
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

185,000 200M

TOP 1%154

6,900



Chapter 5

Validating Activity-Based Travel Demand Models Using
Mobile Phone Data

Feng Liu, Ziyou Gao, Bin Jia, Xuedong Yan,
Davy Janssens and Geert Wets

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/intechopen.75810

Abstract

Activity-based travel demand models predict travel sequences on a day for each indi-
vidual in a study region. These sequences serve as important input for travel demand
estimate and forecast in the area. However, a reliable method to evaluate the generated
sequences has been lacking, hampering further development and application of the
models. In this chapter, we use travel behavioral information inferred from mobile
phone data for such validation purposes. Our method is composed of three major steps.
First, locations where a user made calls on a day are extracted from his/her mobile
phone records, and these locations form a location trajectory. All the trajectories from
the user across multiple days are then transformed into actual travel sequences. The
sequences derived from all phone users are further classified into typical patterns
which, along with their relative frequencies, define travel profiles. These profiles char-
acterize current travel behavior in the study region and can thus be utilized for
assessing sequences generated from activity-based models. By comparing the obtained
profiles with statistics drawn from conventional travel surveys, the validation potential
of the proposed method is demonstrated.

Keywords: mobile phone data, travel sequences, activity-based travel demand models,
travel surveys, travel behavior, travel sequence classification

1. Introduction

Activity-based travel demand models view travel as demand of activity participation. In this

modeling framework, travel is analyzed in relation to daily activity behavior, the context

of land-use and transportation networks, as well as personal background information

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



(e.g., socioeconomic conditions) [1]. Travel surveys, which collect full daily activities and

travel of a small sample of individuals during one or a few days, are also required as training

sets. Once the models are built, they can generate travel sequences (i.e., chains of activities and

travel conducted by a person during a day) of each person in the study area using the Monte

Carlo simulation approach. The individual travel sequences are then accumulated across the

entire population, resulting in an origin-destination (OD) matrix. In this matrix, each ele-

ment describes the number of trips between each pair of the corresponding locations of the

area. This matrix is further assigned to the road network based on a traffic assignment

algorithm, and the number of assigned trips on each road can subsequently be used as

important input for mobility-related studies in the region (e.g., travel demand prediction,

emission estimate, and transport policy evaluation). Figure 1 demonstrates the entire process

of an activity-based model.

Despite the comprehensive process of activity-based models, a reliable method has been absent

to validate the simulated travel sequences. Traditionally, the model results are examined at both

internal and external stages of the development process (see Figure 1). In the internal validation,

the statistics aggregated from the simulated sequences (e.g., the average number of trips per day)

are compared with those drawn from the expanded survey data that is not used as the training

set of the model development but usually collected in the same survey period. Thus, the internal

validation suffers from a number of limitations that are intrinsic to the shortcomings of the

survey data [2]. In contrast, the external validation indirectly evaluates the model results at the

traffic assignment stage. The assigned traffic volumes are compared against data from external

sources (e.g., traffic counts) on a number of specified roads. However, good outcomes of the

compared results might have resulted from the extra processes of OD matrix aggregation and

traffic assignment, thus providing no convincing evidence of the accuracy of the model itself.

Figure 1. The entire process of an activity-based travel demand model.
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Furthermore, if problems are found, it is also challengeable to trace these errors back to the

model-building process. Nevertheless, despite the limitations, both internal and external valida-

tions are commonly adopted, as nomethods have been developed for more accurately validating

the model results [3].

The wide spread of mobile phones has offered an opportunity to use the devices as a new data

collection method in transportation research. Call location data collected from the devices

reflects the latest travel behavior of users, enabling up-to-date travel behavior studies on a

large scale. Particularly, mobile phone data has been investigated for validating travel demand

models; the study [4] can typify the state-of-art of such research. In this paper, based on the

mobile phone data of 1 month recorded from 0.3 million users in Lisbon of Portugal, the two

most frequent call locations (cell towers) for each of the users are first identified as home and

work locations. An OD matrix is then built, aggregating commuting trips in the morning from

home to work over all the users. This matrix is subsequently extrapolated according to a

census survey to account for the total number of workers (1.3 million) in the city. Finally, the

scaled matrix is compared with the morning travel demand that is predicted by a travel

demand model developed in the study area. The results demonstrate the potential and feasi-

bility of mobile phone data in benchmarking travel demand models (see Figure 1).

However, despite its advancement by adopting mobile phone data, the OD-based approach

does not take into account the sequential information encoded in the call location patterns. It

has been well documented that the choices of activities on a day are dependent on each other

[5], as shown by the observation that the activity chain of having breakfast, travel, and

working is often performed together on a working day. Furthermore, while the activity of

bringing/getting people (e.g., bringing/getting children to/from schools) is usually conducted

on the commuting ways, leisure is more executed in the evening. The interdependencies and

temporal sequencing of daily activities have been regarded as a key factor in travel decision-

making processes. The examination of how the simulated travel sequences are compatible with

the sequential characteristics observed from the call location patterns is therefore important [6].

Addressing the above described limitations, our study proposes a new approach that utilizes

the sequential characteristics of activity and travel behavior. Specifically, this approach first

derives actual travel sequences from mobile phone data of all users. A set of typical patterns are

then defined, each of which represents a certain class of the actual travel sequences. Profiles

consisting of relative frequencies of the typical patterns in the travel sequences are subse-

quently computed. These profiles represent current workers’ travel behavior and can thus be

used to directly evaluate the simulated travel sequences yielded from activity-based models,

by comparing them against the profiles obtained from the simulated sequences.

In relation to the existing OD-based method, the new approach offers the following major

advantages. (1) It directly evaluates the predicted travel sequences, leading to more objective

assessment and easier identification of the problems of the model system. (2) It examines the

distribution of the sequences over the typical patterns, while the OD-based method looks into

the number of trips across different OD pairs. In the new approach, the locations that are

visited by an individual on a day are analyzed as a whole, while in the OD-based method,

these locations are treated as unrelated individual activity participation. These two methods
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have different perspectives and provide a complementary means of validating travel demand

models.

The remainder of this chapter is organized as follows. Section 2 introduces the mobile phone

data and Sections 3–5 detail the validation method. A case study is conducted in Section 6, and

the obtained results are compared against real travel surveys in Section 7. Additional analysis

on parameter sensitivity is performed in Section 8. Finally, Section 9 has discussions for future

research and Section 10 draws major conclusions.

2. Mobile phone data

The mobile phone data consists of complete mobile communication patterns of 5 million

anonymized users in Ivory Coast (i.e., 25% of this country’s population) over 5 months

between December 1, 2011 and April 28, 2012 [7]. The data contains the location (represented

by cell ID) and time when each user conducts a call activity, including initiating or receiving

a voice call or message. To address privacy concerns, the original data was divided into

consecutive two-week periods; in each period, 50,000 users were randomly selected and their

call records were extracted. This leads to a total of 10 datasets being generated. One of the

datasets is used for this research. Table 1 illustrates the typical call records of a user on

Tuesday, December 20, 2011.

3. Call location trajectory construction

A call location trajectory (i.e., call-seq) from a mobile phone user on a day can be described as a

sequence of l1 ! l2 ! …! ln, where li (i = 1,…,n) is the cell ID and n is the length of the

sequence, that is, the total number of locations that the user has reached and called that day.

The call frequency (i.e., call-fre) of a set of consecutive calls made at each location li is denoted as

ki (ki > 0), and the time for each of these calls is T(1),…, T(ki). The call interval (i.e., call-int)

between the first and last call time of these calls is T(ki)� T(1). Integraing the time signatures of

the multiple calls, a call-seq can be formulated as l1(T(1),…,T(k1))!…! ln(T(1),…,T(kn)). From

all the call-seqs of a user, home and work locations are first identified, and stop locations where

the user has stayed for doing activities are then predicted.

3.1. Home and work locations

Two temporal points including work start time (i.e., work-st) and work end time (i.e., work-et) are

estimated from the mobile phone data. The time when calls begin to substantially increase in

Call Time 12:50:00 14:30:00 17:30:00 18:20:00 22:10:00

Call location (Cell ID) 998 1520 982 956 956

Table 1. Call records of a user on a day.
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the morning on weekdays is considered as the work-st. Likewise, the moment when call

activities reach the second climax in the late afternoon is selected as the work-et. Around this

time, we assume that people start to communicate for after-work activities. Based on these

two time points, a location is regarded as a home if it is the most frequent call location during

the night period on weekdays between the work-et and work-st as well as throughout the

entire weekend period. In contrast, a location is chosen as a work place if it is the most

frequent call place in the work period between the work-st and work-et on weekdays, and if it

is different from the previously identified home location for the user. In addition, the calls at

a work location should occur at least 2 days a week.

3.2. Stop locations

After the home and work locations are identified for each worker, the remaining places in the

call-seqs are either stop locations (i.e., stop-locs) where people pursue activities other than home

and work activities or non-stop locations (i.e., nonstop-locs). The nonstop-locs can be further

divided into trip locations (i.e., trip-locs) where the user travels or false locations (i.e., falso-locs)

that are wrongly recorded because of location update errors. When call traffic is high in a

user’s location area, this location is shifted to less crowded cells for a short period of time,

leading to location updates, but the user does not actually move. Furthermore, even for the

previously identified home or work locations, some instances of these two locations could

also be due to non-stop reasons, for example, people traveling in their work area while

calling. Therefore, each location instance in the call-seqs should be differentiated between a

stop-loc and nonstop-loc, irrespective of its activity types.

The two scenarios where nonstop-locs could occur can be demonstrated with the call data of

two users. The first user (User298) has a trajectory of l1(17:06,17:43) ! l2(17:51) ! l3
(17:56,19:41)! l4 (21:55), where four locations are observed and the call-int is 37, 0, 105, and

0 (min) respectively. Each of these locations needs to distinguished between a stop-loc and a

trip-loc. The trajectory of the second user (User64) is l1(13:21,20:11) ! l2(22:00) ! l3 (22:02)

! l4 (22:05)! l2 (22,07,23:12). This user has five location updates, with the call-int as 410, 0,

0, 0 and 65 (min), respectively. It is noted that the time difference between the first and

second visits to l2 is only 7 min. Although a small chance exists that this user may have

moved to l3 and l4, the occurrences of these two places in such short time is most likely

caused by location update errors.

In order to recognize stop-locs from all the possible nonstop-locs in a call-seq, a method is

proposed as follows. For each li in the call-seq, the call-int is examined. If it is longer than a

threshold Tcall-int, li is regarded as a stop-loc. Otherwise, if the call-int is shorter than (or equal to)

Tcall-int (e.g., in the case of a single call made at li), and if this location appears in the middle of

the call trajectory, the time interval between the last call time at the previous location of li (i.e., T

(ki-1) at li-1) and the first call time at its next location (i.e., T(1) at li+1), defined as the maximum

time boundary (i.e., max-boundary), is examined. If this interval is longer than a threshold

Tmax-boundary, li is considered as a stop. However, if li is the first or last location of the trajectory,

all the distinct stop locations already identified according to the previous steps from the user

are aggregated. If li is among these locations, it is predicted as a stop. Otherwise, li is treated as

either a trip-loc or false-loc and thus deleted. After the elimination of all the nonstop-locs, the
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remaining places from the call-seq are stored into a stop trajectory (i.e., stop-seq). Each li in these

trajectories is annotated with its activity type (i.e., act(li)), categorized into home (H), work (W),

and other (O) activities. Travel is implicit in between each two consecutive locations. For

instance, based on the above process, if 30 and 60 min are used for Tcall-int and Tmax-boundar as

adopted in our case study, the obtained stop-seqs for User298 and User64 are l1 ! l3 ! l4 and l1
! l2, with the activity types of these locations as l1 (W) ! l3 (O) ! l4 (H) and l1 (W) ! l2 (H),

respectively.

4. Trajectory transformation

Mobile phone data is event driven, in which locations are recorded only when the devices

connect to the GSM network. Users’ call behavior affects the number of trips and activity

locations that are captured by the call data. The more active a user is in using the phone,

the better his/her travel behavior is revealed by the device. The call locations can be

regarded as the observed behavior at certain temporal points on a day, based on which

real travel behavior of the users can be deducted. A method is therefore developed to

transform the stop-seqs into actual travel sequences (i.e., actual-seqs) that represent real travel

paths of the users on those days. This method is composed of the following steps. (1) For

each user, two variables including the actual activity duration at a location li (i.e., actual-

dur(user, li)), and the call rate per minute at all call locations of the user (i.e. CallRate(user)),

are derived. (2) These two obtained variables are converted into a call probability that the

user makes at least one call at li (i.e., CallP(user, li)). (3) Given a real travel sequence on a

day, various stop-seqs could be possibly observed depending on the user’s call behavior.

The conversion probability, at which a certain stop-seq is generated from the actual-seq (i.e.,

ConvertP(user, actual-seq, stop-seq)), is calculated. (4) Based on the observed frequencies of all

the stop-seqs from the user, a linear equation is built and the frequencies of the actual travel

sequences are inferred.

4.1. CallRate(user) and actual-dur(user, li)

The CallRate(user) describes the probability that a user makes calls each minute, and it is

calculated as follows:

CallRate userð Þ ¼

P
day total� number� calls user; dayð Þ

P
day time� span dayð Þ

(1)

where, total-number-calls (user, day) and time-span(day) denote the total number of calls each day

for the user and the time interval (min) of these days. Actual-dur(user, li) is the actual duration

(min) that a user spends at li. Since no information on the actual stop duration is provided from

the phone data, we approximate this variable using the average of the duration of all stop

locations with the same activity types over all respondents that are obtained from a travel

survey (see Section 7.2). The derived average duration of locations per activity type is referred as

actual-dur(act(li)).
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4.2. CallP(user, li)

Given a user’s call rate and the actual-dur(user, li) that the individual has spent at li, the

probability that the user makes at least one call during the visit to li (i.e., CallP(user, li)) is

cumputed based on the following steps. (1) The actual-dur(user, li) is first divided into a number

of equal-length intervals. Each of these intervals is regarded as an experiment, and its length

(i.e., EpisodeL) can be decided by the average duration that people spend on the phone each

time they connect the GSM network (e.g., 2 min in our case study). (2) Under the assumption

that users make calls independently in each interval and that the likelihoods of calling across

different intervals are identical, CallP(user, li) then follows the binomial distribution. The actual-

dur(user, li) decides the total number of intervals (i.e., independent experiments), and the call

rate provides the probability of calling in each interval (i.e., the success for each experiment

result). (3) CallP(user, li) can be computed according to Formula (2), as the probability of

making at least one call (i.e., having at least one success) over the entire actual-dur(user, li) (i.e.,

the total number of experiments). CallRate(user) and actual-dur(act(li)) are used as the approxi-

mation of the call rate and the actual-dur(user, li) for a particular activity type of li.

CallP user; lið Þ ¼ 1� 1� EpisodeL� CallRate userð Þf gactual�dur act lið Þð Þ=EpisodeL (2)

4.3. ConvertP(user, actual-seq, stop-seq)

Let l1 ! l2 ! …! ln represent the actual-seq on a day for a user. Based on CallP(user, li), the

probability that a certain stop-seq could be observed from the original sequence, that is Convert

(user, actual-seq, stop-seq), is calculated. For instance, the probability of generating the stop-seq l1
!…li-1 ! lj+1…! ln (i ≤ j) is

ConvertP user; l1� > l2…� > ln; l1� > …li�1� > ljþ1� > …ln
� �

¼
Y

i�1

m¼1

CallP user; lmð Þ �
Y

j

m¼i

CallP user; lmð Þ �
Y

n

m¼jþ1

CallP user; lmð Þ,

CallP user; lmð Þ ¼ 1� CallP user; lmð Þ

(3)

Where, we assume that no calls were made during the visits to the locations from li to lj. We

also hypothesize that users make calls independently across different location visits.

The conversion process can be demonstrated by the call records of User302. The probabilities

that this user makes at least one call at home, work, and other locations are 0.81, 0.90, and 0.42,

respectively. Assuming that this individual has an actual-seq of HWOH on a certain day, a total

of 15 different stop-seqs could be possibly generated from this original sequence. The sum of the

conversion possibilities of these stop-seqs is 1. For instance, the possibility of generatingHWH is

ConvertP(user, HWOH, HWH) = 0.34.

4.4. Actual-seq derivation

Let y1, y2, …, yk represent the frequencies of all k different stop-seqs of s1, s2,…, sk constructed

from a user’s call records. These stop-seqs are sorted by their length in a descending order, with
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s1 having the largest number of locations. Assume that the corresponding actual-seqs of the user

also occur among s1, s2, …, sk; the frequencies of the actual-seqs (i.e., x1, x2, …, xk) can be

estimated based on Formula (4). Note that the parameter user in ConvertP is left out.

x1 � ConvertP s1; s1ð Þ ¼ y1
x1 � ConvertP s1; s2ð Þ þ x2 � ConvertP s2; s2ð Þ ¼ y2
…

x1 � ConvertP s1; skð Þ þ x2 � ConvertP s2; skð Þ þ x2 � ConvertP sk; skð Þ ¼ yk

(4)

An additional constraint
Pk

i¼1 xi ¼
Pk

i¼1 yi is added to the above formula, in order to ensure

that the total number of the derived sequences and that of the observed trajectories are equal.

This leads to a model with k + 1 equations and k unknown variables x1, x2, …, xk. To find the

optimal solution to the unknown variables, the Linear Least Square Method is employed. This

method searches for the answer by minimizing the sum of the squares of residuals that are the

differences between the observed frequencies and the corresponding estimated frequencies by

the model. Specifically, let the estimators of x1, x2,…, xk as bx1,bx2,…,bxk; the residual for the ith

equation (i.e., residuali, i = 1,…,k) is calculated as follows.

residual1 ¼ bx1 � ConvertP s1; s1ð Þ � y1
…

residualk ¼ bx1 � ConvertP s1; skð Þ þ bx2 � ConvertP s2; skð Þ þ…þ bxk � ConvertP sk; skð Þ � yk

(5)

With bxkbeing replaced with bxk ¼
Pk

i¼1

yi �
Pk�1

i¼1

bxi, the last equation is converted as

residualk ¼ bx1 � ConvertP s1; skð Þ þ…þ
Xk

i¼1

yi �
Xk�1

i¼1

bx
i

 !

� ConvertP sk; skð Þ � yk (6)

The total sum of the squared residuals (i.e., residual-sum) is computed, and the minimum of the

residual-sum is found by setting its partial derivatives to zero as follows.

residual� sum ¼
Xk

i¼1

residualið Þ2,
∂ residual� sumð Þ

∂bxi
¼ 0, i ¼ 1,…k� 1 (7)

This results in the computation of bx1,bx2,…bxk�1; bxk is obtained as bxk ¼
Pk

i¼1

yi �
Pk�1

i¼1

bxi.

In the case of User302, the stop-seqs derived from his/her call records of 10 days areHWOH, WH,

OH, W, and H, with the frequencies as 1, 3, 2, 1, and 3, respectively. The original frequencies of

these sequences are estimated as bx1 ¼ 1:17,bx2 ¼ 3:74,bx3 ¼ 4:89,bx4 ¼ 0:07,bx5 ¼ 0:14, and the

residual-sum is 0.74.

During the above described process, we assume that the actual travel sequences actual-seqs could

only occur within the set of the observed location trajectories, that is, Set = {s1, s2, …,sk}. This is
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based on the well-established findings that human activity and travel behavior exhibit a high

degree of spatial and temporal regularities as well as sequential ordering. A limited variety of

travel sequences for a user can be observed during a certain time period. In addition, the optimal

solution of the frequencies of the actual-seqs would be most likely found within the Set. This is

due to the fact that if an actual-seq sp is not in the Set, the optimal estimator bxp for the frequency of

sp would be a value less than or equal to zero. For instance, for User302, if sp is longer than any

trajectory in the Set, e.g. sp = HWOWH, the equation xp � ConvertP HWOWH;HWOWHð Þ ¼ 0 is

obtained. From this equation, we obtain bxp ≈ 0. Similarly, if sp is shorter than certain trajectories

in the Set, for example, sp ¼ HWO, the equation x1 � ConvertP HWOH;HWOð Þ þ xp � ConvertP

HWO;HWOð Þ ¼ 0 is constructed, leading to bxp < 0.

5. Workers’ travel sequence classification

Figure 2 describes travel sequences for workers, in which a sequence is divided into four parts,

including before-work, commute, work-based, and after-work parts. They respectively repre-

sent the activities and travel undertaken before leaving home to work (indicated by the arrow

a, e.g., HOH), between home and work commutes (by b and d, e.g., HOW or WOH), work-

based (by c, e.g., WOW), and after arriving home from work (by e, e.g., HOH).

A home based tour (i.e., tour) is defined as a chain of locations that starts and ends at home and

accommodates at most two work location visits. For a working day, a tour can be classified into

the patterns of HWH, HOWH, HWOH, HWOWH, HOWOH, HOWOWH, HWOWOH, and

HOWOWOH, where O represents one or a chain of visits to several other different locations.

On a non-working day, a tour is described with H or HOH. All the above 10 patterns charac-

terize the tours for worker’s travel behavior, and they are defined as home-based tour classifica-

tion (i.e., tour-class). Each pair of these patterns is then merged, leading to 81 combinations that

can be used to classify an entire day’s sequences containing two tours. For instance, the

combination of HWH and HOWH results in the class HWHOWH. The daily sequences that

have more than twowork location visits in a tour (e.g.,HWOWOWH) or that contain more than

two tours (e.g., HWHWHWH) are each formed into one additional category. Thus, all the

combinations along with the original 10 tour patterns that describe daily sequences with only

one tour lead to a total of 93 patterns. These patterns underlie workers’ daily travel behavior,

Figure 2. Workers’ travel sequence representation. Note: H and Wdenote home and work locations respectively, while O

refers to all other places. Each arrow from the start and end locations represents the related travel between these two

places, and the arrow from the location O to itself indicates a chain of consecutive visits to different O locations.
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and they are denominated as day sequence classification (i.e., day-class). Given a group of users,

their travel sequences can be categorized according to the tour-class and day-class, respectively.

The relative frequency of each of the patterns over the total occurrences of all the

corresponding patterns among the travel sequences forms a home-based-tour-profile (i.e., tour-

profile) and day-sequence-profile (i.e., day-profile) among these individuals.

Based on these two types of classification, all the stop-seqs and actual-seqs previously

constructed from the mobile phone data are grouped. During this process, a home location H

is added at the beginning and end of a sequence if it is absent from the sequence, under the

assumption that each user starts and ends a day at home. After classification, two types of

profiles, that is, the tour-profiles and day-profiles, are derived from both the stop-seqs and actual-

seqs, respectively.

The Pearson correlation coefficient r (see Formula (8)) is used to measure the relation between

the corresponding profiles derived from the different sets of sequences. It reveals the strength

of relationship between the compared sets; the closer r is to 1, the stronger the relationship is.

r ¼

X

d

i¼1

Ai � A

SA

� �

Bi � B

SB

� �

d� 1
, A ¼

X

d

i¼1

Ai

d
, B ¼

X

d

i¼1

Bi

d

SA ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X

d

i¼1

Ai � A
� �2

d

v

u

u

u

u

t

, SB ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X

d

i¼1

Bi � B
� �2

d

v

u

u

u

u

t

(8)

where A and B denote the two compared profiles, Ai and Bi are the frequencies of the pattern i

in these two profiles and d denotes the total number of the patterns in each profile.

6. Case study

In this section, adopting the proposed approach and using the mobile phone data described in

Section 2, we carry out a case study. In this process, stop-seqs are first constructed and actual-

seqs are then derived.

6.1. Stop-seq construction

Figure 3 describes the distribution of the number of calls in each hour of the weekdays,

showing that the peaks of calls in the morning and in the afternoon occur at 9 am and

18 pm, respectively. These two temporal points are chosen as the work-st and work-et.

Based on the criteria for home and work locations, 49,421 (i.e., 98.8% of the total) users

have their home identified, and 8016 users (i.e., 16.2% of the total) are screened out as

employed people who work between 9 am and 18 pm at least two weekdays per week.

All the call records of these workers on weekdays are extracted, resulting in a total of
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69,536 call-seqs. From these sequences, 40.3% of the locations are removed as non-stop

ones, using the thresholds Tcall-int and Tmax-boundary set as 30 and 60 min respectively. The

remaining locations form the stop-seqs, with the average length of these sequences as 3.3

(locations).

6.2. Stop-seq transformation

The time-span (day) is specified as the period from 6 am to 12 pm. From each user, all the

calls made during this period each day across the two survey weeks are counted, and the

CallRate(user) is computed according to Formula (1). The average CallRate(user) over all the

workers is 0.0073. The actual-dur(act(li)) is estimated from the travel survey conducted in

Belgium which will be described in Section 7.2. From this survey, the duration is 222, 317

and 75 (min) for home, work, and other activities, respectively. The variable EpisodeL spec-

ifies the time window by which the actual-dur(act(li)) is split into a number of intervals, that

is, experiments. To obtain this interval length, the total number of voice calls and the total

duration of these calls over the 5-month mobile phone data in Ivory Coast are extracted.

The ratio between these two variables leads to the average call duration as 1.92 min, and

2 min is thus taken as the estimation of EpisodeL. Based on all the above parameter settings,

the call probabilities CallP(user, li) at home, work, and other locations for each user are

respectively derived based on Formula (2). The average of CallP(user, li) over all the users

for these three types of locations is 0.81, 0.88, and 0.41, respectively. The obtained call

probabilities of each user, combined with the observed frequencies of the stop-seqs for the

person lead to the calculation of the number of the actual-seqs, using the method described

in Sections 4.3 and 4.4.

7. Result comparison with travel surveys

To examine the validation ability of the proposed method, the results inferred from the

phone data are compared with the statistics drawn from real travel surveys. However, no

Figure 3. The distribution of call time.
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official surveys have been conducted in Ivory Coast, necessitating the use of data collected

from other countries including South Africa and Belgium for this purpose. We acknowl-

edge that the travel behavior in Ivory Coast and that in these two travel-surveyed coun-

tries are most likely different. Consequently, the comparison is to examine the validation

potential of this approach but not to infer travel behavior relationship among these

countries.

7.1. The two travel surveys

The South Africa National Household Travel Survey (NHTS) was based on a sample of 50,000

households over a period of 2 months between May and June in 2003 [8]. The collected

information includes the number of trips on a typical weekday and the travel time and

purposes of these trips. According to the survey results, the majority of the respondents can

access most of the activity services in this country (e.g., train and bus stops as well as shops

and post offices) within half an hour, and the average number of activity locations visited by a

worker on a day is between 3.46 and 4.06.

The Belgian survey (SBO) was carried out on 2500 households between 2006 and 2010. This

survey collects trip information of the respondents during the course of 1 week, such as trip

origin and destination (i.e., activity locations), trip start and end time, and purposes of the trips

(activity types). Activity locations are described with statistical sectors; the size of these sectors

varies from a few hundred meters to a few thousands in radius, comparable to the spatial

granularity of cells in a GSM network. Based on this survey, the average travel time is 24 min,

6 min shorter than a typical travel in South Africa. Table 2 illustrates a representative diary of

the respondent ‘HH4150GL10190’ on Tuesday, May 9th, 2006.

From all the respondents in the SBO survey, 342 individuals who work at least 2 days a week

are selected, and the corresponding travel sequences are constructed. The duration of each

location in the travel sequences is estimated as follows. If the location is not the first and the

last one of the day, the duration is between the arrival time of the current trip at the location

and the leaving time of the next trip from the location. Otherwise, the time of 6 am is used as

the start time of the location if it is the first one of the day, and the time of 12 pm is adopted as

the end time of the location if it is the last one on the day. For instance, the respondent

demonstrated in Table 2 has a sequence of HWOH, with the location duration as 165, 540, 25,

and 255 (min), respectively. All the obtained location duration is averaged per activity type

over all these individuals, leading to the estimate of the actual-dur(act(li)), which has been used

to derive the actual-seqs in the case study in Section 6.

Trip ID Start Time End Time Origin Destination Purpose

1 08:45:00 09:00:00 34,137 34,145 Work

2 18:00:00 18:15:00 34,145 34,849 Shopping

3 18:40:00 19:05:00 34,849 34,637 Home

Table 2. Diary data.
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7.2. Average length of sequences

Table 3 summarizes the average length of the sequences including call-seqs, stop-seqs, and

actual-seqs derived from the mobile phone data as well as of the sequences constructed from

the NHTS and SBO diaries. It shows that the average length of the sequences first decreases

from 5.69 for the call-seqs to 3.3 for the stop-seqs and then rises back to 4.02 for the actual-seqs

that is the closest to the length of both the NHTS and SBO diaries. The length differences

suggest the importance of the process from the identification of stop locations to the inference

of complete travel sequences, when travel behavior is analyzed based on mobile phone data.

7.3. Tour-profiles

Based on the classification method described in Section 5, two types of profiles, including the

tour-profiles and day-profiles, are derived from the stop-seqs, actual-seqs and SBO diaries, respec-

tively. Table 4 shows the frequency of each pattern in the tour-profiles; the differences in the

frequencies of the corresponding patterns between the stop-seqs and actual-seqs as well as

between the actual-seqs and SBO diaries are also presented.

Due to the data collection nature of mobile phone data, when the stop-seqs are converted into

the actual-seqs, two important characteristics are expected. (1) A stop-seq is generated not only

from an actual-seq that is identical to this trajectory (e.g., when calls were made at each of the

locations actually visited), but more likely from a sequence that is longer than this observed

one (i.e., some of the real locations being missed if no calls were made there). Thus, when the

stop-seqs are transformed into the actual-seqs, the number of long patterns increase, while that

of short patterns decrease. (2) If the probability of making calls at a location is lower, the

frequency for the derived actual-seqs that contain this location tends to be higher. These two

features are well observed in Table 4. For instance, when the actual-seqs are compared with the

stop-seqs (see the 4th row), the frequencies for the short patterns H and HWH decrease by 4.6

and 11.2%, while the frequency for the long one HWOWH increases by 0.7%. Furthermore, as

the average call probability at the location O is the lowest among all the three activity types, an

8.3% rise is obtained for the pattern HOH among the actual-seqs. This forms a contrast with the

pattern HWH that has an 11.2% decrease.

When the profiles drawn from the actual-seqs and SBO diaries are compared, a correlation

coefficient of 0.99 is obtained (i.e., higher than the coefficient of 0.93 between the stop-seqs and

SBO diaries). The high coefficient shows an overall high level of similarities across the patterns in

the tour-class between these two types of sequences. Nevertheless, as previously indicated, due to

the contextual deviations between Belgium and Ivory Coast, the real travel behavior between

two countries can be very different. According to Table 4 (see the 5th row), the differences in the

frequencies over all the patterns between the actual-seqs and SBO diaries range from �6.2 to

Call-seqs Stop-seqs Actual-seqs NHTS SBO

5.69 3.30 4.02 3.46–4.06 3.96

Table 3. Average length of sequences.
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H HWH HOH HOWH HWOH HWOWH HOWOH HOWOWH HWOWOH HOWOWOH More than 2 W

SS 9.0 50.3 18.0 5.1 8.2 3.4 2.5 0.7 1.4 0.5 1.0

AS 4.4 39.1 26.3 6.7 10.3 3.8 4.1 1.0 2.1 0.8 1.3

SBO 6.4 42.9 32.5 3.1 10.8 1.6 1.9 0.2 0.5 0.1 0.2

AS - SS �4.6 �11.2 8.3 1.6 2.1 0.4 1.6 0.3 0.7 0.3 0.3

AS – SBO �2.0 �3.8 �6.2 3.6 �0.5 2.2 2.2 0.8 1.6 0.7 1.1

Note: The column represents the patterns, while the row denotes each single set of sequences (in the first three rows) and the differences in frequencies between pair sets of

sequences (in the last two rows). SS, AS, and SBO refer to the stop-seqs, actual-seqs, and SBO diaries respectively.

Table 4. Tour-profiles (%).
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3.6%. In addition, the increases in frequencies for short patternsH,HWH andHOH from the SBO

survey by 2, 3.8 and 6.2%, respectively, could also be caused by the under-reporting of short trips

or short-duration activities that typically occur in travel surveys. This leads to travel sequences

obtained from the surveys being shorter than they actually are [1].

7.4. Day-profiles

Figure 4 describes the correlation between the frequencies of corresponding patterns in the

day-profiles, where the x-axis represents the frequencies for the stop-seqs (Figure 4a) and SBO

diaries (Figure 4b), respectively, while the y-axis denotes the frequencies for the actual-seqs. The

line of y = x is presented as a reference. From Figure 4(a), it is noted that the majority patterns

follow similar frequency distributions, with a coefficient as 0.91. However, there exist a few

outliers that can be further divided into two groups. (1) The group of HWH, H and HWHWH

with 14.3, 5.7, and 1.5% increases in frequencies for the stop-seqs, respectively. (2) The other

group of HOH, HOWOH, and the patterns composed of more than two tours, showing 3.5, 2.4,

and 2.2% higher for the actual-seqs. This further demonstrates that, in relation to the stop-seqs,

the actual-seqs are likely to have a high percentage for long patterns and for patterns that

contain locations featured with low call probabilities (e.g., the location O). In contrast, a lower

proportion is expected among the actual-seqs for short patterns and for patterns consisting of

locations featured with a high call rate (e.g., the location W).

In Figure 4(b), the day-profiles obtained from the actual-seqs and the SBO survey are compared.

It shows that the majority of the patterns have higher frequencies for the actual-seqs than for the

SBO data (i.e., the points above the line). Nevertheless, a few patterns show higher occurrences

for the SBO diaries (i.e., the points below the line) and they mainly consist of short patterns, for

example, HWH, HOH and HWOH with 7.3, 7.1, and 3.2% increases, respectively. Apart from

the deviations in travel behavior between these two countries, this figure demonstrates again

the possibly missing records for short-duration trips or activities in travel surveys, resulting in

a high frequency for short patterns. On top of that, further investigation reveals that out of all

93 patterns in the day-profiles, 57 (i.e., 61.3%) have zero frequencies for the SBO data; while for

the stop-seqs and actual-seqs, only 18 patterns (i.e., 19.4%) are not present. It indicates that the

sequences built from the mobile phone data are more diverse and representative in travel

Figure 4. Correlation between the frequencies of corresponding sequences.Correlation between the frequencies of the

actual-seqs and those of the stop-seqs (a) and SBO diaries (b).
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behavior than the ones from the survey, further underlying the potential value of using mobile

phone data for travel behavior analysis.

Despite the differences in each particular pattern, the coefficient is 0.89 between the whole day-

profiles obtained from the actual-seqs and SBO survey. It shows that the profile inferred from the

mobile phone data is comparable to the one extracted from a real travel survey. This further

suggests that the derived profile can sufficiently represent workers’ travel behavior in a study

area, and therefore capable of validating the sequences generated from activity-based models.

8. Sensitivity analysis

In the proposed approach, several parameters including Tcall-int, Tmax-boundary and actual-dur(act

(li)) have been defined. Final investigation into how these parameters affect the derived results

is conducted in two aspects. (1) The average length of the stop-seqs and actual-seqs (i.e., SS-

length and AS-length). (2) The coefficients between the stop-seqs and actual-seqs as well as

between the actual-seqs and SBO diaries (i.e., r1 and r2 respectively).

8.1. Tcall-int and Tmax-boundary

Tcall-int defines the minimum time duration above which a call location is considered as a stop.

The larger this value, the longer the duration of a stop is required, and the shorter the average

length of the obtained sequence tends to be. This is well reflected in Figure 5(a). However, the

length of the sequences decreases slowly and enters into a constant level when this parameter

passes the 30-min threshold (i.e., the value adopted in our case study). Similarly, r1 and r2 reach

a stable level at the same 30-min threshold.

The parameter Tmax-boundary specifies a minimum value, such that given the current location

under investigation and the trip to this location, if the time interval between the start of its next

trip and the end of its previous trip is longer than this threshold, the current location is

predicted as a stop. From Figure 6a, it is observed that as Tmax-boundary increases, both SS-length

Figure 5. The relation between Tcall-int and the average sequence length (a) and the coefficients (b).
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and AS-length continuously decrease without stopping at a certain value. In contrast, r1 and r2
fall into a steady state when Tmax-boundary passes to a certain value (e.g., 60 min) (see Figure 6b).

This can be due to the possibility that the dismissed stop locations caused by the increase in

Tmax-boundary are likely distributed randomly across various types of patterns, leading to the

relative frequencies of these patterns remaining unchanged.

8.2. Actual-dur(act(li))

Figure 7 depicts the relation between the threshold actual-dur(act(li)) for work activities and the

derived results. It shows that, when this parameter passes a certain point, e.g., 317 min

specified in this study, the changes in AS-length as well as r1 and r2 disappear. This phenome-

non can be explained by the binomial model used to estimate the call probability CallP(user, li).

According to this model, when the actual-dur(act(li)) is longer, CallP(user, li) becomes larger.

But the call probability eventually enters into a constant value of 1 at a certain point of the

actual-dur(act(li)) (see Figure 8).

The above sensitivity analysis shows that, except Tmax-boundary that exhibits a certain level

of influences on the average length of the sequences, a certain amount of changes in these

Figure 6. The relation between Tmax-boundary and the average sequence length (a) and coefficients (b).

Figure 7. The relation between the actual-dur(act(li)) for work activities and the AS-length (a) and the coefficients (b).

Validating Activity-Based Travel Demand Models Using Mobile Phone Data
http://dx.doi.org/10.5772/intechopen.75810

95



parameters does not cause a substantial discrepancy in the sequence length and the pro-

files. This indicates that the profiles constructed from the mobile phone data are stable

and consistent in characterizing workers’ travel behavior; a minor change in these param-

eters will not result in significantly different outcomes.

9. Discussions

A number of areas can be enhanced in the future research. (1) In the prediction of home and

work locations, a fixed work period (i.e., the time interval between 9 am and 18 pm on week-

days) is assumed. Under this assumption, people who work in night shifts or at weekends

are ignored. The prediction of these two places could be improved by first deriving possible

work regimes of the users. Flexible work periods can then be adopted corresponding to the

different regimes. (2) During the process of stop location identification, rather than using general

thresholds of 30 and 60 min for Tcall-int and Tmax-boundary, these two parameters should be tailored

to particular cells and individuals’ travel speeds. For instance, smaller values than the current

settings should be used for cells in a smaller size and for individuals with a higher travel speed

(e.g., by car or by train). (3) With respect to the process of converting stop-seqs into actual-seqs,

the estimation of the actual-dur(act(li)) should be separated among different social-economic

groups, as the work duration for full-time workers is longer than that for part-time ones.

Moreover, rather than using an identical CallRate(user) for all activities conducted by a user, the

call rate could be differentiated across different activity types, as the likelihood of making calls

may vary depending on the activity context. (4) When examining the validation potential of this

method, travel surveys stemmed from different geographic areas than that of mobile phone data

are used. However, as discussed in Section 7, deviations exist in terms of land use, transport

networks and social-economic conditions of individuals across different regions and countries,

and travel behavior is shaped by all of these factors. Thus, in the future, the proposed method

must be validated using a real travel survey performed in the same or similar context to where

the mobile phone data is recorded. Such surveys will provide more relevance to the current

method by identifying the optimal parameters as well as assessing the results. (5) With the rapid

Figure 8. The relation between the actual-dur(act(li)) for work and CallP(user, li):
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development of mobile application, mobile phone data will be collected not only when people

make calls but when they use the application. The location data will thus reveal more activities

and travel episodes, enabling more accurate travel sequence derivation based on the proposed

approach. This will lead to an even more reliable activity-based model validation method as well

as to improved travel behavior analysis in general.

10. Conclusions

The proposed method can be integrated into activity-based models at the stage of ‘simulated

travel sequences’ (see Figure 1). Specifically, during this validation, the set of simulated travel

sequences yielded from the activity-based models is compared with the set of the actual-seqs

derived from the mobile phone data in the following two aspects: (1) The average number of

location visits per day, that is, the average length of the sequences. (2) The sequential order of

the activities, reflected by the correlation between the corresponding profiles (i.e., the tour-

profiles or day-profiles) constructed from each set of the sequences. If a large difference in the

average length of the sequences or a low coefficient between these profiles is found, it would

suggest mismatches between the simulated results and the travel patterns represented by the

call data. This thus signals possible problems and calls immediate action into the examination

of the activity-based models, prior to the utilization of the model results for further traffic

assignment and mobility-related analysis.

Apart from the initial goal of developing a new validation method, this study also designs a

novel process for stop location identification and actual-seqs derivation. This process integrates

daily activities and travel with call activities; both types of activities occur concurrently and are

performed by the same individuals. This method presents a solution to the challenge that is

pertinent to mobile phone data research and application in a variety of fields, for example, in

urban planning and location-based services. Due to the event-driven nature of mobile phone

data collection, the locations are recorded only when a user connects the GSM network. What

the user is doing (e.g., traveling or doing activities) is not known. Moreover, the places, where

the person has stayed but without calling, are also dismissed. The location update errors which

result in wrong documentation of user’s actual locations raise another issue on the data

collection. The results from our case study suggest a decrease by 42% in the number of location

visits per day, when stop-seqs are constructed from the raw phone data. This number increases

by 22% when the dismissed places are interpolated and the complete actual-seqs are formed.

Such scales of changes signify the importance of the integration between the existing research

using mobile phone data and this process in this study.
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