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Abstract

The robotic technology, especially the intelligent robotics that can autonomously conduct 
numerous dangerous and uncertain tasks, has been widely applied to planetary explo-
rations. Similar to terrestrial mining, before landing on planets or building planetary 
constructions, a drilling and coring activity should be first conducted to investigate the 
in-situ geological information. Given the technical advantages of unmanned robotics, 
utilizing an autonomous drill tool to acquire the planetary soil sample may be the most 
reliable and cost-effective solution. However, due to several unique challenges existed 
in unmanned drilling and coring activities, such as long-distance time delay, uncer-
tain drilling formations, limited sensor resources, etc., it is indeed necessary to conduct 
researches to improve system’s adaptability to the complicated geological formations. 
Taking drill tool’s power consumption and soil’s coring morphology into account, this 
chapter proposed a drilling and coring characteristics online monitoring method to 
investigate suitable drilling parameters for different formations. Meanwhile, by apply-
ing pattern recognition techniques to classify different types of potential soil or rocks, a 
drillability classification model is built accurately to identify the current drilling forma-
tion. By combining suitable drilling parameters with the recognized drillability levels, a 
closed-loop drilling strategy is established finally, which can be applied to future inter-
planetary exploration.

Keywords: interplanetary exploration, drilling and coring, intelligent robotics, 
planetary soil simulant, closed-loop drilling strategy
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1. Introduction

Just as some imaginative descriptions on the interplanetary traveling in scientific fictions, 
human beings through decades’ striving have made a great step forward to that scenery. 

From the successful launch of Sputnik, the first man-made earth satellite in 1957 [1] to the 

first man-made lunar landing in 1969 to collect lunar soil samples [2] and the Rosetta Landing 
Project launched in 2014 on Comet 67P to collect asteroid rocks [3], mankind’s extraterrestrial 

explorations have covered the vast majority of planets, satellites and asteroids in the solar 

system. However, it should be noted that although tremendous advancements are achieved in 

space exploration, mankind also suffered a great loss, especially when astronauts encounter 
emergency risks even lost their lives for various technical reasons [4, 5]. Hence, as deep space 
exploration having been conducted, an up-and-coming replaceable solution by employing 

unmanned robots has been gradually acceptable to carry out some uncertain and dangerous 

tasks, such as interplanetary drilling and coring activities [6–8].

For future interplanetary exploration, there is an urgent demand for a reliable method to 

pierce the planetary surface to a specified depth and effectively collect soil samples [9, 10]. 

Once the in-situ soil sample acquired, the original geological information at the sampling site 

can be investigated for further usage. Compared with other soil failure technological solutions, 
such as explosion, melting, etc., the traditional drilling and coring method by only utilizing 

the compound motion of rotation and penetration still has great advantages in extracting the 

subsurface soil sample in a relatively efficient and convenient way [11, 12]. Therefore, this 

method has been widely applied to previous interplanetary missions. Considering the tech-

nical advantages of unmanned robots and the unique space drilling and coring conditions, 

interplanetary drilling and coring compared with terrestrial drilling could be more depen-

dent on intelligent drilling techniques.

Commonly speaking, interplanetary drilling control architecture contains remote control from 
Earth and autonomous drilling control on the planet [13]. Since time delay inevitably exists in 

the long distance remote communication, remote control mode is usually employed to deal 

with serious drilling faults and in the majority of the cases the sampling drill should work in 

an autonomous way [14, 15]. Furthermore, restricted by the delivery capacity of rocket and 

limited power consumption, interplanetary drilling system can hardly apply plenty of sen-

sor resources and sufficient penetrating force to accomplish the online control. On the other 
hand, in most planetary drilling missions, there is not enough prior geological information in 

a longitudinal direction on sampling sites to guide the online drilling [16]. Given the uncer-

tain and variable mechanical properties of drilling formations, the drill tool under above strict 

resources should adjust suitable drilling parameters correspondingly to overcome potential 

drilling faults and acquire as much as volume of the soil sample. To resolve the problems, 

researchers have been striving for decades to find effective solutions.

So far, the former Soviet Union’s Luna series is the only unmanned detectors that successfully 
implemented the lunar subsurface soil’s sampling and returning [17, 18]. Among them, the 

Luna 16 detector launched in 1970 with a stretched out arm mounted rig sampling method 
successfully drilled into 350 mm beneath the lunar surface, acquiring 101 g soil sample finally 
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[19]. The following Luna 20 detector launched in 1972 landed on a lunar plateau with a simi-
lar sampling device to the Luna16 and was forced to stop drilling at 250 mm depth due to 
multiple times of overheat fault, eventually sampling only 55 g lunar soil [20]. The last sam-

pling task Luna 24 in 1976 applied a threshold-based approach to autonomously control the 

drill tool. When the detected penetrating force exceeds a preset threshold, the impact motor 

will be activated in time to overcome the drilling resistance. Based on this drilling strategy, 

the received remote data revealed that in the Luna 24 detector’s drilling process the impact 
motor was frequently switched on and finally the sampler reached to a depth about 2250 mm, 
returning about 171 g lunar soil sample [21]. Although the applied threshold-checking strat-

egy indeed improved the automation level of the unmanned drill tool, it should point out that 

there exists a high probability of tripping and need a long time to wait (often hours to days) 

for human troubleshooting from afar [22]. Hence, this simple limit-checking strategy may be 
more suitable for shallow drilling missions like Mars Science Laboratory drill (50 mm depth).

After laboratory tests aboard NASA’s Phoenix Mars Lander identified water in a soil sample 
at Green Valley, Mars (Arctic pole) in 2008 [23], NASA has been preparing for an another 

Mars exploration mission to search for biomolecular evidence for life around 2018. The pro-

posed “Icebreaker” mission would use an automated rotary-percussive drill to reach and 

retrieve samples from up to 1.2 m deep in the ground ice at Mars Arctic pole [24]. To support 

for this drilling mission, NASA Ames, together with Honeybee Robotics Ltd., and Georgia 
Tech., proposed a novel drilling faults diagnosis control method by acquiring the vibration 

signals from external laser doppler vibrometers (LDVs) to identify drilling faults [25, 26]. 

Based on two diagnostic methods of rules and model prediction, the “Icebreaker” drill can 

recognize six types of drilling faults (e.g. auger chocking, hard material, etc.) and switch to the 

preset recovery parameters. Test results from the recent Arctic and Antarctic field campaigns 
demonstrated this drill has been already capable of a hands-off ability [27].

The above drilling strategy relatively improved the automation level of the system, however, 

besides drilling loads or power consumption, soil’s coring morphology should also be con-

sidered in designing its control method. As the primary goal of interplanetary exploration 

is to exam the evidence of lie by scamping the subsurface soils, it is extremely important to 

acquire as much soil core as possible under acceptable drilling loads. Furthermore, as the 

stratification information of planetary samples reflects the evolutionary history of early stars 
[28], it is necessary to preserve its stratification during the coring process for further analysis. 
Therefore, the authors proposed a novel flexible tube coring method to preserve the stratifica-

tion of soil sample [29]. In order to comprehend the core flowing characteristics and optimize 
the final coring results, a non-contact type measurement based on ultrasonic wave reflection 
mechanism and vision techniques is applied to online monitor the coring and removal char-

acteristics [30]. Once the drill-soil interaction mechanism comprehended, suitable drilling 

parameters for different types of drilling formations considering both power consumption 

and coring morphology can be optimized then.

Apart from suitable drilling parameters, to identify what kind of formation the drill bit is cur-

rently drilling is another key point to the unmanned  drill tool. Only if these two key  parameters 

matched correspondingly, the unmanned drill tool may be smoothly penetrated into the 
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uncertain formations and finally retrieve valuable core samples. Since planetary regolith has 
a considerable number of geological and mechanical properties, it is rather difficult to identify 
all the parameters individually online. Hence, the authors proposed a control strategy based 
on planetary regolith drillability (PRD) recognition [31]. Herein, the drillability of formation 
is a consolidated index to stand for drilling difficulty. A recognition model based on support 
vector machine (SVM) has been established to evaluate the drillability of current formation 

and subsequently control the algorithms that can tune drilling parameters to adapt to the cur-

rent drilling conditions.

The remainder of this paper is organized as follows. The unique challenges in interplanetary 

drilling and coring are discussed first. Next, the specific drilling and coring characteristics 
containing the drilling loads characteristics and soil flowing characteristics are elaborated. A 
drillability recognition method is proposed based on monitoring the signals then. Finally, an 

intelligent real-time drilling strategy is achieved based on drillability recognition and drill-

ing experiments in multi-layered drilling formations indicated that this unmanned control 

method could effectively reduce the drilling loads and keep a relatively complete stratification.

2. Challenges in interplanetary drilling

In general, if neglecting the economic factors, terrestrial drilling can be conducted with 

advanced auxiliary facilities to investigate the in-situ drilling formations and can automati-

cally apply liquid lubricant to improve the drilling conditions [32, 33]. Compared with ter-

restrial drilling, interplanetary drilling and coring restricted by the extreme environmental 

conditions on the planet will have to solve several unique challenges. To assure the operabil-

ity of the required drill tool and its control strategy, it is thoroughly necessary to comprehend 

the in-situ environment conditions and existing applicable resources. The following drilling 

and coring characteristics investigation and recognition based drilling strategy will be both 

based on these understandings. The following subsections will discuss four main challenges 

in interplanetary drilling.

2.1. Long-distance between planet and Earth

At present, wireless teleoperation is widely used in the monitoring and control of space-

craft operation status. For example, in the second phase of China lunar exploration, based 
on acquired visual images the lunar rover completed the entire inspection survey mission 

by means of ground teleoperation [34]. However, different from rover’s navigation control, 
the buried drilling and coring activity is a quite dynamic and rapid process and any signal 

delay caused by long-distance teleoperation may directly result in a serious drilling fault. 

Once the drilling faults happened, specialists from Earth also need a long time to diagnose 

and recovery, making the drilling and coring process last for hours or days. Even though the 

drilling faults can be handled successfully, the final coring quality and core’s stratification 
could be destroyed during this long time recovery process. Considering for future deeper 
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space explorations, for example, the round-trip delay between Mars and Earth will be as 
long as 40 min, this long time delay by teleoperation will definitely not acceptable for inter-

planetary drilling and coring operations [35]. Hence, in general only when a serious abnor-

mality occurs in the sampling process, the sampling device could be automatically forced to 

stop drilling and wait for the ground specialists to make a fault judgment and determine the 

corresponding treatment plan. Otherwise, the sampling device should work in a thoroughly 

autonomous condition.

2.2. Complicated and uncertain drilling formations

Given the short execution time of Mars and asteroid exploration compared with the lunar 
exploration, the data of soils on Mars and asteroids are rarely found yet. Herein, this chapter 
mainly focuses on the physical properties of lunar soil. According to previous investigations 

on the material returned from the moon, the terrestrial term “regolith” is also used for the 

interplanetary exploration [36]. Regolith has been defined as a general term for the layer or 
mantle of fragmental and unconsolidated rock material. According to the published litera-

ture, lunar regolith ranges from granular soil to hard rocks [37, 38], and it mainly consists of 

five types of material: rock detritus, mineral dust, breccia, agglutinate and impacting molten 
glass. The physical characteristics of above lunar soil components are quite different and the 
distribution of different components of lunar soil in the depth direction at the sampling site is 
also uncertain. During future planetary drilling processes, either soil or rock will be randomly 
encountered, resulting in that the final coring quality and drilling loads may both be influ-

enced by unpredictable properties. There are numerous parameters, including cohesion, fric-

tion angle, relative density, compression ratio, particle size distribution, etc., to describe the 

physical properties of lunar soil [39], further increasing the difficulty to identify the physical 
parameters of lunar soil at different depths one by one. Therefore, it is necessary to simplify 
the mechanical parameter identification of lunar soil.

2.3. Lacking of prior investigation on sampling site

Similar to terrestrial mining, prior investigation on the sample site will extraordinarily guide 

the following drilling and coring activities. In the second phase of China lunar exploration, a 
novel lunar penetrating radar (LPR) has already been applied to detect the morphology of the 
lunar surface and stratification information of subsurface lunar regolith for supporting further 
detector’s landing site’s selecting, however, it should be noted that until now due to the mass 

and power constraints its detection accuracy can only reach to about 30 cm [40]. Considering 
that any unclear detected drilling formation may bring out a serious drilling fault once inap-

propriate drilling parameters are operated. Therefore, it is still difficult to apply the LPR’s 
detecting geological layering information to guide the sampling drill before drilling begins. It 

indicates that the drill tool should better work in a passive adaptive control mode, in which 
the drill tool during the whole drilling and coring process should online switch suitable drill-

ing parameters according to the recognized current drilling formation on the drill bit, nor in 

the active control mode.
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2.4. Limited on-orbit sensor resources

According to the discussion in above subsection, the control architecture of unmanned inter-

planetary drill should better work in a passive adaptive control, in which the drill tool will 
totally rely on the feedback data by sensors. However, compared with the planetary rov-

er’s surface navigation control, the planetary unmanned drilling has a more limited sensing 

resources. In addition to the constraints of quality, power consumption and high and low tem-

perature vacuum environment, the sensors used for drilling condition’s monitoring also need 

to overcome the restrictions like small installation space of drilling tools and the prevention of 

sample contamination as well as the high frequency vibration caused by the impact of drilling 

tools, etc. Combing above tough working conditions together, perhaps only traditional load 

cells and displacement transducers can be applied to the interplanetary drilling. Hence, to 
realize the intelligent drilling control the sample drill need to fully integrate the existed sen-

sors’ information, which should all be imported to the controller to decide its online strategy.

Besides above challenges, there also exists some negative factors affecting the interplanetary 
drilling. For example, the non-water environment on the planet surface that will cause the 

drill tool will work in a dry condition without any liquid lubricant to improve the drilling 

conditions. The only effective removing cutting chips solution is the spiral auger flute. Due to 
the fact that drilling loads or power consumptions are highly dependent on the removal con-

dition [41], during this dry drilling process drilling loads will be more sensitive to the drilling 

parameters. Overall, these harsh working conditions will definitely aggravate the risk of the 
interplanetary drill, which all require a more robust and reliable control strategy.

3. Drilling and coring characteristics

The ultimate goal of interplanetary sampling exploration is to acquire as much as possible 

planetary regolith for further scientific analysis. Apart from the volume of planetary regolith, 
the stratification of the sample should also be seriously considered in the drilling process. 
If the geological information of soil sample was not be preserved completely, its geological 

value would be significantly reduced. In China Chang’e drilling and coring mission, a novel 
flexible tube coring (FTC) method referred from Luna 24 mission is being adopted to solve 
the above problem [42]. As shown in Figure 1, its drilling and coring process is illustrated.

In the FTC penetrating process (rotary speed n and penetrating velocity v
p
), the in-situ sub-

surface regolith destroyed by the cutting edge of drill tool can be divided into two parts: the 
wrapped sample into the flexible tube and the cutting chips conveyed along the spiral flute. 
Since the wrapped core soil is adjacent to the cutting soil through the holes at the bottom, it 

may result in a sudden collapse of the inner surface of the flexible tube when cutting chips are 
removed, resulting in a decline in the height of core. However, considering that there is no 
relative locomotion between the sample and the flexible tube in stable conditions, the sample 
can be continuous along the depth direction. Although the adopted FTC method has a great 
advantage in maintaining the core stratification, there still exists a considerable possibility 

that a very small amount of core soils are finally acquired in drilling process. Therefore, to 

Drilling22



a certain degree, the height of core index H
s
 or the coring ratio K

c
 index (the ratio of coring 

height H
s
 to drilling depth H

d
) can represent the core flowing characteristics and should be 

monitored in real-time.

It can be also found that there inevitably exists a vertical distance between the bottom of 
the flexible tube and the bottom of the drill bit, connecting the internal core to the external 
cutting chips, as shown in Figure 1. Due to the fact that the external cutting chips’ removal 
flowing characteristics is heavily determined by the operated drilling parameters [43, 44], the 

removed cutting chips may have a negative influence on the inner coring soil and make the 
coring results drop correspondingly. Therefore, besides monitoring the coring characteristics, 

the soil removal characteristics should also be online detected. As shown in Figure 2, in order 

to comprehend the drilling and coring characteristics, a noncontact soil flowing characteris-

tics monitoring method has been proposed for experimental verification.

Since the cored soil is wrapped into the closed space, it’s fairly difficult to measure the cored 
soil without affecting soil’s original states. To solve this problem, an ultrasonic displacement 
sensor is deployed into the hollow flexible tube, as shown in Figure 2(a). To assist measure-

ment, a protective hollow tube is installed at the front of the sensor, allowing the sonic wave 

to pass through it without disturbance. Besides that, avoiding unnecessary disturbing reflec-

tion from the uneven upper surface, one Teflon made reflect board with a small mass (4 g) 
is elaborately designed to put on the in situ soil. As a result, the online coring ratio K

c
 can be 

indirectly calculated by acquiring the ultrasonic sensor’s online value H
u
, its initial value H

uo
, 

and the online drilling depth H
d
. Apart from the coring states, soil removal characteristics are 

acquired by measuring the accumulation morphology on a PE plastic wrap by an external 

camera, as shown in Figure 2(b). By converting the colorful images into binary images, the 

outline of accumulation soil can be obtained thereby. Meanwhile, by searching the right, left, 
and upward points of current outline and summing up each accumulation volume, the total 

Figure 1. Illustration of drilling and coring process in flexible tube coring.
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volume of accumulated soil V
acc

 can be finally online acquired. Hence, based on above non-
contact measurement the soil flowing characteristics during the drilling and coring process 
can be accurately monitored without any damage.

To verify the proposed measurement, drilling experiments under the condition of n = 400 rev/min, 
v

p
 = 150 mm/min are conducted. The online coring results containing the ultrasonic sensor’s value, 

the coring height, and the coring ratio are illustrated respectively in Figure 3. It can be seen that 

during the first 105 mm drilling depth, the ultrasonic sensor’s value keeps stable, meaning that 
the coring soil stays at the original position making the coring height climb stably to the 105 mm 
and coring ratio keeps around the 100%. After then, the monitored sensor’s value reveals that it 
has a sudden increase, resulting in a turning point at the 105 mm drilling depth. According to 
the definition, the corresponding coring height and coring ratio both has a sharp decline. Finally, 
during the 200 mm depth, the coring height slips to approximately 70 mm and the coring ratio 
reaches to less than 40%.

Based on above founding, it can be inferred that there exists a sudden collapse of the cored 

soil in the flexible tube. Actually, this interesting phenomenon can be explained by the state 
of the cored soil. As shown in Figure 1, the cored soil and the conveyed soil are inevitability 

connected at the bottom of the drill bit. Under proper drilling parameters or penetration per 
revolutions (PPR = v

p
/n, mm/rev), once the drill bit drills into the regolith the cutting chips 

will be conveyed from the bottom by auger’s spiral locomotion, which may make the cored 
soil stays in a positive stress, and vice versa. Since there exists a small side failure zone at 

Figure 2. Scheme of the noncontact soil flowing characteristics monitoring method. (a) Scheme of monitoring method; 

(b) Acquired images in monitoring process.
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the outer annular space of cored soil by the inner edges of cuter [45], once the bottom of soil 
become totally granular at a certain depth, cannot be able to sustain the upward positive 

stress, it will result in a sudden broken or collapse along the longitudinal direction.

Apart from the core flowing characteristics, cutting chips’ removal flowing characteristics is 
also investigated. By identifying the outline image of the wedge-shaped of the removed soil 

outside the surface and calculating its 3D volume per second, the online volume of removed 
soil V

acc
 under three different PPRs (1.6, 0.53, and 0.32 mm/rev) is shown in Figure 4. It can be 

Figure 3. Monitored height of core and coring ratio in experiments.

Figure 4. Monitored volume of accumulated soil V
acc

 under different PPRs.
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seen that during above drilling and coring process, the penetrating velocity is kept constant 

(80 mm/min), while the rotary speed will be adjusted (50 rev/min → 150 rev/min → 250 rev/min  
→ 150 rev/min → 50 rev/min). Meanwhile, the monitored volume V

acc
 can be divided into 

seven stages (AB → BC → CD → DF → FG → GH → HI).

During the AB stage of the first 20 s, since drill bit constantly cuts the in situ soil simulant 
without spiral auger’s participant, there is almost no soil accumulated upon the surface. After 

then, the drill bit is buried in the soil, the auger starts to remove soil from the borehole bot-

tom with a low removal speed during the BC stage. At the 40 s moment (C point), the rotary 
speed is suddenly switched to 150 rev/min with the result of the sudden increase of V

acc
. It 

can obviously be seen that the removal speed during CD stage is higher than that during BC 
stage. Above phenomenon is almost same with that in conditions between DF stage and CD 
stage. At the 85 s moment (F point), the corresponding PPR is regulated back to 0.53 mm/rev, 
which results in a slow increase trend of the V

acc
. After about 5 s, the removal speed becomes 

normal. This slow increase trend of the V
acc

 also exists in the sudden change on G point. Based 

on above experimental results, it can be concluded that the monitored volume of accumu-

lated soil can reflect the online removal states well and the PPR index has a great effect on the 
removal states and should be optimized further.

According to preliminary experiments, the proposed non-contact drilling and coring char-

acteristics monitoring method has been validated well. Next, to provide suitable drilling 

parameters database for the following intelligent drilling strategy, more drilling and coring 

experiments taken the drilling loads and core’s quality into account will be conducted in sev-

eral different drilling formations, such as limestone, sandstone, compacted soil, etc.

4. Recognition based drilling strategy

Intelligent drilling control algorithm needs to be able to effectively identify the drilling forma-

tion, and timely adjust appropriate drilling parameters according to the recognition result. 

As an effective pattern recognition method, support vector machine (SVM) has been widely 
applied for several linear and nonlinear separable problems because of its high generalization 

ability [46, 47]. In previous works, a drillability classification covering from granular soil to 
hard rocks has been established based on the mechanical penetrating tests [48]. Herein, both 
rotary torque and penetrating force are selected as the drilling states monitoring signals x to 

imported into the proposed support vector machine recognition model to predict the corre-

sponding drillability level y, as shown in Figure 5. Once the current formation’s drillability 

level recognized, control algorithm will switch the optimized drilling parameters to drive the 

rotary motor and penetrate motor.

Actually, traditional SVM algorithm is based on the two classification mode, which is not 
suitable for multiple patterns of drillability classification. Compared with other classification 
methods, the decision directed acyclic graph (DDAG) based on the decision tree has a bet-
ter training speed and a higher classification accuracy on the normal scale separation prob-

lems [49]. Considering that for covering potential drilling formations on the planets there are 
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at least three different formations for validation. Herein, DDAG is adopted to conduct the 
drillability recognition. The classification’s structure diagram for four levels of lunar regolith 
simulants’ drillability is shown in Figure 6.

As can be seen from the above algorithm structure, this method constructs a classifier with a 
two-way directed acyclic graph. Among them, the classifier 1 is located at the top of the root 
node to complete the first and second levels of drillability level 1–4 drillability comparison. 
By comparing the drillability level of 1 and drillability level of 4, the most samples may not 
belong to drillability level 1 (drillability level 4) can be excluded. After 3 times of excluding, 
the remaining category will be the drillability 1. Experiments indicated that by successive 
comparison this classification algorithm can guarantee a higher recognition accuracy.

In fact, model parameters in SVM play an important role in affecting recognition’s accuracy. In 
the kernel function of SVM, scale parameter g and penalty coefficient C have the most signifi-

cant effect on recognition’s accuracy. When the two parameters do not match well, SVM will 
be overtraining or overfitting, which is an unstable situation in recognition. Herein, based on a 
grid search method, these two SVM model are optimized. To verify the optimized SVM model’s 
generalization ability, drilling characteristics of different drillability samples under constant 
drilling parameters should be imported to conduct recognition training. Herein, a combination 

Figure 5. Scheme of drillability recognition based on SVM.

Figure 6. Drillability recognition algorithm based on DDAG.
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of rotary speed n = 100 rev/min and penetrating velocity v
p
 = 10 mm/min is used as recognized 

drilling parameters. Typical simulants of drillability level 1, 3, 5 and 6 are selected as drilling 
media. Recognition results of un-optimized and optimized are shown in Figure 7. It can be 

found that the recognition accuracy of optimized SVM model is about 94.37%, which is obvi-
ously higher than the 78.15% of un-optimized model. When recognizing the closed drillability 
level 5 and level 6, the un-optimization model identifies 109 samples in 160 test samples and the 
recognition accuracy is just 68.13% in total. However, under the same conditions, the optimized 
model identifies 150 samples and the accuracy reaches roughly 93.75% in total. Therefore, it 
indicated that the optimized SVM recognition model indeed improves its recognition accuracy 
and becomes more practical in recognizing multilayered drilling media’s drillability.

Once the optimized drillability SVM recognition model has been acquired, a multi-layered 
simulant mixed with granular soil and rocks has been constructed for conducting closed-loop 

validation experiments. There are five layers of three different compositions including granu-

lar soil (level 1), limestone (level 5) and marble (level 6) along the depth. As shown in Figure 8,  

signals acquired in the closed-loop drillability real-time recognition experiment are the  drilling 

Figure 7. Comparison of drillability recognition before and after optimization.
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state signals such as rotary torque, penetrating force, rotary speed, penetrating velocity, drill-

ing power, and drilling energy. Among these signals, rotary torque and penetrating force 

were chosen as the recognition signals to identify drillability, and rotary speed and penetrat-

ing velocity are the corresponding drilling parameters adjusted to adapt to different drilling 
formations. For granular soil, rotary and penetrating control mode is adopted while rotary 

Figure 8. Drilling states during the multi-layered simulant drilling process.
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and percussive control mode are employed for rocks. When penetrating the granular soil from 

0 to 22 s, the rotary motor keeps a constant rotary speed 80 r/min and penetrating motor exerts 
a constant velocity 80 mm/min. In this period, penetrating force is less than 50 N, rotary torque 
is no more than 0.6 Nm and drilling power is less than 10 W. When penetrating to the forma-

tion of limestone, penetrating force booms up meanwhile recognition drilling parameters are 

adopted to start real-time recognition. When recognizing limestone’s drillability level, rotary 

motor switches rotary speed to 100 r/min and penetrating velocity is maintained a constant 
value 10 mm/min. In this period, penetrating force maintains a low level of less than 650 N, 
rotary torque is also no more than 10 Nm and drilling power is controlled no more than 90 W.

According to the monitored drilling states, by matching the appropriate drilling parameters 

with corresponding drillability level, the drilling loads in penetrating five formations keep 
relatively stable and do not surpass drill tool’s load limits. As a result, it takes only 600 s and 
10 Wh drilling energy in the 0.5 m drilling process. Overall, this drillability real-time recogni-
tion drilling strategy has been verified by this multi-layered drilling experiments.

5. Prospect for future application

Although the proposed non-contact drilling and coring characteristics monitoring method, 

SVM pattern recognition method, and drillability recognition based drilling strategy in this 
chapter are more specific to the interplanetary drilling actives, it should point out that these 
technologies may also be applied to terrestrial oil and gas well drilling operations. Specially 

speaking, even although by detecting devices applied into terrestrial oil and gas well drilling 

operations, the in-situ geological information can be acquired before, due to the unpredicted 

and variable online drilling conditions, there still exists great challenges in drill bits’ selection, 

fluid system monitoring and parameters’ optimization, adjustment of drilling parameters, 
well drilling faults’ diagnosis, etc., [50, 51].

To solve the above problems, intelligent drilling technologies have been gradually widely 

employed in oil and gas well drilling activities. However, so far more attention was paid into 
the drill bit’s wearing recognition, drilling faults’ identification, formations’ lithology evolu-

tion, etc. [52–54], few works were conducted to focus on the coring characteristics monitoring 

and adjustment. Since the ultimate goal of commercial drilling is to extract oil as much as 

possible, it perhaps is better to apply some facilities to monitor the online coring results into 
the inner tube. Herein, the proposed non-contact drilling and coring characteristics monitor-

ing method is developed to conduct experimental validations, but once its specific structure 
parameters and installation conditions can be optimized further it may be employed into 

practice to enhance the online coring monitoring performance.

Given suitable drilling parameters in oil and gas well drilling are more dependent on the empiri-

cal formula concluded by experts [55], it is also urgently necessary and important to conduct 

rigorously theoretical calculation and experimental validation works on the soil-machine interac-

tion, wherein the soil or rock’s flow monograph can be comprehended more basically and the 
minimum power of the actuator under specific formation could then be referenced for future 
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application. Therefore, the proposed drilling and coring characteristics monitoring method may 

be applied to further experiments. Moreover, considering the increasing costs of human resources 
in the future, the unmanned oil and gas drilling is being more popular than before. The proposed 

drillability recognition based online drilling strategy is exactly developed for this issue. By only 

required some basic force sensor resources, it can be simply applied to recognize different drill-
ability levels of uncertain drilling formations in practice. However, it should be noted that for 
future application, more considerations should be taken into optimizing the fluid system’s dis-

turbance on the recognition and the longer depth’s coupling influence on the mechanical system.

6. Conclusions

This chapter elaborates the unique challenges in interplanetary drilling and coring mission. 

To comprehend the specific drilling and coring characteristics, a non-contact drilling and cor-

ing characteristics monitoring method has been proposed and verified. By establishing a drill-
ability classification model, different types of drilling formations are evaluated by a combined 
index. Based on the SVM pattern recognition method, a drillability recognition model has 
been built up that can accurately identify four different drillability levels after optimization. 
Experiments under a multi-layered drilling simulant revealed that this intelligent drilling 

strategy can effectively reduce the drilling loads and can be applied to future interplanetary 
unmanned drilling and coring exploration.
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