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Abstract

Cyanides being highly poisonous to living beings and pollutants to our environment are 
among the most important anions studied over the years. As cyanide usage continues 
to sky-rocket, it is extremely important and high time that chemists devised methods 
for their detection to ensure harmless usage and safer working conditions for people 
coming into contact with cyanide and its compounds, day in day out. In this book, an 
attempt has been made to provide an in-depth commentary of literature for the synthe-
sis of fluorescent dyes and mechanisms for the molecular recognition and detection of 
cyanide ions. It also covers some current entropy on colorimetric and fluorescent organic 
chemical probes for the detection and quantification of cyanide anions via fluorogenic 
and chromogenic procedures.

Keywords: fluorescent dyes, molecular recognition, fluorogenic, chromogenic 
procedures, cyanide detection, sensing mechanisms

1. Introduction

The design of protocol for selective optical signaling probes for anions has received much 

attention over the years as a result of the significant roles they play in biological and envi-
ronmental procedures [1]. The recognition of cyanide has become an area of increasing sig-

nificance in supramolecular chemistry as a result of the vital role it plays in environmental, 
clinical, chemical, and biological applications, and the fact that much attention has been given 
to the preparation of artificial probes that have the capability of uniquely recognizing and 
sensing anion species [2, 3]. Cyanide is famous for being one of the most toxic materials and 

is very dangerous to the environment and human health [4]. As a result of the extreme toxic-

ity of cyanide ions in physiological [4–6] and environmental [7] systems, many investigators 

have designed optical probes [8, 9] for the sensitive and bias detection of cyanide. Till date, 
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many strategies have been designed and developed for the detection of cyanide, including 

the formation of cyanide complexes with transition metal ions [10–14], boron derivatives  

[15, 16], CdSe quantum dots [17, 18], the displacement approach [19], hydrogen-bond interac-

tions [20–22], deprotonation [23], and luminescence lifetime measurement [24]. For the inter-

ferences of competing anions to be curtailed in the sensing of cyanide, the nucleophilicity of 

the cyanide ion has been utilized, which includes its nucleophilic reactions with oxazine [25–

27], pyrylium [28], squaraine [29], acyltriazene [19], acridinium [30], salicylaldehyde [31–33],  

trifluoroacetophenone [34–38], trifluoroacetamide derivatives [39–43], and other highly elec-

trophilic carbonyl groups or imine [22, 44–48].

A lot of chemosensors for cyanide ion have been developed [49], chromogenic and fluoro-

genic probes for the detection of cyanide by the naked eye have attracted much interest as a 
result of the facile, fast usage, and their high sensitivity. As it is well-known, the probes are 

normally designed by the combination of a luminophore and an anion binding unit. Mostly, 

the anion binder is basically composed of H-bonding donors [50]. Herein, concise literature 

reports have been made on some strategies employed in the sensing of cyanide ions, dating 

from 2008 to 2017.

2. Sensing mechanisms and synthesis of cyanide sensors (CS)

The official methods of determining cyanides include titration [51, 52], spectrophotometry [65, 

66], potentiometry with cyanide-selective electrodes [51, 53], flow injection (FI)-amperometry 
[54]. Analysis of cyanide in various matrices including water, soil, air, exhaled breath, food, 

and biological fluids (blood, urine, saliva, etc.), have been reviewed in official documents 
[55, 56], books [57] and journal articles [58, 59–61]. Quiet recently, Xu et al. [62] and Zelder 

and Mannel-Croise [63] have respectively written reviews on optical sensors and colorimetric 
measurement of cyanide. Herein, different sensing strategies have been discussed.

2.1. Cyanide sensing via aggregation induced emission (AIE)

This uncommon fluorescence phenomenon was perceived by Luo et al. [64] in 2001 via a 

solution of 1-methyl 1,2,3,4,5-pentaphenylsilole, and the term aggregation-induced emission 

was given to it. Tang et al. gave an explanation on the AIE phenomenon through a series of 

experimental analyses. They realized that the main cause of the AIE phenomenon was due to 
restriction of intramolecular rotation in the aggregates.

Sun et al. [65] have prepared a turn-on fluorescent probe CS1 based on terthienyl for the 

detection of cyanide through the aggregation-induced emission (AIE) behavior of terthienyl 
units in aqueous solutions (Scheme 1). They confirmed the AIE behavior of CS1 using the 

dynamic light scattering (DLS) measurements and the scanning electron microscopy (SEM) 
studies. The UV-vis titration of the free CS1 showed absorption at 530 nm with a distinct 

color. Upon adding CN−, the absorption was quenched and eventually disappeared when the 

concentration of CN− reached 40 μM. In the fluorescence studies of the solution of the probe, 
it showed non-emissiveness in the absence of CN−. Upon addition of cyanide to the solution 

Photochemistry and Photophysics - Fundamentals to Applications180



of CS1, an increase in its intensity at 491 nm was observed, and the fluorescence intensity 
further increased by the addition of more than 170 times. As the concentration of CN− reached 

40 μM, a bright green fluorescent emission was observed which can easily be noticed by the 
naked eyes.

Another AIE probe CS2 has been prepared by Chen et al. [66]. The sensor was synthesized using 
2-benzothiazoleacetonitrile and 4-(diphenylamino)-benzaldehyde in 73% yield. The investi-
gators synthesized the probe by placing equimolar (10 mmol) of 2-Benzothiazoleacetonitrile, 
ammonium acetate, and 4-(diphenylamino)benzaldehyde in ethanol (30 mL). The reaction 
was stirred at room temperature overnight. Then obtained product was filtered and recrystal-
lized from dichloromethane (5 mL) and ethanol (50 mL) to afford the product. The absorption 
and fluorescence titrations of the probe (5 μM) were used to ascertain its AIE properties in 
acetonitrile/water (1: 99, v/v) solvent mixture at room temperature. The researchers employed 
different anions including CN−, HSO

4
−, SO

4
2−, HSO

3
−, CH

3
COO−, Cl−, Br−, I−, F−, NO

3
− and H

2
PO

4
− 

in the analysis. All the anions, with the exception of cyanide, exhibited almost no changes 

in the fluorescence intensity. However, the addition of cyanide led to 99% decrease in the 
fluorescence intensity of CS2, which confirmed that CS2 could significantly sense cyanide. 
When CS2 was dissolved in acetonitrile, a weakly fluorescent was seen. The authors found 
CS2 to be non-emissive in acetonitrile. However, upon addition of large amounts of water 

(fw > 80 vol%) to acetonitrile, an orange fluorescence (λ
em

 = 580 nm) was observed under 
identical measurement conditions (Scheme 2). However, the group found the absorbance of 
the solution to be weak as the fraction of water was below 80%. Additionally, the fluores-

cence intensity with 90% water content was a bit intense than that with 99% which may be 
attributed to a more perfect aggregation state. Nonetheless, the characterizations were carried 
out in CH

3
CN/water (1:99, v/v) (almost 100% aqueous solution) in consideration of practical 

use and environment protection. They therefore proposed cyanide sensing mechanism using 

probe CS2 as illustrated in Scheme 2.

2.2. Cyanide sensing via the chemodosimeter approach

The special nucleophilic character of cyanide has been utilized for the preparation of different 
chemodosimetric sensors for cyanide, mostly in aqueous solutions.

In 2009, Kim and Kim [67] prepared, through the condensation reaction of nitromethane and 

a coumarinyl aldehyde, a new fluorescent chemodosimeter CS3, and investigated it for the 

detection of cyanide ions. The sensor has a coumarin moiety as the fluorescent signaling unit 

Scheme 1. Sensing mechanism of cyanide employing CS1.
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and a Michael acceptor unit being an unsaturated nitro group toward the cyanide. The authors 

proposed, using spectroscopic and chromatographic evidence, a plausible mechanism for the 

Michael acceptor type chemodosimeter CS3. Because the unsaturated nitro group of CS3 is 

one of the good Michael acceptors, cyanide can be added to the β- or δ-position of the unsatu-

rated nitro group, where the δ-position is doubly activated. The chemical reaction of CS3 

with a cyanide nucleophile was reported to be capable of causing a change in the electronic 

structure of the sensor thereby inducing a color change from light orange to pink at 468 nm 

(Scheme 3).

Hu et al. [68] have successfully synthesized and reported a 1,3-indanedione-based chemo-

dosimeter that could be employed in sensing cyanide ions via both aggregation-induced 

emission enhancement (AIEE) and intramolecular charge transfer (ICT) in 90% aqueous 
medium. They prepared a solution of the chemodosimeter (1.0 × 10−5 M) in aqueous solution 
(THF:H

2
O = 1:9 [v/v], containing 10 × 10−3 M HEPES, pH = 7.3). In the aqueous medium, the 

chemodosimeter showed a strong ICT absorption band at 425 nm, and upon adding CN−, the 

ICT band was said to have disappeared and the color of the solution changed from yellow to 

colorless.

2.3. Cyanide sensing via the excited state intra- and inter-molecular proton transfer 

(ESIPT)

In 2017, Huo and co-workers [69] reported the synthesis of a novel isophorone-based red-

emitting fluorescent probe CS4 that can be used in signaling cyanide ion through hampering 

of its ESIPT (Scheme 4). With the addition of cyanide ions, as reported by the investigators, 
the absorption spectrum of CS4 (5 mM) exhibited an obvious peak at 419 nm. Upon further 

Scheme 2. Synthesis and sensing mechanism of probe CS2.
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addition of CN−, the absorption band gradually weakened followed by a rapid step-up in the 

peak at 506 nm, intimating that CS4 has involved in a nucleophilic reaction with the CN−, 

which led to a distinct color change from orange to red. The authors observed the fluores-

cence spectra of CS4 (5 mM) without CN− to have shown an emission at 616 nm with orange 

color under a handheld UV lamp. After adding CN−, the emission at 616 nm was said to have 

attenuated sharply and then followed by a peak increased at 657 nm, which induced a fluo-

rescence chromogenic change from orange to red (Scheme 4).

Scheme 3. Synthesis and plausible mechanism for cyanide using CS3.

Scheme 4. Sensing mechanism for cyanide using CS4.

Fluorescence Dyes for Determination of Cyanide
http://dx.doi.org/10.5772/intechopen.75090

183



Shymaprosad Goswami and co-researchers [70] have reported an ESIPT exhibiting benzothia-

zole receptor possessing two aldehyde groups; one ortho and the other para to an OH group. 
The ortho aldehyde group being very reactive, was reported to have undergone a nucleophilic 

reaction with CN− selectively, thereby hampering an ESIPT. The investigators confirmed the 
process via DFT and TD-DFT computations. The affinity of the benzothiazole receptor toward 
different competing ions was investigated using UV-vis absorption and emission spectrom-

etry in aqueous acetonitrile solution. The probe showed a green emission at 521 nm, a peculiar 

benzothiazolyl phenol ring emission. Upon adding CN−, the emission was reported to have 

drastically decreased, followed by an increase at 436 nm. This suggested that, as thought by 

the authors, a chemical reaction between the cyanide and the aldehyde group has interrupted 

the conjugation and thereby hampering the ESIPT process leading to a color change from 
green to blue. In the UV-vis absorption study, they found that, only CN− had induced the 

perturbation of the electronic behavior of benzothiazole receptor.

2.4. Cyanide sensing via the excimer/exciplex form

Wang et al. [71] have successfully designed and reported the synthesis of a novel probe CS5 

comprising diketopyrrolopyrrole and indanedione-based Michael receptor. The sensor could 

be employed in the recognition of cyanide anion. The researchers realized that, as an aqueous 
solution of cyanide was added to CS5 in THF, it induced a sudden color change from purple 

to yellow, as well as a large blue shift from 553 to 480 nm, without any interference from the 

other interfering ions (F−, Cl−, Br−, I−, H
2
PO

4
−, SO

4
2−, CO

3
2−, PO

4
3−, and OAc−). They also studied 

the binding of CN− with CS5. Therein, they found out that, the absorption spectra of CS5 in 

THF changed upon addition of an aqueous solution of cyanide. This led to absorption peaks 

of CS5 at 359 and 553 nm, which gradually attenuated following the formation of two new 
bands centered at 314 and 480 nm with color change from purple to yellow (Scheme 5).

Shahid et al. [72] have prepared and described a new simple organic scaffold based on ace-

naphthene. The fluorogenic and chromogenic properties of the probe were investigated for 
signaling metal cations and anions in H

2
O/CH

3
CN (8:2, v/v) solvent mixture. The authors 

employed a metal chelate based sensing strategy of copper complexes for fluorescent sensing 
of cyanide.

2.5. Cyanide sensing via the Förster/fluorescence resonance energy transfer (FRET)

Goswami et al. [73] investigated a chemosensor CS6 having a naphthalene and fluorescein 
chromophores acting as an energy donor and an acceptor, respectively. The authors reported 

that, the emission of the naphthalene chromophore and the absorption of the ring-opened 

fluorescein dye indicated that, there was an overlap between these two spectra, implying 
that the FRET from the naphthalene chromophore to the fluorescein moiety had occurred. 
Additionally, they found out that, the probe CS6-Zn2+ complex for signaling cyanide was 

generated in situ by adding 1 equiv of ZnCl
2
 to CH

3
OH/H

2
O (3:7, v/v) solution of probe 

CS6. They conducted the UV-vis and fluorescence studies at pH 7.1, and realized that there 
was the disappearance of yellow color of the CS6-Zn2+ with increased concentration of CN−. 

The researchers suggested that, the observed decrease of yellow coloration of the solution  
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containing the CS6-Zn2+ complex was a result of the ring opened amide form of CS6-Zn2+ has 

been converted to the spirolactam form of CS6 in the presence of CN−. Again, the authors 

investigated the selectivity of cyanide through the UV response of CS6-Zn2+ in the presence of 

competing anions such as Br−, Cl−, I−, F−, ADP, ATP, PPi, OAc−, Pi, SH−, SCN−, and N
3
−. As cya-

nide solution was added to the solution of the CS6-Zn2+ complex, there was a reverse change 

in the fluorescence spectra due to the occurrence of a reverse FRET phenomenon (Scheme 6).

In 2009, Chung and co-workers [74] successfully developed a cyanide sensor for fluorescence 
study. In the fluorescence study, different anions, such as CN−, SCN−, AcO−, F−, Cl−, Br−, I−, 

H
2
PO

4
−, HSO

4
−, NO

3
−, and ClO

4
− were evaluated at pH 7.4 (0.02 M pH 7.4 HEPES). Using 100 

equiv. of each of these anions, and 6 mM of the probe in the presence of Cu2+ (1 equiv.), only 
CN− was observed to have shown a large fluorescence enhancement.

2.6. Cyanide sensing via H-bonding

In 2015, our group [75] designed and reported the synthesis and application of chemo-

sensor CS7 as cyanide sensor. The signaling performance of CS7 was investigated using 

UV-vis absorption and fluorescence spectroscopy in DMSO against F−, Cl−, Br−, I−, AcO−, 

CN−, HSO
4

− and ClO
4

− anions with tetrabutylammonium (TBA) as the counter cation. The 
absorption maximum of CS7 was observed at 405 nm in DMSO. This absorption band 
shifted hypsochromically upon addition of one equiv of CN− to the solution of the probe, 

and a new band at 392 nm was observed. Apparently, the electrostatic interaction between 

probe CS7 and CN− deprotonated the amide -NH function and negative charge accumu-

lated around the amide function giving rise to the observed hypsochromic shift. To gain, 

an insight into the binding of CS7 with anions and fluorescence titrations were performed 

Scheme 5. Structure of CS5 and its cyanide sensing.

Fluorescence Dyes for Determination of Cyanide
http://dx.doi.org/10.5772/intechopen.75090

185



in DMSO with excitation wavelength of 405 nm. Free sensor, CS7 displayed an emission 

maximum at 479 nm in DMSO with a high intensity. Upon addition of CN− (>1 equiv) 
to the solution of CS7, the fluorescence intensity gradually decreased and emission color 
changed. Addition of 20 equiv of CN− almost wiped out the fluorescence of CS7. Similar 

results were observed for the competing anions (Scheme 7).

A group of researchers [76] reported the synthesis of two receptors of specific signaling of 
cyanide ions in sodium cyanide solution. The authors associated the visual detection of CN− 

via color changes, with the formation of hydrogen bonded adducts. They found the probes 

to have limited solubility in water, and therefore employed mixed solvent, such as CH
3
CN/

HEPES buffer (1:1, v/v), for the sensing studies. The fluorogenic and visually detectable chro-

mogenic changes of the receptors were verified using aqueous solutions of the sodium salt 
of all the employed common anionic analytes such as F−, Cl−, Br−, I−, CN−, SCN−, CH

3
COO−, 

H
2
PO

4
−, P

2
O

7
3−, HSO

4
−, NO

3
−, and NO

2
− present in excess (0.1 mM). For the contending anions, 

no spectral changes in their spectral patterns was observed by the investigators. However, the 
researchers observed changes in spectral pattern, naked-eye color, and fluorescence, only in 

Scheme 6. Structure of CS6 and cyanide sensing on the via a Zn-complex.

Scheme 7. Binding mode of CS7 for cyanide sensing.
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the presence of added CN−. Interference studies conducted by them revealed that, the spectral 

response for CN− remained unaffected in the presence of 10 equiv of all interfering anions.

2.7. Cyanide sensing via the inter- or intra- molecular charge transfer (ICT)

In 2017, Hao et al. [77] designed and synthesized a probe CS8 having a naphthalimide unit 

as the fluorophore and a methylated trifluroacetamide moiety as the acceptor part, which can 
be employed for selective and ratiometric signaling of cyanide. The group also employed the 

probe to study the sensing recognition of cyanide using HPLC, UV-vis, and emission spec-

troscopic analyses. The regioselective nucleophilic attack of cyanide ion to the methylated 
trifluroacetamide unit in the sensor was reported to induce an enhanced ICT process, and 
therefore causing a sudden red shift in both absorption and emission spectra of the sensor at 

450 nm and 535 nm, respectively (Scheme 8).

Mashraqui and co-workers [78] have developed a novel chemodosimeter that has the struc-

tural capabilities to convert the CN-binding event into an enhanced ICT process, inducing 

absorbance red shifts and a high fluorescence turn-on response. The use of the probe toward 
sensing different anions was investigated by the group via optical spectral analysis. The 
group realized that, the absorption spectra of the chemosensor (28 μM) in DMSO-H

2
O (7:3, 

v/v) in tris-HCl buffer pH 7.0, was insensitive to each of the competing anions (F−, AcO−, 

SCN−, HSO4−, NO
3
−, Br−, Cl−, I−, and H

2
PO

4
−) up to 75 mM. On the contrary, the concentration 

of cyanide (7.6 mM) which was at a 10-fold lower that of the interfering anions, was noticed 
to have elicited a monumental interaction, which was followed by an instant color change 

from colorless to deep yellow, an event that allowed selective visual detection of cyanide by 

the naked eye.

2.8. Cyanide sensing via the nucleophilic approach

Kwon et al. [79] successfully introduced a fluorescent chemodosimeter CS9 which exhibited 

a green fluorescence coloration upon adding cyanide ions. The investigators analyzed the 
probe in aqueous solution and noticed that the probe showed an ‘OFF-ON’ type of emission 

change which could be utilized as a monitoring device for cyanide over 500 nm (Scheme 9). 

Scheme 8. Mechanism for the signaling of CS8 with cyanide.

Fluorescence Dyes for Determination of Cyanide
http://dx.doi.org/10.5772/intechopen.75090

187



For the fluorescent analysis, 100 equiv of different anions (CN−, AcO−, F−, Cl−, Br−, I−, H
2
PO

4
−, 

HSO
4

−, NO
3

−, and ClO
4

−) were investigated in acetonitrile—HEPES (9:1, v/v, 0.01 M pH 7.4 
HEPES), containing probe CS9 (3 μM). The authors attributed the selective recognition of 
cyanide as a result of the high nucleophilic nature of CN− in aqueous solution. Finally, they 

further studied the practical application of the sensor by applying it for the selective detection 

of cyanide in the living cells.

Li et al. [80] reported the development of selective and sensitive red-emitting fluorogenic and 
colorimetric dual-channel sensor for detection of cyanide. The group realized that, adding 
cyanide ion to the probe led to the display of huge blue-shift in both fluorescence (130 nm) 
and absorption (100 nm) spectra. The authors found that, the probe could be capable of selec-

tive signaling of cyanide by the naked-eye. They therefore concluded that, the mechanism 

for the detection of cyanide was due to the nucleophilic attack of cyanide toward the benzo-

thiazole group of probe, which could block conjugation between benzothiazole unit and the 
naphthopyran moiety, resulting in both color and spectral changes.

λab = 500 nm, λem = 500 nm.

2.9. Cyanide sensing via the photoinduced electron transfer (PET)

Qu et al. [81] described the synthesis of a fluorescent and colorimetric chemosensor CS10 derived 

from a naphtho[2,1-b]furan-2-carbohydrazide and 2-hydroxy-1-naphthaldehyde, through a 
straightforward reaction, from inexpensive reagents, for a swift signaling, superior selectivity, 

and superb sensitivity toward cyanide ions. The researchers observed that, the mechanism for 

the recognition of cyanide ions was as a result of the photo-induced electron transfer (PET) 
(Scheme 10). The investigators found the probe CS10 to possess a strong anti-interference 

toward other common anions (F−,AcO−, H
2
PO

4
−, and SCN−). The authors applied the sensor for 

detection of CN− in food samples, which they found to be an easier and selective platform for 

on-site monitoring of CN− in agriculture samples. The investigators carried out both UV-vis and 

the fluorescence spectroscopy experiments in EtOH/H
2
O (7:3,v/v) HEPES solution of sensor 

CS10. A significant color change from colorless to yellow, which was visible to the naked eyes, 
and it was accompanied by a strong and broad absorption red shift from 373 nm to 477 nm in 

the UV-visible spectrum of solution of the sensor in EtOH/H
2
O (7:3, v/v) HEPES solution. When 

Scheme 9. Signaling of CS9 upon addition of cyanide.
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50 equivalents of CN− was added to the solution of the probe, the fluorescence intensity of the 
sensor CS10 increased rapidly and the observed change in coloration from dim blue to blue-

green was said to be distinguishable by the naked eye under the UV-lamp.

A group of researchers [82] successfully prepared a Co(II)-salen based fluorescent sensor that 
is applicable for selective recognition of cyanide anions in 1:2 binding stoichiometry. The sci-
entists related the fluorescence enhancement of the solution of the probe, upon the addition of 
cyanide, to an interruption of photoinduced electron transfer from the coumarin fluorophore 
of the sensor to the cobalt(II) ion. In order to address the origin of the fluorescence enhance-

ment of the sensor by the coordination of cyanide anions, the authors measured the HOMO 

and LUMO energy levels of the cobalt-salen complex of the chemosensor in the absence and the 
presence of cyanide anions via cyclic voltammetric and UV-vis spectroscopic measurements.

3. Conclusion

In summary, this chapter is limited to literature reports that have been published from 2008 to 

2017. Some papers that have been published pre-2008 may have been used to illustrate important 

points. Some of the schemes for the synthetic pathways of the reported literature have not been 

illustrated in this chapter due to the limited space available to the authors. There are also a few 

papers that have been published within the period captured herein but could not be included. The 

omission of such literature does not in any way connote that such papers are of lesser importance.
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