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Abstract

A common engineering task consists of interpolating a set of discrete points that arise
from measurements and experiments. Another traditional requirement implies creating a
curve that mimics a given array of points, namely, a polyline. Any of these problems
require building an analytical representation of the given discrete set of points. If the
geometrical shape represented by the input polyline is complicated, then we may expect
that a global interpolant or polynomial will be of a high degree, to honor all imposed
constraints, which makes its use prohibited. Indeed, a global interpolant often experiences
inflection points and sudden changes in curvature. To avoid these drawbacks, we often
seek solving the interpolation/approximation problem using piecewise polynomial func-
tions called “splines.”

Keywords: cubic splines, tension splines, Bèzier curves, B-splines, NURBS

1. Introduction

In this chapter, we tackle passing a curve/surface through a given set of data points. We first

focus in the case in which the curve to be constructed can be described as S xð Þ ¼ x; f xð Þð Þ. We

refer this data set as scalar data. We describe herein cubic and tension splines, which are

powerful interpolants suitable to tackle large data sets. We then introduce a parametric case

for a vector-valued curve S ξð Þ ¼ x ξð Þ; y ξð Þð ÞT and hence, it is able to represent arbitrary

topologies. We explain how to construct piecewise continuous cubic Bèzier curves called

“B-splines.”We cover the interpolation and approximation problems with B-splines, this latter

denoted as well as “inverse” design. We extend our treatment to tensor product surfaces that

are referred as piecewise bicubic B-splines. Applications encompass translational and interpola-

tion surfaces. We briefly introduce nonuniform rational B-spline curves and surfaces (NURBS).

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



We present applications such as approximating conic sections. We finalize the chapter introduc-

ing Duchon splines that are radial basis functions to interpolate scattered data sets in two or three

dimensions.

2. Scalar splines

We cover herein the scalar case in which a spline function S xð Þ ¼ x; f xð Þð Þ fits a given set of

sorted point pairs. We introduce cubic splines and their specialized version that offers a

“tension” parameter that allows attracting the interpolant toward the polyline that connects

the input points, i.e., linear spline. We refer to this latter as tension splines. The last section

presents a couple of numerical examples.

2.1. Cubic splines

A spline is a piecewise continuous function consisting of several polynomials, each specified in

a subinterval, bound themselves by certain continuity conditions. Let x0,…, xn be nþ 1ð Þ

sorted points such that x0 < x1 < x2 < … < xn whose corresponding values are denoted by

y0,…, yn. A spline of k degree with knots x0,…, xn is a function S : R! R such that:

1. Si is a polynomial of degree ≤ k that is continuous up to kth derivative over xi; xiþ1½ �.

2. Two adjacent splines need to have C0 continuity at the junction points:

S xð Þ ¼

S0 xð Þ; x∈ x0; xi½ Þ

Si xð Þ; x∈ xi; xiþ1½ Þ

⋮

Sn�1 xð Þ; x∈ xn�1; xn½ Þ

8

>

>

>

>

>

<

>

>

>

>

>

:

(1)

We thus enforce Cm, m ¼ 0,…, k� 1ð Þ continuity conditions at the n� 1ð Þ junction points

which yields to 4n� 2ð Þ equations to determine 4n unknown spline coefficients. We omit

details herein but refer the reader to [1, 2]. We end up with a tridiagonal system for the

unknown curvature values κi, at the junction points:

hi�1 � κi�1 þ 2 � hi þ hi�1ð Þ � κi þ hi � κiþ1 ¼
6

hi
yiþ1 � yi
� �

�
6

hi�1
yi � yi�1

� �

, (2)

where i ¼ 1, ::, n� 1 and hi ¼ xiþ1 � xi. The last equation provides a system of n� 1ð Þ condi-

tions for κ0,…,κn. Since both κ0 and κn are arbitrary, a logical choice is choosing κ0 ¼ κn � 0,

which we refer as “natural spline.” For the latter, we can write in matrix form:
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u1 h1

h1 u2 h2

h2 u3 h3

: : :

: : :

: : :

hn�3 un�2 hn�2

hn�2 un�1
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�

κ1

κ2

κ3

:

:

:

κn�2

κn�1

2
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6

6

6

6

6

6

6

6

6

6

6

6
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6

6
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¼

v1

v2

v3

:

:

:

vn�2

vn�1
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5

, (3)

where

ui ¼ 2 � hi þ hi�1ð Þ ; bi ¼
6

hi
� yiþ1 � yi
� �

; vi ¼ bi � bi�1: (4)

Once we determine the curvature values κi, by solving Eq. (3), we define the spline function as

Si xð Þ ¼ yi þ Ai � x� xið Þ3 þ Bi � x� xið Þ2 þ Ci � x� xið Þ; i ¼ 0,…, n� 1, (5)

where the coefficients are given by

Ai ¼
1

6 � hi
� κiþ1 � κið Þ ; Bi ¼

κi

2
; Ci ¼ �

hi
6
� κiþ1 �

hi
3
� κi þ

1

hi
� yiþ1 � yi
� �

: (6)

2.2. Tension splines

In some problems of adjusting discrete data, it is useful to have a parameter called “tension, τ.”

When τ has a small value, the resulting curve approaches a cubic spline. When τ tends to þ∞,

the resulting curve approaches a linear spline. For the same sequence of sorted point pairs

mentioned above, the tension spline satisfies.

1. T ∈C2 x0; xn½ � and T xið Þ ¼ yi ; i ¼ 0,…, n.

2. On every interval xi; xiþ1½ � : T IVð Þ � τ
2 � T IIð Þ ¼ 0.

That is, T : R! R has continuity C4 globally, interpolates to the data, and satisfies certain

ordinary differential equation in each subinterval. It is clear that the prescription τ ¼ 0 leads to

cubic polynomials when solving the equation. To determine T, we proceed similarly to the case

of cubic splines, i.e., κi � T00 xið Þ:

T IVð Þ � τ � T IIð Þ ¼ 0 ; T xið Þ ¼ yi ; T xiþ1ð Þ ¼ yiþ1: (7)

The solution is given by [2]:
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T xð Þ ¼
κi � sinh τ � bxð Þ þ κiþ1 � sinh τ � ~xð Þ½ �

τ2 � sinh τ � hið Þ
þ yi �

κi

τ2

� �
�
bx
hi
þ yiþ1 �

κiþ1

τ2

� �
�
~x

hi
, (8)

where bx ¼ xiþ1 � xð Þ and ~x ¼ x� xið Þ, and we compute the curvatures by solving the system:

αi�1κi�1 þ βi�1 þ βi
� �

� κi þ αiκiþ1 ¼ γi � γi�1

� �
, (9)

and 1 ≤ i ≤ n� 1ð Þ, and the arguments are (κo ¼ κn ¼ 0):

αi ¼
1

hi
�

τ

sinh τ � hið Þ
; βi ¼

τ � cosh τ � hið Þ

sinh τ � hið Þ
�

1

hi
; γi ¼

τ2 yiþ1 � yi
� �

hi
: (10)

2.3. Numerical examples

2.3.1. Example 1

Fit the following collection of point pairs using a natural cubic spline.

x 0 1 2 3 4

y �8 �7 0 19 56

We assume κ0 ¼ κ4 � 0; thus ho ¼ x1 � x0 ¼ 1 ¼ h1 ¼ h2 ¼ h3, and u1 ¼ 2 � h1 � h0ð Þ ¼ 4 ¼

u2 ¼ u3. The tridiagonal system (3) yields

4 1 0

1 4 1

0 1 4

2

64

3

75
κ1

κ2

κ3

2

64

3

75 ¼

36

72

108

2

64

3

75 )

κ1

κ2

κ3

2

64

3

75 ffi

6:4285

10:2857

24:4285

2

64

3

75: (11)

As an illustration, S2 xð Þ is given by

S2 xð Þ ¼ 2:3571 � x� 2ð Þ3 þ 5:1428 � x� 2ð Þ2 þ 11:5 � x� 2ð Þ, (12)

for instance, S2 3ð Þ ffi 18:9999 and S2 2:5ð Þ ffi 7:3303.

2.3.2. Example 2

Figure 1 depicts radial velocity profiles that represent the laminar fluid flow within a pipeline.

These velocity profiles were obtained by solving the Navier-Stokes equations under simplify-

ing assumptions. The symbols represent the discrete point pairs, the abscissas correspond to

the normalized radial coordinate from the center, and the y-coordinates are the normalized

radial velocities. We fit all data sets by using natural splines. To solve the system (3), we

recommend the Thomas method, i.e., a direct frontal solver for tridiagonal matrixes [1–3]. We

also recommend employing a quick-search algorithm to evaluate the piecewise function.

Indeed, for an arbitrary x, we need to determine what is the interval where this abscissa lies,

i.e., x∈ xi; xiþ1½ �.

Topics in Splines and Applications4



2.3.3. Example 3

We finalize the examples by comparing cubic and tension splines. Figure 2 depicts a car-like

profile polygon that we would like to interpolate. We try both splines mentioned above. We

highlight in red color the cubic spline (top) interpolant, while the tension spline is black (bottom

curve). We observe that the cubic spline experiences inflection points because the car-shaped

Figure 1. Discrete velocity profiles that were fitted by splines.

Figure 2. It depicts a car-like profile that we fit by cubic and tension splines.

Scalar and Parametric Spline Curves and Surfaces
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polygon is challenging. This latter is the kind of application for tension splines where we seek to

attract the spline toward the input polyline. We notice that we achieve that goal herein.

3. Bèzier, B-spline, and NURBS curves

The appropriate representation and meshing of the computational domain for the physical

problem under study are necessary premises for a satisfactory computer simulation. In fact,

one of the most demanding computational tasks in a simulation is defining the geometry

because it will impact many aspects of the study such as the grid generation process [4].

Therefore, special methods must be applied to fit discrete data without sudden changes in

curvature. The approach should be free of inflection points, and at minimum, it must enforce

continuity C
2 of the fitted curve. In this chapter, this goal is achieved by using Bèzier, B-spline,

and NURBS curves and surfaces [5, 6].

A Bèzier curve (BC), B, shown in Figure 3, is obtained by specifying the coordinates of a series

of points in space, such that only the first and last ones fall on the originally given curve. All

these points are known as control points, and the polyline resulting from connecting themwith

straight lines is called control polygon, which mimics the original curve, allowing an easy

control of its shape. Although inflection points may be present in Bèzier curves, they are less

common than in polynomials or other analytical functions [5, 6].

Global Bèzier curves, i.e., only one curve represents the given polyline, provide a powerful tool

in geometry definition; however, complex shapes require a large number of constraints,

Figure 3. Fourth-order Bèzier curve with highlighted control points.

Topics in Splines and Applications6



making their use prohibitive. It is therefore beneficial to represent them by using piecewise

continuous Bèzier curves called B-spline curves [5]. In fact B-spline curves are a widely utilized

representation for geometrical entities in computer-aided geometric design (CAGD) systems.

Their convex hull, local support, shape-preserving forms, affine invariance, and variation-

diminishing properties are extremely attractive in engineering design applications [4].

A particular Bèzier curve is set up by its parametric representation; let B : R! R
2 be defined

by

B tð Þ ¼
X

m

i¼0

bi � B
mð Þ
i tð Þ, t∈ I ¼ 0; 1½ �, (13)

here, m denotes the order or degree of the curve, B
mð Þ
i tð Þ are the Bernstein polynomials, defined

as

B
mð Þ
i tð Þ ¼

m!

i! m� ið Þ!
ti � 1� tð Þm�i ;

X

m

i¼0

Bm
i tð Þ ¼ 1, (14)

and bi are the control points. Notice in Eq. (14) that Bernstein polynomials satisfy the

barycentric property, meaning that they add up to 1, which explains why a given curve cannot

be outside its control polygon that is the convex-hull property. The control points of a given BC

can be calculated in several ways since the Bèzier curve evaluated in t ¼ tk must provide the

corresponding base point p
k
; a linear system of equations can be formed for the unknown

control points as

X

m

i¼0

bi � B
mð Þ
i tkð Þ ¼ p

k
, k ¼ 0, ::, m, (15)

where the number of base points equals mþ 1ð Þ; we compute the value of the parameter tk by

[6, 7]

tk ¼
sk
sm

; s0 ¼ 0; sk ¼ sk�1 þ p
k
� p

k�1

�

�

�

�

�

�
, k ¼ 1,…, m, (16)

which is the well-known chord-length parametrization.

The last approach is a powerful tool in curve design, but it has a limitation: if the geometry that

we model has a complex shape (i.e., a significant number of base points), then its Bèzier curve

representation may be of a prohibitively high degree. Since the Bèzier curve is forced to satisfy

several constraints according to Eq. (15), the resulting curve may experience inflection points

and sudden changes in curvature (see Figure 4, where p
k
points in Eq. (15) are represented by

circles). For practical purposes, degrees exceeding 10 are prohibitive [5, 6].

Such complex geometries can be modeled using piecewise polynomial curves named B-spline

curves [5, 6] (see Figure 5). B-spline curves are a set of Bèzier curves of mth degree that must

Scalar and Parametric Spline Curves and Surfaces
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satisfy at least the C m�1ð Þ continuity. A spline curve C is the continuous mapping of a collection

of global parameter values ξ0, ξ1,…, ξL�1, ξL into R2, where each interval ξi; ξiþ1½ � is mapped

onto a polynomial curve segment as shown in Figure 5. We define Ω ¼ ξ0; ξL½ � as the compu-

tational space. A local coordinate t for the interval ξi; ξiþ1½ � can be defined by setting [5]:

t ¼
ξ� ξi

ξiþ1 � ξi
¼
ξ� ξi

Δi

, ξ∈ ξi; ξiþ1½ �: (17)

3.1. C2 cubic curves

Let d�1, d0,…, dL, dLþ1 be a set of Lþ 3ð Þ points defining the de Boor’s polygon that generates L

individual cubic curves as shown in Figure 6. The required 3Lþ 1ð Þ Bèzier control points are

calculated with the aid of C1 and C2 continuity criteria. C1 conditions lead to

b3i ¼
Δi

Δi�1 þ Δi

b3i�1 þ
Δi�1

Δi�1 þ Δi

b3iþ1, i ¼ 1,…, L� 1, (18)

Figure 4. We interpolated with a Bèzier (black) and a cubic B-spline (red) curves.

Figure 5. A B-spline curve, C ξð Þ, is the union of piecewise continuous curves.

Topics in Splines and Applications8



while C2 conditions require that

b3i�2 ¼
Δi�1 þ Δi

Δ
di�1 þ

Δi�2

Δ
di,

b3i�1 ¼
Δi

Δ
di�1 þ

Δi�2 þ Δi�1

Δ
di:

(19)

where i ¼ 2,…, L� 1, and Δ ¼ Δi�2 þ Δi�1 þ Δi. The end points are

b0 ¼ d�1 ; b1 ¼ d0 ; b2 ¼
Δ1

Δ0 þ Δ1
d0 þ

Δ0

Δ0 þ Δ1
d1,

b3L�2 ¼
ΔL�1

ΔL�2 þ ΔL�1
dL�1 þ

ΔL�2

ΔL�2 þ ΔL�1
dL ; b3L�1 ¼ dL ; b3L ¼ dLþ1:

(20)

This construction is due to W. Boehm [5].

For cubic curves more parametrizations are available [5, 6], for instance:

1. Uniform parametrization

ξi ¼ i ; i ¼ 0,…, L: (21)

2. Chord-length parametrization [5]

ξ0 ¼ 0:0; ξ1 ¼ d1 � d�1k k,

ξi ¼ ξi�1 þ di � di�1

�

�

�

�; i ¼ 2,…, L� 1,

ξL ¼ ξL�1 þ dLþ1 � dL�1

�

�

�

�

:

(22)

3. A parametrization proposed by the author [6]

ξ0 ¼ 0:0,

ξiþ1 ¼ ξi þ di � di�1

�

�

�

�þ diþ1 � di

�

�

�

�þ diþ2 � diþ1

�

�

�

�,

i ¼ 0,…, L� 1:

(23)

Figure 6. A C2 cubic curve with highlighted de Boor’s and junction points.
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This latest parametrization has the advantage that it yields to a symmetric curve if the control

polygon is symmetric as well, which may be interesting for certain applications.

3.2. Inverse design and interpolation problems

A two-dimensional geometric description based on B-spline curves requires the definition of a

control polygon (the de Boor’s polygon) that mimics the curve. Therefore two approaches are

possible. The first method consists of providing the set of the de Boor’s points (i.e., define the

de Boor’s polygon interactively from user’s input) that defines the composite curve, which is

known as “inverse design,” and it has its application in “TrueType” font technology as shown

in Figure 7. The second approach consists of defining the set of base points and then solves a

linear system of equations for the de Boor’s points such that the resulting curve passes through

them. This latter is known as the “interpolation” problem.

Figure 7 shows the difference between the above approaches; from left to right, it has the de

Boor’s control polygon, inverse design, and interpolation problems both taking into account

the same polygon as an argument with cubic curves.

3.3. Interpolation with cubic curves

In order to interpolate with cubic B-spline curves, we find unknown junction points such that

they pass through a given set of data points x0,…, xL and corresponding parameter values

ξ0, ξ1,…,ξL�1, ξL. A composite cubic curve C, determined by its de Boor’s polygon [4, 5]

d�1,…, dLþ1 such that C ξið Þ ¼ xi, is required. The solution to this problem is obtained by

finding the relationship between the data points xi and the control vertices di. This leads to

the following linear system of equations for the unknown de Boor’s points [5]:

αi � di�1 þ β
i
� di þ γ

i
� diþ1 ¼ Δi�1 þ Δið Þ � xi; i ¼ 1…L� 1, (24)

where (with Δ�1 ¼ ΔL ¼ 0)

αi ¼
Δið Þ2

Δi�2 þ Δi�1 þ Δi

,

β
i
¼

Δi Δi�2 þ Δi�1ð Þ

Δi�2 þ Δi�1 þ Δi

þ
Δi�1 Δi þ Δiþ1ð Þ

Δi�1 þ Δi þ Δiþ1
,

γ
i
¼

Δi�1ð Þ2

Δi�1 þ Δi þ Δiþ1
:

(25)

Figure 7. The inverse design and interpolation problems.

Topics in Splines and Applications10



If the two Bèzier points b1 and b3L�1 are arbitrarily chosen, the following linear system of

equations is obtained [5, 6]:

1

α1 β1 γ1

⋱

αL�1 β
L�1 γ

L�1

1

2

6

6

6

6

6

6

4

3

7

7

7

7

7

7

5

�

d0

d1

⋮

dL�1

dL

2

6

6

6

6

6

6

4

3

7

7

7

7

7

7

5

¼

r0

r1

⋮

rL�1

rL

2

6

6

6

6

6

6

4

3

7

7

7

7

7

7

5

, (26)

where

r0 ¼ x0,

ri ¼ Δi�1 þ Δið Þ � xi ; i ¼ 1…L� 1,

rL ¼ xL:

(27)

The first and last vertices of the polygon are given by

d�1 ¼ x0, dLþ1 ¼ xL: (28)

The points b1 and b3L�1 can be calculated from a given end condition. There are two possibil-

ities for the choice of B-spline ending conditions. A natural spline requires that

d
2

dt
2
s0 0ð Þ ¼ 6 � b2 � 2b1 þ b0ð Þ ¼ 0,

d
2

dt
2
sL�1 1ð Þ ¼ 6 � b3L � 2b3L�1 þ b3L�2ð Þ ¼ 0:

(29)

Using the relations in Eq. (29), we obtain that

2�
Δ1

Δ0 þ Δ1

� �

� d0 �
Δ0

Δ0 þ Δ1
d1 ¼ x0,

2�
ΔL�2

ΔL�2 þ ΔL�1

� �

� dL �
ΔL�1

ΔL�2 þ ΔL�1
dL�1 ¼ xL:

(30)

These two equations replace the first and last rows of the linear system of equations given in

Eq. (26). Notice that in either case, natural ending conditions or prescribed tangent vectors, the

linear system in Eq. (24) is a tridiagonal matrix. Since the coefficient matrix is real and scalar,

and the left- and right-hand-side vectors are in fact hypervectors (i.e., an array of vectors), it is

recommendable to use a type of Gaussian elimination method against multiple right-hand

sides to achieve performance [6, 7]. If we recompute the interpolant in Figure 4 but this time

with a B-spline cubic curve, we then obtain a smoother and steadier interpolant free of

unwelcome inflection points.

3.4. NURBS curves

NURBS curves are useful when we require an exact geometrical representation of some

entities, such as circles, parabolas, ellipses, spheres, cylinders, etc. This is precisely the case in

Scalar and Parametric Spline Curves and Surfaces
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various applications in aerospace and mechanical engineering where NURBS are quite popu-

lar [4, 5, 8–10]. For instance, a NURBS curve is defined by its rational representation in Eq. (31):

R tð Þ ¼

Pm

i¼0

wi � B
m
i tð Þ � bi

Pm

i¼0

wi � B
m
i tð Þ

, (31)

where the weights wi are positive real scalars. The usual B-spline definition is recovered if all

those weights equal 1. Generally speaking, the weights play the role of attracting the curve

toward its control polygon when we increase their values [5, 8]. It turns out that specific

weights lead to exact representation of circles, for instance, as shown in Figure 8, where the

real numbers depicted are the given weights. A circle can be exactly represented by three- or

four-quadratic arcs (left and right side, respectively, in Figure 8); this latter alternative is more

attractive, for instance, to generate a surface of revolution [4, 5, 8]. NURBS also provide exact

representation for 3D surfaces such as spheres and cylinders as well as volumes [4, 10]. The

reader may refer to [4, 5, 8–11] for further details for this well-established area of computa-

tional geometry. We depict an example of practical interest, in the context of geomechanics, in

Figure 9. Herein we precisely represent a near-borehole section. To describe the borehole

geometry, we employ four line segments and a quadratic arc as shown.

Figure 9. We represent a near borehole “exactly” by NURBS as shown.

Figure 8. Two exact equivalent representations for a circle (the remaining weights equal 1).

Topics in Splines and Applications12



In order to interpolate a set of points with a NURBS curve in two or three dimensions, one may

follow the same procedure described with B-spline curves except that a mapping to R4 must be

carried out first. The new input points ~xi are given by

~xi ¼ wi � xi yi zi 1
� �T

; ~xi ∈R
4, (32)

then the linear system in Eq. (24) with the right boundary conditions can be solved with xi
replaced by ~xi, as defined by the Eq. (32). After solving this system, the solution control

polygon is still in R4, which implies that a mapping back to R3 is required:

di ¼
1

wi

1 0 0 0

0 1 0 0

0 0 1 0

0

B

@

1

C

A
�
~di ; di ∈R

3
: (33)

The latter is a straightforward procedure to reuse the subroutines already developed for

B-spline curves.

3.5. Numerical examples

We implemented the proposed approaches in a computer code named “LogProc” which is a

graphical user interface application developed with the C++ programming language. LogProc

is proprietary software, but a free community version will be available for download from

www.logproc.com. All examples were obtained applying the proposed knot sequence (23) to

construct cubic composite curves. The empty circles represent de Boor’s points (sample inverse

designs) or base points (interpolation problems). We utilized the natural end condition in

examples in Figures 10 and 11 and the prescribed tangent in the remaining cases. We depict a

typical font design application in Figure 10where we represent some alphabet’s letters. Notice

that an approach like this is appropriate to construct font outlines because they can be scaled

Figure 10. A typical font design application.
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and rotated. This feature is of significant interest in the “TrueType” font technology where

outlines that are insensible to the resolution of the physical device in which they will be shown,

such as monitors or printers, must be obtained [6]. We added a bonus section on the numerical

implementation for computing splines that is available online, https://www.logproc.com/book-

chapter-splines. We also include most sample datasets for downloading. We also recommend

there suitable open-source libraries that are convenient to use. All vector and raster plots were

prepared by logproc which can create high-quality PDF files in Windows 7 and 10, for instance.

Figure 11 shows a zenith view of a pair of petroleum reservoir outlines. Few base points

permit to approximate their complex shape. These shapes could be used as arguments to

generate an unstructured mesh appropriate to simulate the flow in a porous media [7].

We interpolate a discrete blade geometry approximation in both Figures 12 and 13. A3K7

profiles are constructed in the same way as NACA 65, but they present rounded trailing edges

[6]. A3K7’s shape is represented by 46 base points and circle arcs both in leading and trailing

edges. Therefore the curves that interpolate the data points are tangents to circle arcs to ensure

C
1 continuity between these entities. The profiles in the left of Figure 12 were obtained

applying Eq. (15) to construct C1 single Bèzier curves (two curves, each of them approximating

to suction and pressure sides, respectively). However, note that the resulting curves have

unexpected inflection points on the suction side. The enforcement of continuity conditions

Figure 11. A pair of petroleum reservoir outlines.

Figure 12. A3K7 interpolated by Bèzier curves.
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implies a large number of constraints after Eq. (15), which explains this behavior. If we replace

the former Bèzier curves by two B-spline curves, computed from Eqs. (24) and (29), we obtain a

smooth A3K7 geometry description (see profiles in the right-hand side of Figure 12). Figure 14

zooms in to show that the resulting geometrical description is smooth and free of unwelcome

features such as inflection points.

4. Interpolation surfaces

Let SInt
: R

2 ! R
3 be a two-parameter mapping which represents a given surface. If structured

data, i.e., tensor product data, needs to be interpolated, one may expect to come up with tensor

product surfaces as well, where two parameters ξ; ηð Þ allow covering two different directions

associated with the surface. In the computational space, i.e., in the plane ξ; ηð Þ, the domain,

Ω ¼ ξ0; ξLu
	 


� η0; ηLv

h i

, is a rectangle, and its image is the surface in 3D as shown in Figure 15,

where Lξ and Lη are the number of curves in their respective directions.

B-spline tensor product surfaces allow interpolating structured data, and they are defined as

the tensor product of two families of curves Ck
i ξð Þ and D

l
j ηð Þ, which is

Figure 13. A3K7 interpolated by B-spline curves.

Figure 14. Details highlighted in Figures 12 and 13.
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L
Int ξi; ηj

� �

¼ xij; S
Int
klij ξ; ηð Þ ¼ C

k
i ξð Þ⊗D

l
j ηð Þ; ξ; ηð Þ∈Ω (34)

In applications of practical interest, usually cubic piecewise continuous curves are preferred

because they provide a global C2 representation that is smooth enough, called a bicubic surface

[5, 8, 9].

4.1. Creating a surface of interpolation

The following steps describe creating a surface of interpolation:

1. An input control polygon, whose points are in R3, is provided. They correspond to data that

is structured and ordered, which is usually a matrix-type array of points (see left side of

Figure 16). For simplicity, points in the i-direction are associated with the ξ parameter while

j0s are associated with η.

Figure 15. We depict the mapping between physical and computational spaces.

Figure 16. The first two steps to interpolate structured data are depicted: input control polygon (left) and ξ-interpolants

(right) are shown.
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2. Create interpolation curves with constant values of η, so-called ξ-interpolants (see right side

of Figure 16).

3. Proceed accordingly with previous step, interpolation curves with constant values of ξ; so-

called η-interpolants are created this time (see left side of Figure 17).

4. Compute the tensor product between ξ- and η-interpolants in order to get bicubic patches

(see right side of Figure 17).

The right-hand side in Figure 17 shows typical bicubic patches as a chessboard surface empha-

sizing that we deal with a piecewise continuous entity. The computational cost associated with

the above algorithm is reasonable because the most expensive part is computing the interpolants

(see Section 3).

5. Translational surfaces

These surfaces are again a two-parameter mapping, σT : R
2 ! R

3, but their construction pro-

cedure is simpler than interpolation surfaces; see, for instance, [5, 8, 9]. The idea here is just

literally translating a curve α along another curve β, which yields

σT ξ; ηð Þ ¼ α ξð Þ þ β ηð Þ: (35)

This idea became very popular in CAGD systems long time ago. Those systems usually

support a command which allows extruding a geometrical entity, for instance, a cylinder can

be easily created by extruding a circle along a straight line. Figure 18 shows the above

procedure applied to an aircraft wing where an NURBS airfoil profile was translated or

extruded along a straight line accordingly. We interpolated an NACA 65 polyline with a

NURBS curve as we mentioned in Section 3.4.

Figure 17. The last two steps to interpolate structured data are depicted: η-interpolants (left) and resulting bicubic

patches are shown. The de Boor’s control polygon is highlighted in red lines.
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This procedure becomes very useful in the geometrical reconstruction of oil reservoirs (RS).

Indeed, we reconstructed the geometry of RS in [12] by using B-spline surfaces. The technique

exploits input mesh’s simplicity to build a robust piecewise continuous geometrical represen-

tation using Bèzier bicubic patches. We manage the reservoir’s topology with interpolation

Figure 18. An aircraft wing by translating an NACA profile accordingly.

Figure 19. A translational surface.

Figure 20. An interpolation surface.
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surfaces, while translational surfaces allow extrapolating it toward its side burdens. After that,

transfinite interpolation can be applied to generate decent hexahedral meshes. Figure 19

shows a sample translational surface that we obtain by extruding a curve that interpolates the

reservoir’s edge as shown. We render the surfaces in blue color with a white wireframe, while

the RS is the color-contoured surface that represents the porosity, a scalar property. We tackle

the RS itself after interpolating the control polygon that Figure 20 highlights in red color. The

polygon is a 17� 9 array of points representing the RS topology. The procedure works well for

a variety of so-called open-to-the-public RS data sets that we reconstructed in [12]. It is also

possible to utilize these NURBS curves and surfaces as interfaces for gluing nonmatching

interfaces for the finite element method as we showed in [13].

6. Duchon splines

In the context of applications in statistical analysis involving very high dimensional data sets,

response surfaces are growing popularity. By running the simulations at a set of points (e.g.,

experimental design) and fitting response surfaces, i.e., splines, for instance, to the resulting

input-output data that is characterized by sparsity, we can obtain fast surrogates for the

objective function for optimization purposes [14, 15]. The appeal of the latter approach goes

beyond reducing runtime. Since the method begins with experimental design, statistical ana-

lyses can be done to identify which input variables are the most important, and thus we can

create “main effect plots” to visualize input-output relationships [14]. We must recognize

interpolation methods in which the basis functions are fixed and those in which they have

parameters that are tuned (e.g., kriging, which has a statistical interpretation that allows one to

construct an estimate of the potential error in the interpolator). We refer the reader to [14, 15]

for further reading.

There are different ways to approximate a function of several variables: multivariate piecewise

polynomials, splines, and tensor product methods, among others. All these approaches have

advantages and drawbacks, but if the rank of the linear system to solve may become large, a

natural choice is radial basis functions, which are also useful in lower dimensional problems

[14, 16, 17]. This may be particularly true if the input data is scattered, which excludes tensor

product methods at first glance. Duchon splines are a class of positive definite and compactly

supported radial functions, which consist of univariate polynomial within their support. It can

be proven that they are of minimal degree and unique up to a constant factor, for given

smoothness and space dimension [18]. They are particularly suitable to compute interpolants

for very large scatter datasets [17].

Duchon splines, denoted herein as s, are defined by [17, 18]

s xð Þ ¼
X

j

λj � φ rj

� �

þ pn xð Þ ; n ¼ 2, 3

rj ¼ x� xj
�

�

�

�

φ rð Þ ¼ r
2ln r,

(36)
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where pn xð Þ is a linear polynomial in two or three dimensions:

p2 xð Þ ¼ axþ byþ c

p3 xð Þ ¼ dxþ eyþ fzþ g ; λj, a,…, g∈R:

(37)

Notice that λj and the polynomial coefficients are all scalar quantities. In order to guarantee

existence and uniqueness for these splines, an orthogonality condition with respect to linear

polynomials is enforced, for instance, in two dimensions this yields to

X

j

λj ¼
X

j

λjxj ¼
X

j

λjyj ¼ 0: (38)

By considering this result, the interpolation problem becomes

s xi
� �

¼
X

j

λj � φ r
i
j

� �

þ pn xi
� �

¼ Fi, (39)

which implies m points plus nþ 1 orthogonality conditions; here, Fi are the nodal values to be

interpolated. The resultant linear system to solve for is of mþ nþ 1ð Þ rank.

Duchon splines are certainly suitable to interpolate scattered data sets that we cannot tackle with

the tensor product surfaces that we discussed before. Indeed, Figure 21 depicts such an applica-

tion, in optimization, where an objective function that we wish to minimize was sampled

randomly by Monte-Carlo (MC) realizations. To compute a minimum, we interpolate the black

dots, and then we minimize the resulting spline with standard Newton stochastic techniques

[15]. It is true that Duchon splines are a valid choice for “surrogate”models for such applications.

Figure 21. Discrete MC data with Duchon splines.
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7. Concluding remarks

We presented a concise introduction to scalar and parametric spline interpolants. We intro-

duced cubic and tension splines for scalar functions, and then we generalized them for the

parametric case via Bèzier, B-spline, and NURBS curves. These latter entities are of the partic-

ular interest for applications in CAGD. We thus elaborated on topics such as inverse design

and interpolation. We extended the treatment also to cover interpolation and translational

surfaces with examples in mechanical and petroleum engineering. We wrapped up with the

topic of interpolating sparse very high dimensional data sets via Duchon splines which are a

kind of response surfaces suitable for applications in statistical analysis and optimization.
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