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Abstract

Systemic biomarkers (i.e. biomarkers of functioning of cellular pathways) offer a broad 
spectrum of diagnostic capabilities. There are several approaches to using systemic bio-
markers that derive from exact needs of a researcher or a clinical specialist. First, ana-
lyzing a multifunctional and multi-systemic pathway in circulating cells (e.g. leukocytes) 
allows to gather generalized information on functioning of the organism. Second, there are 
numerous pathways that, even still in circulating cells, allow to assess risks of developing 
or stage of development of numerous diseases, including the leaders of non-infection dis-
eases mortality—cardiovascular diseases. Third, biopsy specimens can readily be used to 
assess the exact signaling type of a disease (especially cancer) thus helping in selecting the 
best treatment option. Due to unique properties of the human oxidative status pathways 
that are discussed in the present chapter, diagnostics specialists are now acquiring an all-
in-one toolbox for profiling and detecting almost any non-infectious and a broad range 
of infectious diseases. In addition to properties of the human oxidative status pathways 
opening these possibilities, this chapter considers exact systemic biomarkers deriving from 
this approach, reveals some examples of usage of the resulting diagnostic technology and 
provides instances of successful clinical application of the systemic biomarker approach.

Keywords: interactomics, systems biology, personalized medicine, signaling pathways, 
oxidative status, systemic biomarkers

1. Introduction

The human cell is capable of receiving, processing and accordingly responding to an indefi-

nitely wide range of stimuli [1]. These stimuli can be both exogenous and endogenous; both 
physical and chemical (including biochemical); both adopted to provide communication and 
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those requiring adaptation [2, 3]. Regardless of the classification and kind of stimuli acting 
upon the cell, the whole chain of events—from the signal reception and to the end-point 
response of the cell—follows the same logic and is guided by a given signaling pathway [4].

Signaling pathways may exploit cellular machinery to a different extent. In the simplest case, 
a stimulus induces a cellular component capable of performing all the necessary steps from 
reception and to the ultimate action [5]. In the most complex instance, the reaction toward 
a stimulus involves complex rearrangements of cellular components, alterations in gene 
expression caused by epigenetic events and induction of numerous uni-directional and oppo-

site transcription factors, translation modulation, etc. [6–9].

These different pathways confer unequal informativeness for biomedical, mostly diagnostic 
and follow-up, purposes. The reason is that the “shorter” a pathway, the more difficult it is to 
detect changes in cellular parameters due to fast turnover and lack-to-absence of signal amplifi-

cation stages. In contrast, complex pathways contain signal amplification circuits, demonstrate 
delayed and sustained changes in cellular parameters and, moreover, interact with other path-

ways (i.e. respond in dependence of cellular signaling background), thus providing a researcher 
with a plethora of data characterized by high signal-to-noise ratio and high informativeness 
[10]. Superior informativeness of complex signaling pathways renders them highly promising 
for clinical applications. On the other hand, from analytical point of view, responses of simpler 
pathways are easier to interpret, while extremely complex pathways are nearly unresolvable 
due to ambiguity imposed by principal limitations of our knowledge of interacting components 
of such pathways. Thus, it is required that clinically applicable pathways be well-studied, with 
the triggering stimulus and characteristic effects of the pathway known in the first place.

Generally, cellular signaling pathways are specialized toward given sets of stimuli. However, 
there is one group of signaling pathways that, although being specialized, too, permits diag-

nostics of an incredibly wide range of cellular parameters. These are oxidative status signal-
ing pathways. In humans, oxygen participates in multitudinous processes - from spontaneous 
reactions of auto-oxidation of small molecules, to protein folding control, multi-step electron 
transfer in mitochondrial and microsomal electron transport chains and to action of NADPH 
oxidases tightly controlled by one of the most complex pathways of the human cell [11]. Due 

to this deep implication of oxygen in cellular metabolism, redox processes requiring this small 
molecule run in all compartments of the cell and outside the cell. Since one-electron reduction 
is thermodynamically favorable, all processes involving oxygen are liable to generation of 
reactive oxygen species (ROS) [12]. Moreover, a much more safe, thus preferred and referred 
to as physiological two-electron reduction of molecular oxygen produces hydrogen perox-

ide [13]—a molecule classified as ROS as well. A significant portion of hydrogen peroxide 
decomposes with the formation of free radicals, including the most short-lived and danger-

ous hydroxyl radical [14]. On the other hand, hydrogen peroxide serves as one of key cellular 
messengers—and its function in this sense include direct control of transcription factors (AP-
1, NFE2L2, CREB, HSF1, HIF1, TP53, NF-κB, NOTCH, SP1, etc. [15]), direct and indirect con-

trol of higher-order kinases (CAMKII, Pka, Pkb (Akt), Pkg, Mapk, Erk  [16, 17]) and epigenetic 
machinery [18] and direct modulation of 14–3-3 proteins function [19]. Hydrogen peroxide as 
well as other ROS serve as primary triggers of the oxidative status pathways, while the path-

ways differ in signal reception compartment, signal reception mechanisms, signal intensity 
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dependence and sets of modulating pathways. These differences confer significant specificity 
to triggering of the pathways and temporal characteristics of the response. Examples of such 
differences are given further.

With respect to the ultimate cellular effects and resulting oxidative status parameters, oxida-

tive status pathways are rather well explored. The beginning of the extensive studying of 
oxidative status and pathways determining it dates back to the first half of XX century [20–22]. 

Over the time, due to implications of prooxidants and antioxidants in determination of qual-
ity of life, in aging (the two factors that significantly affected public attitude and mentality) 
and in numerous diseases, significant amount of experimental data has been collected. These 
data are detailed inasmuch as some pathways activation patterns have been characterized in 
a minutes to hours basis [23] and accounting signal intensity [24]. No less importantly, targets 
of the most complex and clinically relevant pathways are well known. And as it is shown 
further, these targets that may serve as biomarker panel candidates are not only mRNAs 
or proteins, but as well individual transcript variants, pre-mRNAs and miRNAs [25–28]. 

Consequently, although there are more data to be collected, these pathways may be utilized 
for developing systemic biomarkers for diagnostics of different health conditions using sets of 
individual RNAs, proteins and small molecules in analytically convenient combinations. For 
some of such pathways, this has already been done.

To sum up, oxygen-dependent redox processes participate in or modulate at least most cellu-

lar metabolic and signaling systems. Accordingly, these systems contain respective response 
circuits allowing the cell to adapt to changes in environmental and internal conditions or at 
least perceive these changes. As the above-mentioned metabolic and signaling systems of the 
cell strikingly differ in nature, cellular roles and even in action timeframes, the response cir-

cuits—termed oxidative status pathways—are rather specific in triggering stimulus, unique 
in sensing mechanism, subsequent events and the outcome. Among these events and results 
are changes in expression of target RNAs and proteins and fluctuations of some relatively 
stable biochemical parameters. Together these factors may (and do) serve as components of 
systemic biomarkers. And since the pathways are specific toward given stimuli or signals, the 
respective systemic biomarkers, i.e. panels of reporter target components of these pathways, 
allow for profiling of the activation status of the pathways. Consequently, as diseases origi-
nate and start to manifest at the bottom biological level - the cellular level - the cellular signal-
ing pathways reflect the mode of cellular functioning. And since oxidative status pathways 
extraordinarily reflect and summarize most cellular systems functioning, these pathways are 
perfect for developing systemic biomarkers. However, there are several variables in selecting 
the sets of cellular factors to serve as systemic biomarker components that are to be accounted, 
and those are discussed in the next section.

2. Developing oxidative status pathways-based systemic biomarkers

Since systemic biomarkers are sets of cellular factors that may represent functioning of a given 
pathway, development of such biomarkers starts with interactomic data - signaling pathways 
maps. There are numerous available solutions, including Reactome [29], BioSystems [30], 
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GenAtlas [31], GeneGo [32], KEGG [33], etc. We have previously developed our own interac-
tomic system dedicated exclusively to human oxidative status - Oxidative Status Interactome 
Map (OSIM) [34]. These interactomic systems differ in interface, data selection strategy and 
depth of interactome coverage. Importantly, quality of an interactomic map used for bio-
marker development significantly affects its specificity and sensitivity due to inherent biologi-
cal overlap of targets control and multi-pathway signal reception.

2.1. Signal specificity

There are dozens of oxidative status signaling pathways operating in the human cell, and 
most of these pathways have hydrogen peroxide or other ROS as the primary triggering sig-
nal. However, as it was shown above, ROS originate in different cellular compartments in 
different cellular contexts, and this is one of the basic principles of disambiguation in signal 
reception [35, 36]. Further divergence of pathways is achieved by their signaling background 
dependence: different oxidative status pathways require different kinases for functioning, 
while these kinases are often redox-sensitive [37, 38]. Finally, oxidative status pathways are 
highly specialized toward various ROS-inducing agents, which can be both chemical and 
physical. For example, electrophilic compounds have critically distinct effects on the AP-1 
and NFE2L2 sub-pathways of the NFE2L2/AP-1 pathway (often referred to as the NRF2 path-
way) [39]. An example of physical signal specificity is thioredoxin 1 triggering by ionizing 
radiation, UV and ultrasound [40].

Although triggering signals significantly overlap for different pathways, cellular effects of 
these signals greatly depend on their cellular location - and these effects are mediated by 
compartment-specific sensors.

2.2. Sensor location and type

Protein sensors of oxidative status pathways are ample and extremely diverse. Different 
pathways are greatly dissimilar in mechanisms of activation by even the same basic stimu-
lus - hydrogen peroxide. Moreover, the same pathway may have several sensors working in 
tandem. For example, the above-mentioned NFE2L2 sub-pathway has a primary hydrogen 
peroxide sensor in cytoplasm - it is KEAP1 protein. But in addition to this cytoplasmic pool 
of KEAP1, the same protein is also present in the nucleus, where it acts as the second-line 
sensor [41]. The same pathway is also characterized by a third-line sensor - BACH1 protein, 
a transcriptional repressor active in reduced state [36]. Thus, depending on cellular context, 
NFE2L2 activity may be attenuated to different extent and so as to result in activation of 
different sets of target genes, since BACH1, for instance, represses only a portion of NFE2L2-
dependent genes.

Another peculiar example of sensor location-induced pathway functioning modulation is 
known from the NF-κB pathway. Under unstimulated conditions, NF-κB proteins are bound 
by I-κB proteins in the cytosol preventing NF-κB nuclear import. Upon ROS formation, NF-κB 
proteins are oxidized, change conformation and cannot be immobilized by the I-κBs. Further 
developments depend on nuclear redox context and cellular signaling background, since 
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oxidized NF-κB proteins are unable to transactivate the targets [42]. Interestingly, activated 
NF-κB protein RELA controls nuclear import of the above considered KEAP1 protein [41].

All the events of pathways activation and subsequent signal transduction have different rates 
in different pathways. These temporal characteristics can be utilized to collect additional 
diagnostic data.

2.3. Temporal considerations

Even when oxidative status pathways are activated by the same signal, ultimate effects are 
achieved in different time. Moreover, even within the same pathway, targets are activated at 
different rate. It appears that this is dictated by the complexity of signal transduction, includ-

ing presence and characteristics of signal amplification circuits. It has striking effects on path-

way performance. For examples, in the above-mentioned NFE2L2 pathway, some targets 
are activated as early as in 5 hours, while other genes fail to increase expression rate until 
approximately 24 hours [23].

Another example of significantly prolonged effects of a pathway is seen in HIF1A pathway 
run cycle. Activated HIF1A induces expression of NF-κB genes and proteins REL, RELA and 
NFKB1, and DICER1. In turn, activated NF-κB (and this activation is context-dependent) 
transactivates genes of miRNAs MIR-93 and MIR-199A-5P that are further processed by 
DICER1. These mature miRNAs are HIF1A suppressors that eventually block the pathway 
activation. Due to extremely complex chain of events, this variant of HIF1A pathway run 
takes considerable amount of time [25].

Temporal characteristics of the pathways analyzed should be accounted when developing 
and applying a systemic biomarker. This can partly be achieved by selecting appropriate ana-

lytical level.

2.4. Analytical levels

Oxidative status pathways contain numerous types of molecules that can be used as biomark-

ers. These are protein-coding RNAs, miRNAs, proteins, and small molecules.

Just as signal reception and transduction are multi-step processes, so is the development of 
the cellular reaction. Upon decoding of the stimulus by transcription factors, the first step 
of the cellular reaction takes place - this is preparation to transcription initiation (interac-

tions between transcription factors [43], competition [39], nuclear import of transcription fac-

tors [44], modulation of epigenetic machinery [45], etc.). Even this first step is complex, and 
subsequent stages occurring in the nucleus are legion [46]: these include DNA binding by 
transcription factors, RNA polymerase engagement, transcription, RNA-protein interactions, 
splicing, RNA modification, RNA stabilization, storage, degradation and cytoplasmic export. 
Further, numerous cytoplasmic processes provide or accompany generation of mature pro-

tein, and another plethora of events finalize the cellular reaction (e.g. the protein is modified, 
re-distributed within the cell or secreted). Remarkably, all these processes, dozens of them, 
are affected by cellular signaling background.
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Generally, it is possible to take a “snapshot” of any of these phases of the cellular reaction and 
use the data to decode the initial signal. However, the more elaborate the product of the cel-
lular reaction one analyzes, the harder it is to trace back the stimulus.

Thus, most existing systemic biosensors rely on mRNA level. mRNA expression analysis is 
a reasonable approach to assess whether a stimulus has affected the cell or there has been a 
dysfunction in cellular signal transduction or decoding processes: there are only few steps 
between transcription factor activation (signal decoding) and mRNA maturation. However, 
there are still more steps that can easily be affected by the cellular functional context [47–51]. 

Thus, pre-mRNA might serve as a valuable alternative or addition to mRNA analysis. In one 
of our previous studies, we assessed whether pre-mRNAs can be used for diagnostic pur-

poses. It appeared that two of three pre-mRNAs of single transcript variant-encoding genes 
had sensitivity and specificity comparable to that of the respective mRNAs [52]. Comparing 
such diagnostic characteristics is challenging when genes coding for more than one transcript 
variant are considered.

In this case, individual transcripts analysis is a great alternative to standard mRNA analysis. A 
pathway may control transcripts’ fate individually on several levels. First, transcription factors 
of the pathway can directly induce individual transcripts [53]. Second, transcription factors, 
being central to some pathways, can attract and regulate splicing machinery themselves [54]. 

Third, other pathway components can easily regulate splicing machinery together with pro-

moting target gene transcription [55]. Fourth, cellular pathways have all capabilities to indi-
vidually control degradation or long-term storage of mature mRNA variants of a single gene 
[56–58]. Individual transcript expression-based studies are rare due to technical and interpre-

tative difficulties [59, 60], but previously we demonstrated that this approach is highly prom-

ising in case of oxidative status pathways used for development of systemic biomarkers [28].

Proteins are also sometimes used as biomarkers in systemic diagnostics and systemic patho-

physiology approaches. The drawback of this approach appears to be in decreased signal-
to-noise ratio leading to significant information losses. Although our lab mostly focuses on 
RNAs for biomarker development, we performed several attempts to use proteome as ana-

lytical level in systemic approaches [61].

2.5. Signal amplification and autoregulatory blocking

As it was mentioned above, signaling pathways are optimal for diagnostic properties only if 
they contain signal amplification and abruption circuits, yet they are not too complex to hin-

der data interpretation, and their action rate is comparatively slow.

Human oxidative status pathways are rich in signal amplification and autoregulatory block-

ing circuits. In one of our previous works, we discussed 15 such experimentally proven cir-

cuits of just one of the pathways - the NFE2L2/AP-1 pathway [10].

Such circuits greatly help in interpreting data and choosing time points for sample collection 
in repetitive measurements that greatly improve the signal decoding procedure for diagnostic 
purposes.
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2.6. Biomarkers quantity

Careful selection of systemic biomarkers candidates and their quantity are critical, since, on 
average, each gene is controlled by a great number of transcription factors (both transacti-
vators and repressors) belonging to different signaling pathways. This implies a significant 
limitation—so that even some well-known targets cannot be used for diagnostic purposes 
involving pathway activation analysis. There are many examples of genes that are controlled 
by multiple and functionally opposite pathways even within the oxidative status systems 
[62, 63].

3. Current advances in developing systemic biomarkers

Systemic biomarkers approach is a relatively new area of biomedicine. However, over 
two decades of its existence [64], significant advances have been made. Great effort spent 
in this area not only improved analytical algorithms, but also underlined the importance 
of personalized approach. For example, many prognostic markers have been suggested 
for breast cancer in the literature, in particular for predicting survival. But data collected 
in separate studies led to striking discovery of the lack of overlap of the predictive genes 
in most of these studies. This emphasized the need of personalized approach even within 
tumor groups that share the same histomorphology [65]. The reason for discrepancies 
is debatable—divergent patterns of expression profiles might have been due to several 
analytical factors considered in the present chapter, but the solution holds the same: 
systemic biomarkers are only informative when patterns of pathways activation, rather 
than changes in individual genes expression, are analyzed. This idea led foundation 
to development of several analytical tools and panels. Our lab developed an NFE2L2/
AP-1 pathway-based systemic biomarker for assessing slight changes in physiological 
parameters of the human organism using peripheral blood leukocytes as the preferred 
sample type [66]. The same systemic approach utilizing another set of oxidative status 
markers was successfully used for unveiling features of uterine cervical incompetence 
patients [67]. Other labs also successfully apply pathway activation-based technologies 
in various field and other sample types, with special attention paid to fresh solid tumors 
samples and paraffin blocks [68]. Of note, Oncofinder technology [69, 70] and Oncotype 
DX assay [71] are among the most effective interactomics/multi-gene analysis-based 
tests in oncology.

In Table 1, some examples of suitable NFE2L2/AP-1 targets and complex markers are given 
along with their diagnostic properties (only area under the curve (AUC) is given, please see 
details in the cited publications).

As seen from Table 1, not only the markers may highly vary in nature, but they have differ-

ent receiver operator characteristics. Notably, for each model to be studied, it is possible to 
choose or find a set of markers having extremely high AUCs that are hardly achievable using 
the traditional biomarker approaches.
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4. Conclusions

Oxidative status pathways-based interactomic profiling using the expression analysis-based 
methods promises a lot to the field of development of the novel diagnostic approaches and 
has already demonstrated great results in various areas of biomedicine. In this branch of 
personalized medicine, interactomics serves as a tool to select factors to be analyzed (sys-
temic biomarkers), to suggest a method of analysis and to further account for data collected. 
Expression profiling then serves as the immediate molecular biological procedure used to 
collect biological data in the interactomic diagnostics.

Current advances in molecular biology have led to creation of numerous interactomic maps 
and analytical systems that can readily be used for developing novel diagnostics assays. Fast 
evolution of oxidative status cell biology and emerging molecular biology suggestions on cel-
lular factors to be considered as systemic biomarkers candidate complement and promote this 
field. Despite the complexity of development of systemic biomarker-based assays, this novel 
type of diagnostic technologies appears to be inextricably intertwined with the personalized 
medicine era.

Marker ROC indices Model Reference

AUC p-value

AKR1B1 mRNA (normalized to 
reference)

1.0 <0.0001 In vitro, HeLa cells, 24 h 400 uM hydrogen 
peroxide

[52]

AKR1B10 mRNA 1.0 <0.0001

AKR1B1 mRNA/pre-mRNA 
ratio

0.984 <0.0001

GSTP1 pre-mRNA 0.984 <0.0001

AKR1B10 mRNA/pre-mRNA 
ratio

0.946 <0.0001

AKR1B10 pre-mRNA 0.781 0.0284

BACH1 tv2/NFE2L2 mRNAs 
ratio

0.965 <0.0001 In vivo, 19–22 y.o. females, repetitive 
measurements, self-reported analogue-
scaled psychological stress

[66]

SRXN1/NFE2L2 mRNAs ratio 0.922 <0.0001

NQO1/NFE2L2 mRNAs ratio 0.902 <0.0001

HMOX1/NFE2L2 mRNAs ratio 0.879 <0.0001

KEAP1/NFE2L2 mRNAs ratio 0.867 <0.0001

PRDX6/NFE2L2 mRNAs ratio 0.687 0.0586

TXN tv1/NFE2L2 mRNAs ratio 0.609 0.2891

Table 1. The NFE2L2/AP-1 pathway functioning markers used in two in vitro and in vivo studies, with AUC in 
descending order within each study.
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