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Abstract

Public concern with the incidence of antibiotic-resistant bacteria, particularly among 
foodborne pathogens has been challenging the poultry industry to find alternative means 
of control. Chitosan is a modified, natural biopolymer derived by deacetylation of chi-
tin. The antimicrobial activity and film-forming property of chitosan makes it a poten-
tial source of food preservative or coating material of natural origin for improvement of 
quality and shelf life of various foods of agriculture, poultry, beef and seafood origin. 
In addition to its use as an antimicrobial, it has been shown that it has good proper-
ties as a mycotoxin adsorbent. The purposes of the present chapter is to summarize our 
experience using chitin-chitosan from Deacetylated 95% food grade chitosan (Paragon 
Specialty Products LLC Rainsville, AL) or Aspergillus oryzae meal (Fermacto®, PetAg Inc., 
Hampshire IL) to control foodborne pathogens, improve performance, biological sani-
tizer and mycotoxin binder in commercial poultry.

Keywords: chitosan, Fermacto®, Salmonella, mycotoxins, gut health

1. Introduction

Chitin (C
8
H

13
O

5
N)n) is a long-chain polymer of a N-acetylglucosamine (Figure 1(a)), a deriva-

tive of glucose, and is found in many places globally. It is the main component of the cell walls 
of fungi, the exoskeletons of arthropods such as crustaceans (e.g., crabs, lobsters and shrimps) 
and insects, the radula of mollusks, and the beaks of cephalopods, including squid and octopi 
[1]. In terms of structure, chitin may be compared to the polysaccharide cellulose and, in terms 

of function, to the protein keratin [2]. Depending on its source, two types of chitin allomorphs 
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can occur, the α and β forms, which can be differentiated by infrared and solid-state NMR 
spectroscopy together with X-ray diffraction [3]. Chitosan is a high molecular weight poly-

saccharide linked by a β-1,4 glycoside and is composed of N-acetyl-glucosamine and glucos-

amine (Figure 1(b)). It is a natural biopolymer derived by deacetylation of chitin and the most 
widespread polycationic biopolymer [3]. However, although chitosan is obtained from chitin, 
the applications of the latter compared to chitosan are limited because it is chemically inert [4] 

and because of its poor solubility [5]. Unlike chitin, chitosan is soluble but in an acidic media 
since at neutral or alkaline pH it is insoluble. The properties of chitosan can be modified by 
changing the degree of deacetylation, pH and ionic strength. At neutral pH, most chitosan 
molecules will lose their charge and precipitate when it is in solution [6].

The application of chitin is focused on obtaining soluble derivatives in aqueous media such 
as chitosan [3]. Chitosan has several applications in fields such as waste and water treatment, 
agriculture, fabric and textiles, cosmetics, nutritional enhancement, and food processing. Given 
its low toxicity and allergenicity, and its biocompatibility, biodegradability and bioactivity, it 
is a very attractive substance for diverse applications in the pharmaceutical and medical fields, 
since it has been used for systemic and local delivery of drugs and vaccines [7]. However, 
one of the most important application is its antimicrobial activity against bacteria, filamentous 
fungi and yeasts. Chitosan has wide spectrum of activity against Gram-positive and Gram-
negative bacteria but it is more effective against Gram-negative bacteria [8, 9]. Furthermore, it 

has been reported that the antimicrobial activity and film-forming property of chitosan makes 
it a potential source of food preservative or coating material of natural origin for improvement 
of quality and shelf life of various foods of agriculture, poultry, beef and seafood origin [3, 10]. 

The mechanism of the antimicrobial activity of chitosan has not yet been fully elucidated, but 
several hypotheses have been proposed. The most feasible hypothesis is a change in cell per-

meability due to interactions between the positively charged chitosan molecules and the nega-

tively charged microbial cell membranes [11, 12]. Other mechanisms include the interaction of 

diffused hydrolysis products with microbial DNA, which leads to the inhibition of mRNA and 
protein synthesis and chelation of metals, spore elements, and essential nutrients [5, 13].

The antimicrobial activity of chitosan depends on both intrinsic and extrinsic factors. 
Among the intrinsic factors are the molecular weight and degree of deacetylation of chito-

san. While the extrinsic factors include pH, temperature and reactive time [14]. Moreover, it 
has been observed that when the chitosan is in nanoparticle form, it has better  antimicrobial 

Figure 1. Chemical structure (a) of chitin poly(N-acetyl-β-d-glucosamine) and (b) of chitosan (poly(d-glucosamine) 
repeat units.
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properties since its small particle size gives it a greater surface area and high reactivity 
which could enhance the charge interaction with the bacterial surface and of this way to 

produce a superior antimicrobial effect [15].

2. Antimicrobial effect of chitosan on Salmonella in broiler chickens

Salmonella enterica serovars continue to be among the most important foodborne pathogens 
worldwide due to the considerable human rates of illness reported, the wide hosts species that 

are colonized by members of this remarkable pathogen genus, which serve as vectors and res-

ervoirs for spreading these agents to animal and human populations. Figure 2 shows the dis-

tribution of the major serotypes of Salmonella with importance in public health. Furthermore, 

the public concern for the appearance of resistant strains to many antibiotics, particularly 

among zoonotic pathogens such as common Salmonella isolates, is also challenging the poul-

try industry to find alternative means of control [16]. For these reasons, continued research 

on sustainable alternatives to antibiotic growth promoters for animal production is needed.

Interest in chitosan, a biodegradable, nontoxic, non-sensitizing, and biocompatible polymer 

isolated from shellfish, arises from the fact that chitosan is reported to exhibit numerous benefi-

cial effects, including strong antimicrobial and antioxidant activities in foods [18]. Its applica-

tion in agriculture, horticulture, environmental science, industry, microbiology, and medicine 
are well reported. A significant interest in the antimicrobial activities of chitosan either as solu-

tion, or as powders, edible films and coating against foodborne pathogens, spoilage bacteria, 
and pathogenic viruses and fungi in several food categories has been extensively investigated 
[19]. We have evaluated the effect in vitro and in vivo of chitosan on Salmonella typhimurium in 

broiler chickens [20]. In our in vitro crop assay experiments (Table 1), 0.2% chitosan  significantly 

Figure 2. Distribution of the major serotypes of non-typhoidal Salmonella associated with human cases (salmonellosis) 
and poultry meat in EU, 2011 to 2013 [17].
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reduced the cfu of ST at 30 min or 6 h compared with control (P < 0.05). In the in vivo experi-

ments with 40 day-of-hatch broiler chicks and challenged with 2 × 105 cfu ST, dietary 0.2% chi-

tosan significantly reduce the cfu/g of ST in the ceca in both experiments (Table 2). However, no 
significant reduction in the incidence of ST in cecal tonsils colonization was observed, suggest-
ing that 0.2% chitosan significantly reduced the cfu of ST/gram in vitro and in vivo.

3. Effect of chitosan as a biological sanitizer on chicken skin

Chickens contain large numbers of microorganisms in their gastrointestinal tract and on their 
feathers and feet; therefore, storage quality of fresh chicken is partially dependent on the bacte-

ria present on the integument prior to slaughter. Pathogenic microorganisms present in chicken 
carcasses after processing and throughout scalding and picking can contaminate equipment 
and other carcasses [21]. Pathogenic bacteria such as Salmonella spp. and Campylobacter spp. are 

able to attach to skin and penetrate in skin layers or feather follicles, facilitating their presence 
on chicken skin and carcass during poultry processing [22]. Critical control point  determination 

at broiler processing has become very important, especially because of the recent attention on 

Treatment Trial 1 Trial 2

Cecal tonsils (CT) Log
10

 ST/g of CT Cecal tonsils (CT) Log
10

 ST/g of CT

Control 15/20 (75%) 4.20 ± 0.82a 15/20 (75%) 5.00 ± 0.62a

Chitosan (0.2%) 9/20 (45%) 2.28 ± 0.75b 12/20 (60%) 3.34 ± 0.72b

a-bValues within columns with different lowercase superscripts differ significantly (P < 0.05).

Table 2. Effect of chitosan on Salmonella enteritidis cecal tonsils colonization in 7-days-old broiler chickens.

Treatment Trial 1 Trial 2 Trial 3

30 min 6 h 30 min 6 h 30 min 6 h

Control 5.22 ± 0.15a 7.62 ± 0.01a 5.19 ± 0.11a 6.99 ± 0.03a 6.05 ± 0.18a 7.95 ± 0.31a

Chitosan 

(0.2%)
3.94 ± 0.20b 3.04 ± 0.20b 3.49 ± 0.24b 4.40 ± 0.19b 5.05 ± 0.19b 5.31 ± 0.26b

a-bValues within columns with different lowercase superscripts differ significantly (P < 0.05).

Table 1. Antimicrobial activity of chitosan on Salmonella typhimurium in an in vitro crop assay.

Treatment Trial 1 Trial 2

1 h 24 h 1 h 24 h

Control 6.57 ± 0.11a 6.03 ± 0.02a 6.78 ± 0.06a 7.36 ± 0.06a

Chitosan (0.5%) 6.23 ± 0.03a 5.81 ± 0.06b 7.06 ± 0.08a 6.60 ± 0.17b

a-bValues within columns with different lowercase superscripts differ significantly (P < 0.05).

Table 3. Salmonella typhimurium (log10 cfu ± standard error)/square cm of chicken skin treated with 0.5% chitosan 
solution.
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Hazard Analysis and Critical Control Points (HACCP) for reduction of microbial contamina-

tion of meat and poultry [23]. For all these reasons, strategies to reduce bacterial contamination 

on poultry carcasses are important. However, most of the bacterial reduction strategies for 
poultry comprise the use of antimicrobial chemicals in rinses or washes and their efficacy is 
reduced by the presence of organic matter. Therefore, it grows the need of biological sanitiz-

ers in the processing plant to prevent carcass to carcass cross-contamination by pathogenic 
bacteria and to lower the potential of foodborne diseases. Interest in chitosan, a biocompatible 

polymer derived from shellfish, as a biological sanitizer arises from reports showing several 
beneficial effects such as antimicrobial and antioxidative activities in foods [2]. The use of chi-

tosan in industry, agriculture, and medicine is well described [13]. The antimicrobial activities 
of chitosan against foodborne pathogens has been broadly investigated in the food industry 
[24]. Research conducted in our laboratory on the effect of chitosan as a biological sanitizer in 
chicken skin contaminated with Salmonella Typhimurium and aerobic Gram-negative spoilage 
bacteria present on chicken skin, have revealed that 0.5% chitosan for 30 s dipping ST contami-
nated skin samples in a solution of 0.5% chitosan reduced (P < 0.05) the recovery of ST by 24 h 
as well as the presence of spoilage-causing psychrotrophic bacteria below detectable levels 
[19], (Table 3). The antimicrobial activity and film-forming characteristic of chitosan makes it 
a potential source of food preservative, increasing quality and shelf life of different types of 
foods [10]. The mechanism of the antimicrobial activity of chitosan has not yet been fully elu-

cidated; nevertheless, different hypotheses have been proposed. The most realistic hypothesis 
is that chitosan is able to change cell permeability due to interactions between the positive 
charges of its molecules and the negative charges of the bacterial cell membranes [1]. Other 

hypotheses include the chelation of metals and essential nutrients, inhibiting bacterial growth 

had also suggested that high molecular weight chitosan could be able to form a polymer mem-

brane around the bacterial cell, preventing it from receiving nutrients [25].

4. Prebiotic properties of Aspergillus oryzae to control foodborne 
pathogens improve performance and bone mineralization in poultry

Prebiotics are non-digestible food ingredients that are selectively fermented by gut bacteria and 
are known to have positive effects on gastrointestinal (GI) physiology. Some prebiotics have been 
shown to selectively stimulate the growth of endogenous lactic acid bacteria in the gut thereby 
improving the health of the host [26]. Prebiotics selectively modify the colonic microflora and 
can potentially influence gut metabolism [27]. The commercially available mycelium product of 
Aspergillus oryzae, Fermacto® (PetAg Inc. Hampshire, IL 60140 USA), referred to as Aspergillus 

meal (AM), has no live cells or spores and is proven to enhance the digestive efficiency of the GI 
tract [28]. Aspergillus fiber contains beta-glucans [29], fructooligosaccharides (FOS) [30], chitosan 

[31], and mannanoligosaccharides (MOS) [32]. Beta-glucan is considered as a powerful immune-

enhancing nutritional supplement that affects the intestinal villi and primes the innate immune 
system to help the body defend itself against viral and bacterial invaders [33]. MOS protect the 
GI tract from invading toxins and pathogens by binding toxin active sites [34]. FOS and chitosan 

refer to a class of non-digestible carbohydrates that are readily fermented by beneficial bacte-

ria in the intestine [30]. A healthy population of these beneficial bacteria in the digestive tract 
enhances the digestion and absorption of nutrients, detoxification and  elimination processes, 
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and helps boost the immune system [35]. With an increase in the dependence on livestock as 
an important food source, it becomes crucial to achieve good health in order to make rearing of 
animal food sources safe and beneficial to both animals and humans.

Several studies have demonstrated that prevention of Salmonella colonization in chickens can be 
achieved by feeding prebiotics [36]. According to Lowry et al. [37], dietary beta-glucan reduces 

SE colonization significantly in chickens. In their experiment, SE from L/S was recovered from 
76% of non-treated birds, while only 7% of the birds were positive for SE in the treated group, 
(Figure 3). Moreover, in the same study, heterophils isolated from birds treated with dietary 
beta-glucan contained 40% (p < 0.05) more SE than heterophils isolated from untreated birds, 
(Table 4). Heterophils form the first line of defense and killing of Salmonella by heterophils 

is well-described. This corroborates the immunostimulatory effect of beta-glucans and FOS 
are widely used as prebiotics in a broad range of animal species, and these carbohydrates 

have been tested with success for protection against Salmonella infections in chickens and other 
avian pathogens [35, 38, 39]. Kim et al. conducted a study where dietary MOS (0.05%) and FOS 
(0.25%) had an effect on intestinal microflora of broiler chickens, suggesting the use of these 
prebiotics as an alternative to the use of growth-promoting antibiotics [40]. Finally, chitosan 

is a modified, natural biopolymer derived by deacetylation of chitin, the main component of 
the cell walls of fungi and exoskeletons of arthropods. As mention before, chitosan exhibits 
numerous beneficial effects, including strong antimicrobial and antioxidative activities. Its 
application in agriculture, horticulture, environmental science, industry, microbiology, and 
medicine are well reported [10]. According to Huang et al., the use of 0.01 or 0.015% of oligo-

chitosan in the diet increased serum levels of immunoglobulins in broiler chickens, suggesting 
a potential immunomodulatory effect [41]. There have been numerous studies that report the 
use of chitosan as a mucosal adjuvant, by enhancing IgA levels. It is well known that IgA is 
active across mucosal surfaces and is the predominant class of antibody against enteric patho-

gens [42, 43]. The commercial prebiotic supplement derived from Aspergillus sp. mycelium is 

Figure 3. Effects of dietary β-glucan on SE organ invasion in immature chickens. β-glucan fed as a nutritional supplement 
to neonatal chickens 3 days prior to SE challenge. (*indicates statistically significant differences, P < 0.05).
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unique because it contains all of the above mentioned prebiotic ingredients. Additionally, AM 
contains 16% protein and 45% fiber and may be used with low levels of protein and amino acid 
diets to improve performance in commercial poultry [28, 44]. Even though the exact mecha-

nisms of action for prebiotics have not been defined, it may be speculated that the effect is due 
to changing intestinal flora that promotes the growth of beneficial bacteria. This product has 
also been shown to benefit poultry through stimulation of growth, most probably by increas-

ing absorption of feed ingredients and improving digestibility [45, 46].

In a recent study conducted in our laboratory we evaluated the effect of 0.2% dietary Aspergillus 

meal (AM) against horizontal transmission of Salmonella spp. in turkeys and chickens [36]. 

The results of this study showed that dietary supplementation with 0.2% Aspergillus Meal was 
able to reduce Salmonella enteritidis horizontal transmission in turkeys, (Table 5) and Salmonella 

Typhimurium horizontal transmission in broiler chickens, by reducing the overall colonization 
levels in birds, (Table 6). Although the mechanism of action is not totally understood, the reduc-

tion in Salmonella colonization may be related to a synergistic effect between beta-glucan, MOS, 
chitosan, and FOS present in the Aspergillus oryzae mycelium. In a previous work, we showed 
that dietary AM induces important changes on intestinal morphometry in turkey poults such 
as increased number of acid mucin cells in the duodenum, neutral mucin cells in the ileum, and 

Treatments Percent heterophils + SE Mean #SE/heterophil Phagocytic index (PI)

Control feed 38.54 ± 0.05b 4.38 ± 1.08b 175.54 ± 44.92b

β-glucan feed 78.84 ± 0.03a 8.20 ± 0.76a 644.10 ± 57.07a

a-bValues within columns with different lowercase superscripts differ significantly (P < 0.05).

Table 4. Effects of feeding β-glucan on chicken heterophil phagocytosis.

Groups Day 10 cecal tonsils Day 20 cecal tonsils Day 30 cecal tonsils

Control—No AM 20/20 (100%) 18/20 (90%) 15/20 (75%)

AM 15/20 (75%)* 12/20 (60%)* 8/20 (40%)*

*(a) in the Control-No AM group and (b) in the AM group in both tables.
a-bValues within columns with different lowercase superscripts differ significantly (P < 0.05).

Table 5. Effect of dietary Aspergillus meal against horizontal transmission of Salmonella enteritidis at 10, 20 and 30 days 

of age in turkeys.

Groups Trial 1 Trial 2

Liver/spleen Cecal tonsils Liver/spleen Cecal tonsils

Control—No AM 18/20 (90%) 20/20 (100%) 19/20 (95%) 18/20 (90%)

AM 6/20 (30%)* 5/20 (25%)* 8/20 (40%)* 6/20 (30%)*

*(a) in the Control-No AM group and (b) in the AM group in both tables.
a-bValues within columns with different lowercase superscripts differ significantly (P < 0.05).

Table 6. Effect of dietary Aspergillus meal against horizontal transmission of Salmonella typhimurium at 10 days of age in 

chickens.

Chitoneous Materials for Control of Foodborne Pathogens and Mycotoxins in Poultry
http://dx.doi.org/10.5772/intechopen.76041

267



 sulphomucin cells in the duodenum and ileum, as well as increased villi height and villi surface 
area of both duodenum and ileum when compared to control, suggesting that AM prebiotic has 
an impact on the mucosal architecture and goblet cells proliferation in the duodenum and ileum of 

neonate poults [45]. Our extended studies using dietary AM prebiotic supplemented for 30 days, 
have shown significantly increased the body weight of neonate poults and improved feed conver-

sion when compared with poults that received the control basal diet, and interestingly, energy 
and protein content in the ileum was significantly lower in poults that received dietary AM pre-

biotic compared with control poults suggesting better digestibility, absorption of those nutrients 
and bone mineralization [46]. FOS have been shown to stimulate calcium (Ca) and magnesium 
(Mg) absorption in the intestine and increase bone mineral concentrations in humans and rats as 
well as stimulate net Ca transport from the epithelium of the small and large intestine [30, 38].

The gastrointestinal tract serves as the interface between diet and the metabolic events that sus-

tain life. Intestinal villi, which play a crucial role in digestion and absorption of nutrients, are 
underdeveloped at hatch and maximum absorption capacity is attained by 10 days of age [47]. 

Understanding and optimizing the maturation and development of the intestine in poultry will 
improve feed efficiency, growth and overall health of the bird. Studies on nutrition and metabo-

lism during the early phase of growth in poults may, therefore, help in optimizing nutritional 

management for maximum growth. By dietary means it is possible to affect the development of 
the gut and the competitiveness of both beneficial and harmful bacteria, which can alter not only 
gut dynamics, but also many physiologic processes due to the end products metabolized by sym-

biotic gut microflora [48]. Additives such as enzymes, probiotics and prebiotics are now exten-

sively used throughout the world [49–51]. Our studies suggest that the increase in performance 

and bone parameters in neonatal poults fed with 0.2%AM (Table 7), may be related to a synergis-

tic effect between beta-glucan, MOS, chitosan and FOS from Aspergillus niger mycelium [45, 46].

5. Evaluation of chitosan as binding adsorbent material to prevent 
mycotoxicosis poultry

Mycotoxins are secondary toxic metabolites produced by filamentous fungi which, even at 
low concentrations, represent an important danger for both animal and human health [52, 53]. 

Currently, over 300 mycotoxins have been identified worldwide, being aflatoxins, ochratox-

ins, zearalenone, trichothecenes, and fumonisins, the most frequently found with synergistic 

toxic effects reported when more than one of these mycotoxins are present in the feed [54, 55]. 

Mycotoxins are chemically and structurally different, representing serious public health risk 

Control Aspergillus meal

Body weight (Kg) 600.32 ± 52.26b 720.87 ± 63.82a

FC (feed: gain) 1.34 ± 0.03a 1.23 ± 0.02b

Mortality (%) 2.00%a 2.50%a

a-bValues within columns with different lowercase superscripts differ significantly (P < 0.05).

Table 7. Effect of Aspergillus meal on productive parameters in turkey poults at 30 days of ages.
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factors since mycotoxins have been shown to have carcinogenic, teratogenic, nephrotoxic, and 
hepatotoxic effects after the consumption of contaminated grains or animal food products [56]. 

On the other hand, mycotoxins are equally important in the animal food industry, causing sig-

nificant economic losses due to diminished performance and productivity, decreased reproduc-

tive parameters, and an increased mortality rate associated with the toxicological effects in liver, 
kidneys, and immune system [52, 57, 58]. Researchers have developed some methods in order 
to reduce the harmful effects of grains contaminated with mycotoxins. These include physical 
(thermal and irradiation inactivation); chemical (ozonation and ammoniation); and, biological 
(bacterial degradation or adsorption [57, 59, 60]. Nevertheless, toxin sequestering agents are the 
most common and reliable products used for the feed industry due to its economic practical-

ity and aptness for nutritional insight [61, 62]. Several studies have demonstrated that cellulosic 
materials have adsorption capacities for heavy metal ions and other pollutants [63, 64]. Similarly, 

some researchers have evaluated the binding activity of chitosan (CS) against several mycotoxins 
[2, 65]. As a biological polymer, chitosan has been shown to have promising uses as an adsorbent 
for the removal of various mycotoxins, heavy metal ions, and dyes [65]. Furthermore, it has been 

tested in the removal of OTA from contaminated drinks, demonstrating that chitosan can reduce 
the levels of this mycotoxin [1, 66]. On the other hand, some in vitro methods have been developed 
to evaluate the adsorbent capacity of mycotoxin sequestering products [67, 68]. However, these 
methods may not be directly applicable to poultry diets because they do not use the successive 
incubation at different pH and enzyme activity conditions similar to the different gastrointestinal 
compartments of poultry. Recently, we evaluated the adsorption capacity of CS on Aflatoxin B1 
(AFB

1
); Fumonisin B1 (FUB

1
); Ochratoxin (OTA); Trichothecene (T-2); Deoxynivalenol (DON); 

and, Zearalenone (ZEA), using an in vitro digestive model that simulates three gastrointestinal 
compartment of poultry [69]. In that study, deacetylated 95%, high molecular weight (350 kDa) 
Chitosan (CS, Paragon Specialty Products, LLC, Rainsville, AL, USA) was tested and acetylated 
with an aqueous solution of acetic acid 1% (v/v). Then, this solution was dropped into NaOH 

Figure 4. Percentage of adsorption of different mycotoxins on chitosan. Bars are the mean values. Error bars displays an 
interval around each mean, which are based on Fisher’s least significant difference (LSD) procedure.

Chitoneous Materials for Control of Foodborne Pathogens and Mycotoxins in Poultry
http://dx.doi.org/10.5772/intechopen.76041

269



0.5 M solution and the formed chitosan particles were rinsed three times with pure water and 
dried [69, 70]. The results showed a moderate adsorbent capacity of CS against five of the six 
mycotoxins evaluated, except for DON since only 3.5% was adsorbed, (Figure 4). Similar results 
were obtained in another study using non-crosslinked chitosan against different mycotoxins but 
it is a fact that cross-linking is related to a higher adsorption capacity and pH can affect it [70]. 

The mycotoxins adsorption capacity of CS is due to the electrostatic interactions. At alkaline pH, 
the CS is positively charged, while mycotoxins such as AFB1, FUB1, OTA and ZEA are negatively 
charged [70–72]. In the case of DON and T-2, the interactions appeared to be minor, causing poor 

adsorption. These results are very similar to those obtained in other studies [70]. Therefore, it 

could be said that ionic interactions are the main mechanism of mycotoxin adsorption of chitosan.

6. Chitosan nanocarriers: a strategy to improve solubility, permeability 
and stability of drugs

Another application of chitosan (CS) is its use in nanotechnology for the development of drug 
delivery systems such as nanoparticles and nanocapsules. These systems emerge as a strategy to 
improve the dissolution of drugs with low solubility and increase its permeability, which trans-

lates into an increase in bioavailability, a greater specificity and also an increase in the stability of 
drugs against physiological and environmental conditions [73]. In our laboratory, we have devel-
oped two nanocapsular systems capable of loading a phytopharmaceutical named Curcumin. 

This molecule has also been the subject of study in the poultry industry, given its properties, 
including its antioxidant action, the immunomodulatory, anticoccidial, anti-inflammatory, anti-
microbial and growth promotion effects, the latter as an alternative to antibiotic growth promot-
ers in order to maintain the performance and health of the birds [74–76]. In our laboratory, we 

have already evaluated the antimicrobial activity of curcumin against Salmonella enteritidis in an 

in vitro model that simulates the three compartments of the chicken gastrointestinal tract. The 
results obtained show that at a dose of 1%, the concentration of Salmonella enteritidis decreases 

slightly but not significantly with respect to the control [77]. However, one of the problems of 
curcumin, even when it is administered at high doses (12 g/day) is its low bioavailability due to 
its poor solubility and therefore poor absorption, as well as its rapid metabolism and systemic 

elimination [76]. In this sense, the development of nanocapsular systems aimed to increase the 
solubility, permeability and stability of curcumin. Such systems were named chitosan nanocap-

sules (NC-CS) and Alginate nanocapsules (NC-ALG) and were composed of an oily core of vita-

min E surrounded by a biodegradable polymeric shell of either chitosan or alginate respectively.

Both systems were obtained by the a slightly modification of the solvent displacement technique 
[78]. However, the formation of NC-CS is based on the electrostatic and hydrophobic interactions 
as well as the hydrogen bonding and van der Waals forces that take place between the chitosan 
dissolved in an acidic aqueous phase and the lipid cores of Vitamin E formed in the organic phase, 
causing the polymer to be adsorbed on the surface of the lipid cores [4, 79–81], (Figure 5(a)). While 
NC-ALG were prepared using the “Single-stage procedure” based on the dipolar ionic interac-

tions between the polymer (ALG), which is dissolved in the aqueous phase and the cationic sur-

factant (CTAB) present in the organic phase which also contains the oil [82], (Figure 5(b)).
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The systems were characterized physicochemically in terms of particle size, surface charge, poly-

dispersity index (PDI) and curcumin encapsulation efficiency, (Table 8). Particle size and (PDI) 
were determined by dynamic light scattering (DLS) using a Malvern Zetasizer Nanoseries 3600 
(Worcestershire, UK). The zeta potential values were calculated from the mean electrophoretic 
mobility values, as determined by Laser Doppler Velocimetry (LDV) using a Malvern Zetasizer 
Nanoseries 3600 (Worcestershire, UK). The particle size of NC-CS was round 116.7 nm with a 
PDI of 0.107 and presented positive surface charge (24.4 mV) while NC-ALG was round 178 nm 
with a PDI of 0.149 and a negative surface charge (−49.0 mV). Curcumin encapsulation efficiency 
was determined indirectly by Centrifugation-Filtration. Quantification of curcumin was per-

formed by high performance liquid chromatography (HPLC, Merck-Hitachi, Japan) at 425 nm, 
using a reverse phase Hypersil® Division C8 column (150 × 3 mm, 5 μm; ThermoQuest, Hemel 
Hempstead, England). Curcumin encapsulation efficiency of both formulations, was >90%, with 
a final concentration of curcumin around 750 μg/ml [Unpublished work from our laboratory].

The stability to storage conditions is a parameter that must be evaluated in nanoparticulate 
systems (Table 9). In that study, the storage stability of NC-CS and NC-ALG was around 3 and 
2 months respectively. In the case of NC-Cs, after 3 months of storage, the decrease in particle 
size and the precipitation of CUR were presented with greater magnitude since the chitosan 

begins to hydrolyze gradually and the viscosity of the formulation based on nanocapsules 
decreased during the storage period [83]. On the other hand, the results obtained for NC-ALG 
suggest that the stability of this type of formulation is around 2 months [Unpublished work 
from our laboratory]. These results are very similar to those reported in other studies, in which 
they report that the particle size of NC-ALG decreases between month 1 and 5 of storage [84].

Figure 5. Structural illustration of NC-CS (a), NC-ALG (b) and its components.

Formulation Size (nm) PDI ζ potential (mV) %E. E. pH

NC-NC 116.7 ± 3.2 0.107 24.4 ± 2.1 >98 4.67 ± 0.08

NC-ALG 178 ± 7.9 0.149 −49.0 ± 2.3 6.08 ± 0.06

PDI: polydispersity index; EE: encapsulation efficiency. Values are given as mean ± SD; n = 3.

Table 8. Physicochemical characteristics of the nanocapsules obtained.
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Formulation NC-CS NC-ALG

Time 

(months)
1 2 3 1 2 3

Z-average 
(nm)

115.2 ± 2.9 101.3 ± 4.1 95.45 ± 3.0 161.9 ± 2.1 157.7 ± 4.77 149.3 ± 2.9

PDI 0.115 0.145 0.196 0.178 0.213 0.245

ζ potential 
(mV)

23.8 ± 2.1 23.9 ± 3.2 24.5 ± 2.8 −48.7 ± 1.9 −46.8 ± 2.5 −44.3 ± 2.7

Values are given as the mean ± SD; n = 3.

Table 9. Physicochemical characteristics of the nanocapsules during stability studies under storage conditions (4°C).

An important parameter that was take into account in these nanosystems was the cellular 
toxicity on caco-2 cells. For this, the conditions for the maintenance of the cell cultures were 

made according to Déat-Lainé et al. [85] with slight modifications. Before starting the study, 
the formulations were diluted in cell culture medium (DMEM: Dulbecco’s Modified Eagle 
Medium) in order to obtain the treatments with different polymer concentrations. Cell viabil-
ity was determined by MTT assay [86]. In Figure 6, the results showed that even at high 
polymer concentrations (500 μg/mL) the cell viability is above 80%. However, it is a fact that 
the toxicity increases as so does the polymer concentration. Other studies in Caco-2 cells have 
shown similar results to those obtained in our laboratory and agree that the toxicity of chito-

san nanoparticles is due to their physicochemical properties such as size and surface charge 

and also to the molecular weight of the chitosan and the concentration at which the cells are 

exposed [87, 88]. In the case of NC-ALG, the toxicity was lower since the interactions between 
the carboxyl groups of alginate and cell membranes are weaker because they are of the elec-

trostatic type. The toxicity in these systems is more related to the particle size [89]. From the 

toxicity study, the polymer concentration to carry out the permeability studies was selected. It 

should be mentioned that this concentration did not compromise cellular viability.

Permeability studies were carried out on a monolayer of caco-2 cells and the quantification 
of curcumin was performed by UPLC-TQ-ESI-MS/MS (Waters ACQUITY UPLC system, 
Milford, MA, USA). Chromatographic analysis was performed on a Waters ACQUITY BEH 
Shield RP 18 column (2.1 × 100 mm, 1.7 μm). The polymer concentration used was 500 μg/mL 
of each polymer. Results show that the permeability of curcumin increased 28.6 and 14.6 times 
when it was in NC-CS and NC-ALG respectively, compared to the dispersion of curcumin in 
cell culture medium (DMEM: Dulbecco’s Modified Eagle Medium) [Unpublished work from 
our laboratory]. The increase in the permeability of curcumin in NC-CS is due to the ability of 

chitosan to temporarily open the tight junctions, which are related to a decrease in the value of 
transepithelial electrical resistance (TEER, MERSSTX01 electrode, Millicell ERS-2, Millipore, 
Billerica, MA, USA) (Table 10). The mechanism by which chitosan has this capacity is based 
on the interaction of its protonated amino groups with cell membranes, followed by a revers-

ible structural reorganization of the binding proteins and a specific redistribution of the actin 
F cytoskeleton and the ZO-1 protein [90, 91]. Furthermore, it has been reported that particles 

positively charged, with spherical shape and with a monodisperse population have improved 
cellular uptake through the caveolae-mediated endocytosis and macropinocytosis pathway 
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[65, 92]. Meanwhile, the mechanism of passage of NC-ALG through the monolayer of caco-2 
cells depends largely on the particle size mainly. So, the main mechanisms are endocytic such as 

clathrin-mediated endocytosis, caveolae-mediated endocytosis and micropinocytosis [92, 93].  

The results suggest that the use of NC-CS and NC-ALG to improve the bioavailability of cur-

cumin is an interesting strategy to enhance the antimicrobial effect. Previous studies using an 
in vitro digestive model that simulates three gastrointestinal compartments of poultry have 
demonstrated that raw curcumin does not have good antimicrobial activity against Salmonella 

enteritidis [77]. However, when a solid dispersion of curcumin/PVP K30 was used, it decreased 
the concentration of Salmonella enteritidis more than 3 log in the compartment that simulates 

the intestine [Unpublished work from our laboratory]. Additional in vivo studies in 1-day-old 

chickens challenged with 104 CFU of Salmonella enteritidis/bird has shown that the solid disper-

sion of curcumin/PVP K30 administered in the feed at a concentration of 0.1% decreased more 
than 2 log the concentration of Salmonella enteritidis in ceca-cecal tonsil isolates [Unpublished 

Figure 6. Cell viability by the MTT assay on Caco-2 cells 2 h after the addition of NC-CS, NC-ALG and CUR at different 
concentrations. Values are given as mean ± SD; n = 3.

Formulation P
APP

 × 10−6 (cm/s) R TEER (%)

0 (h) 1 (h) 2(h) 12 (h)

CUR 4.96 ± 0.36 — 100 92 ± 1 93 ± 2 99 ± 4

NC-CS 141.60 ± 37.62 28.6* 100 81 ± 3 82 ± 4 97 ± 6

NC-ALG 72.38 ± 19.33 14.6* 100 90 ± 2 88 ± 6 100 ± 2

Values are given as the mean ± SD; 
n = 3.*p < 0.05 significantly different from CUR.

Table 10. Mean apparent permeability (Papp) and the absorption enhancement ratio (R) of NC-CS, NC-ALG and CUR 
across Caco-2 cells monolayers after 2 h incubation, as well as the values of transepithelial electrical resistance (TEER) 
determined at different times.
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work from our laboratory]. Since nanocapsules increased the solubility and permeability of 
curcumin, the antimicrobial activity of nanocapsules loaded with curcumin developed in our 
laboratory is being carried out both in vitro and in vivo against Salmonella enteritidis.

7. Conclusion

As seen in this chapter, chitin and its derivatives, such as chitosan, are biopolymers with a 
wide variety of applications in different areas. Chitosan as a functional biopolymer has dif-
ferent properties. Some of these properties are its intrinsic nutritional value, such as antioxi-
dant properties and health-promoting bioactivities against many chronic diseases, including 
hypercholesterolemia, hypertension, inflammation and immune diseases. In the case of chi-
tin, its application is more limited given its poor solubility in aqueous medium, however, it 
has been reported that it has practically the same properties as its derivatives.

Every year millions of people are affected and thousands of them die due to infections and 
intoxication as a result of foodborne outbreaks, which also cause billions of dollars’ worth 
of damage, public health problems and agricultural product loss. A considerable portion 
of these outbreaks is related to the consumption of contaminated products with foodborne 
pathogens and mycotoxins. In this sense, one of the main applications of chitosan is its anti-

microbial effect against Gram-positive bacteria such as Gram-negative bacteria, having bet-
ter activity with the latter due to the ionic interaction that takes place between the positively 
charged chitosan molecules and the negatively charged microbial cell membranes. Studies 
conducted on chickens and turkeys challenged with Salmonella enteritidis and typhimurium 

show the antimicrobial capacity of chitosan when it is administered in the feed. Furthermore, 

in vitro studies have demonstrated its properties as an adsorbent, since it can interact ioni-
cally with mycotoxins such as AFB1, FUB1, OTA and ZEA given that they are negatively 
charged, nevertheless, it is a fact that cross-linking is related to a higher adsorption capacity.

Finally, another application of chitosan is its use in nanotechnology for the development of 
nanoparticles and nanocapsules. These systems are an important strategy to improve the solubil-
ity, permeability and stability of molecules that are difficult to formulate. In the case of curcumin, 
a phytopharmaceutical that has become the subject of study in the poultry industry given its 
properties, including its antioxidant action, the immunomodulatory, anticoccidial, anti-inflam-

matory, antimicrobial and growth promotion effects, has problems of solubility and permeability, 
which causes low bioavailability. However, its association or encapsulation in nanoparticulate 
systems has shown that the solubility and permeability of this are improved. This suggests that 
the use of curcumin loaded in chitosan nanocapsules could increase its antimicrobial activity 
derived from the combination of the effects between chitosan and curcumin on different bacteria.
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