the management problem and the calculation of

the management strategy are reduced to determining the influence of the management param-

eters on the set of admissible transition probabilities in the predefined class of trajectories.

8. Conclusion

Several years of experimenting with recognizing automata and the preliminary obtained

results allow to make optimistic conclusions about preventive medicine, in particular, preven-

tive monitoring. The development of mHealth platforms, portable and implantable devices,

on-body sensors, and so on, available wireless data transmission systems and available

Figure 6. Management loop (yellow color) is mapped into a state space of trajectories (blue color).
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computing power allow solving very complex prognosis in a very short time and in a number

of cases in real time. Thus, the development of preventive monitoring systems creates a trend

toward changing paradigms, at least in the field of cardiology. If early predictors exist, then a

natural question arises, but is there any possibility of influencing the character and speed of

development of early, preventive predictors via preventive drug therapy, different diets, and

so on in the direction of reversibility of the current situation. That is, does the class of trajecto-

ries exist when early appeared predictors are eliminated by preventive maintenance, otherwise

when the situation is physically reversible? In the PHM/IMS applications to technical objects,

the term “self-maintenance, self-recovery” appears. Medicine is more conservative, and yet the

above analogy is appropriate. In the context of preventive cardiomonitoring, this means that

the number of age groups that preventive control is recommended increases markedly and

begins on average from 30 to 40 years. This is also indicated by the statistics of the growth of

heart diseases, which currently has the nature of a pandemic, as well as statistics on the

rejuvenation of heart diseases [25]. The concrete ways of creating preventive monitoring

systems are now quite realistic and are reduced to the realization of the fact that the chrono-

logical basis of the individual’s ECG data is needed to identify early predictors.

The database is updated periodically. The question of the refresh rate is solved by the system of

recognizing automata.
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