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Abstract

Water pollution by the textile industry is an emerging issue. Textile industry is the major
industrial sector which contributes to water pollution. Textile industry releases a huge
amount of unfixed dyes in wastewater effluents. About 20% of the dye production all over
the world is discharged as waste in industrial effluents by textile industry. These dyes are
highly stable and colored substances which disturb the aqueous ecosystem significantly.
Therefore, there is a need for methods to remove organic dyes from textile industrial
effluents. Photo catalysis and catalytic wet oxidation are best practices for degradation of
dyes in wastewater. In photo catalysis, the dye molecules can be completely degraded into
inorganic non-toxic compounds by irradiation of the dye solution under visible or ultra-
violet light in the presence of semiconductor metal-oxide photo catalysts. In catalytic wet
oxidation, various metal-based catalysts in supported or unsupported form can be used as
heterogeneous catalysts for degradation of dyes in the presence of oxygen or hydrogen
peroxide. These processes have several preferences like easy separation of the catalyst
from reaction mixture and recycling of the catalyst.

Keywords: catalysis, degradation, dyes, Langmuir-Hinshelwood mechanism

1. Introduction

Water is an important resource in our society. In our planet, Earth, less than a 0.7% of the

total of water is fresh water and only 0.01% is available to be used. Today, some of the most

discussed issues around the world are sanitation, soil, air and water pollution [1]. Wastewa-

ter can be divided into four broad categories, according to its source, namely domestic,

industrial, public service and system loss/leakage. Among these, industrial wastewaters

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
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occupy a 42.4% of the total volume and households a 36.4% of volume. Industrial effluents

are the major sources of water contamination. These industrial effluents contain a wide

variety of complex, biodegradable and non-biodegradable organic substances like dyes,

pesticides and herbicides and dyes with different concentrations [2]. A large amount of

water is being used in the textile industry for preparing fabric and dyeing process. Other

industries like plastics, pharmaceutical, pulp, leather and food industries also use dyes;

however, textile industry is considered as a major water consumer as well as the largest dye

consumer sector. The wastewater coming out of these industries contains a huge amount of

dyes. Textile industry releases about 20% of the total world production of dyes in wastewater

effluents.

Dyes are complex organic compounds which are used to impart color to materials. Dyes are

categorized into different classes like anthraquinone, azo, reactive, disperse, acidic, basic

and neutral dyes. Most commonly employed dyes are anthraquinone and azo dyes and

more than 60% of these dyes are reactive dyes [3]. Reactive azo dyes are extensively used in

the textile industry. Azo dyes consisting of a diazotized amine coupled to an amine or a

phenol and contain one or more azo (–N = N–) linkage comprise about half of all textile

dyes used in the present textile industry. The concentrations of these dyes in textile waste-

water are significantly high, as about 20% of dye residues are released into effluents [4].

These industrial effluents are released directly into receiving waters without much effective

treatment. The dye discharge into the environment poses serious threat to sustainability

of ecosystems because they are highly resistant to natural degradation. These dyes have

been declared as carcinogenic and tumorigenic material by the International Agency for

Research on Cancer (IARC) and National Institute for Occupational Safety and Health;

however, these dyes are still in use in textile dyeing processes. These dyes possess a comp-

lex nature due to a large degree of aromatics and synthetic origin. These dyes are highly

stable, resistant towards photo and biological degradation and refractory against chemical

oxidation. These characteristics make conventional biochemical and physiochemical tech-

niques ineffective. Therefore, elimination of such dyes from textile effluents is of consider-

able interest and importance. Hence the textile effluents should be effectively treated before

final disposal [5–7].

2. Photo catalytic degradation

Increase of recalcitrant organic pollutants in industrial effluents developed the law and regu-

lations related to environment more forceful. As a response, advancement in new, more

powerful and eco-friendly protocols for degradation of organic pollutants in industrial efflu-

ents turned into an important task. For the treatment of industrial effluents, various physical

and chemical processes, such as ion exchange, adsorption, flocculation, UV radiation, electro-

chemical reduction, ozonisation and so on, have been used for elimination of dyes in the past

few decades [8–12]. However, most of these processes face secondary pollution problems,

complicated procedures and high cost. Hence, the development of an effective and eco-

friendly protocol for treatment of industrial effluents is needed.
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Ultimately, researchers focused on advanced oxidation processes (AOPs) to eliminate these

stable pollutants from the aqueous medium. Advanced oxidation processes involve the pro-

duction of active radicals like OH. These active radicals take part in decomposition of macro-

molecules of pollutants into less harmful and smaller substances [13–14]. Fenton process,

sonolysis, ozonation process, radiation-induced degradation, biodegradation and heteroge-

neous photo catalysis are techniques which are employed in the AOP approach [15–19]. The

heterogeneous photo catalysis, which can be used for degradation of organic pollutants by

initiation of redox transformations, has been proved as an efficient tool for degradation of

aqueous as well as atmospheric organic pollutants. This technique involves the initiation of

photo reactions in the presence of a semiconductor photo catalyst. A number of photo-

sensitive semiconductors such as ZnO, V2O5, ZnS, CdS, TiO2, ZnO, oxides of Mn and so on

can be employed as photo catalysts for aqueous-phase photo degradation of organic pollutants

due to their environmental-friendly benefits [20–25].

3. Mechanism of photo catalytic degradation

Irradiation excites an electron from valence band to conduction band of the semiconductor

photo catalyst leaving behind a positive hole in valence band. Electron from the conduction

band is taken up by oxygen adsorbed at the surface of photo catalyst and produces superoxide

anion (O2�). This super oxide anion further reacts with water and produces the OH radical.

Similarly, the positive hole moves to the surface of catalyst and reacts with water and produces

OH radical. These OH radicals take part in decomposition of the pollutants. This mechanism

has been illustrated in Figure 1.

Figure 1. Mechanism of photo catalytic degradation of dyes.
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The catalytic activities of photo catalysts towards degradation of dye molecules can be

enhanced by doping of semiconductor metal-oxide photo catalysts with metal nanoparticles

of low fermi level like Ag. These metal nanoparticles doped on semiconductor photo catalysts

prevent the recombination of the electron–hole pair by the well-known Schottky barrier effect

which results in an increase in quantum efficiency of the photo catalysts [26, 27]. It has been

reported, for example, that doping of Ag greatly enhanced the photo catalytic activities of the

manganese oxide photo catalyst for degradation of rhodamine B dye in aqueous medium as

shown in Figure 2 [28]. It was observed that 11% (in 15 min of reaction) and 45% (in 120 min of

reaction) of 40 mL (200 ppm) solution of rhodamine B degraded when using manganese oxide

as the photo catalyst at 40�C. In the presence of Ag-doped manganese oxide, 28% (in 15 min)

and 91% (in 120 min) degradation of rhodamine B dye were achieved under similar reaction

conditions. The pH of the solution also affects the catalytic activities of photo catalysts. Higher

pH favors the production of OH radicals; therefore, the photo catalytic activities of photo

catalysts increase with pH. Figure 3 shows the effect of pH on photo catalytic activities of Ag-

doped manganese oxide [28]. Similarly, Ansari et al. [29] have reported that TiO2 and Ag-

doped TiO2 catalyzed photo degradation of methyl orange and methylene blue dyes. It was

found that 42% and 88% degradation of methyl orange and methylene blue dye was achieved

after 6 h of reaction. In the presence of Ag-doped TiO2, the degradation achieved was 78 and

96% for methyl orange and methylene blue dyes.

3.1. Kinetics of photo catalytic degradation

Eley-Rideal (E-R) mechanism, one of the three mechanisms of heterogeneous catalytic reac-

tions (Langmuir-Hinshelwood, Mars van Krevelen and Eley Rideal), can be used to describe

the kinetics of the photo catalytic degradation of dyes in the presence of oxygen. Eley-Rideal

(E-R) mechanism states that surface-catalyzed reaction proceeds in two steps. In the first step,

the gaseous reactant, oxygen, gets adsorbed at the surface of the catalyst followed by a reaction

Figure 2. Effect of doping of Ag on photo catalytic activities of manganese oxide for photo degradation of rhodamine B

dye in aqueous medium [28].
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with a fluid phase reactant, the dye in second step. The adsorbed oxygen scavenges the

electrons generated in the conduction band by the irradiation of catalyst and yields superoxide

anions (O2�). Super oxide anions transform to OH radicals by protonation. The positive holes

in valence band also generate OH radicals by reaction with water. These OH radicals play a

significant performance in the mineralization of B dye [29]. The rate expression for the Eley-

Rideal mechanism can be written as:

�

dR

dt
¼ krRθO2 (1)

R, θO2 and kr indicate concentration of dye, surface concentration of oxygen and rate constant

of reaction, respectively. Rate of reaction becomes independent of oxygen under constant flow

of oxygen; hence

�

dR

dt
¼ kApR (2)

kAp is the apparent rate constant,

Equation (2) can be expressed in integral form as

ln
Ro

Rt
¼ kAp t (3)

R0 and Rt is the concentration of dye at time zero and time t, respectively. The plot of ln(R0/Rt)

versus t gives a straight line. The slope of this straight line gives the apparent rate constant for

photo catalytic degradation of dyes in the aqueous medium.

Figure 3. Effect of pH on photo catalytic activities of Ag-doped manganese oxide for photo degradation of rhodamine B

dye in aqueous medium [28].
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The time-profile data of Ag-doped manganese oxide catalyzed photo-degradation of rhoda-

mine B dye and was subjected to kinetics analysis according to Eq. (3). It was noted that fitting

Eq. (3) to experimental data gave the best straight lines as given in Figure 4. The apparent rate

constants determined from the slopes of straight line were 0.0136, 0.0151 and 0.0216 per

minute at 303, 313 and 323 K, respectively [28]. Similarly, we studied the ZnO-catalyzed photo

degradation of methyl orange in aqueous medium [30]. The data obtained was subjected to

kinetics analysis according to Eq. (3). The data gave a best fit to kinetics expression as given in

Figure 5. The rate constants determined from the slopes of straight lines were 0.0098, 0.0128

and 0.0163 per minute at 303, 313 and 323 K, respectively. In another study [31], ZnO was used

as a photo catalyst for degradation of rhodamine B dye in the aqueous medium. The experi-

mental data was analysed according to expression 3. It was found that the data gave best fit to

Figure 4. Kinetics of Ag-doped manganese oxide catalyzed photo degradation of rhodamine B dye in aqueous medium.

Figure 5. Kinetics of ZnO catalyzed photo degradation of methyl orange in aqueous medium.
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kinetic expression as given in Figure 6. The rate constants determined were 0.0148, 0.0174 and

0.0199 per minute at 303, 313 and 323 K, respectively.

4. Wet catalytic oxidation/degradation

In the recent years, the field of wastewater treatment and reuse of industrial processed water,

for the suitable development of human activities, has achieved much attention. Chemical

oxidation of organic wastes in water is one of the recommended and environmental-friendly

methods to improve water quality. The wet-air or thermal liquid-phase oxidation process is

known to have a great potential for the treatment of effluents containing organic toxic contam-

inants. The efficient removal of pollutants via the wet-air oxidation process requires very high

temperature and pressure, typically in the range 473–573 K and 7–15 MPa, respectively, which

leads to high installation costs, and practical applications for this process are limited. There-

fore, the development of heterogeneous catalytic wet oxidation using various types of catalysts

and oxidants has been attempted in order to reduce the severity of the oxidation conditions.

The use of heterogeneous catalysts makes the process more attractive by achieving high

efficiency for oxidation of organic wastes at considerably lower temperature and pressure.

Compared to conventional wet oxidation, catalytic wet oxidation has lower energy require-

ments in which organic compounds are oxidized to inorganic compounds such as CO2 and

H2O [32–34].

The catalytic degradation of dyes is a slurry-phase reaction having reactants in liquid phase

and catalysts in solid phase. It is generally assumed that surface-catalyzed reactions occur by a

reaction between reactants adsorbed at the surface of the catalyst. The surface-catalyzed

reaction can be broken down into the following basic five steps. Any one of these steps can be

the rate determining step:

Figure 6. Kinetics of ZnO catalyzed photo degradation of rhodamine B dye in aqueous medium.
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1. Transport of reactants to the catalyst

2. Adsorption of reactants at the catalyst surface

3. Reaction between adsorbed reactants on the surface of catalyst

4. Desorption of the products from the catalyst

5. Transport of products away from the catalyst

Steps 2, 3 and 4 are chemical in nature. These steps jointly are regarded as the catalytic

reaction. If any of these steps is slow step, that is, rate determining step, the reaction is said to

be taking place in the kinetic-controlled region. Step 1 and 5, on the other hand, are physical

processes which involve no chemical change. When either of these is slower, the reaction is

said to be diffusion controlled or the rate is said to be diffusion limited. The diffusion control or

kinetic control nature of the heterogeneous reaction can be confirmed by studying the effect of

stirring on the rate of reaction [35, 36].

4.1. Kinetics of wet catalytic oxidation/degradation

As stated earlier, degradation of dyes takes place at the surface of catalyst. The kinetics of

surface-catalyzed reaction can be described by one of the three possible mechanisms of heter-

ogenous catalysis [37]:

1. The Langmuir-Hinshelwood mechanism (L-H)

2. The Mars-van Krevelen mechanism (M-K)

3. The Eley-Rideal mechanism (E-R)

According to Langmuir-Hinshelwood (L-H), the reaction proceeds in two steps. In the first

step the reactants get adsorbed on the surface of the catalyst and in the second step the

adsorbed reactants react and give the final products. This whole process can be summarized

in the following steps.

1. Rþ
∗
! R

∗ Adsorption of dye on the surface of the catalyst

2. O2 þ
∗
! O

∗

2 Adsorption of oxygen on catalyst surface

3. R
∗

þO
∗

2 ! P
∗

s
Reaction at the surface of catalyst

4. P
∗

s
! Ps þ

∗ Desorption of the products

According to the Langmuir-Hinshelwood (L-H) theory, the rate of reaction can be given by

following equation.

Rate ¼ krθRθO2
(4)

where θR and θO2 represent the surface covered by dye, R and molecular oxygen, respectively.

Adsorption of dye, R and oxygen on the surface of the catalyst may take place according to
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• Langmuir adsorption isotherm

• Temkin adsorption isotherm

• Freundlich adsorption isotherm

Langmuir adsorption isotherm may be either competitive or non-competitive. If adsorption of

dye and oxygen takes place according to the competitive Langmuir adsorption isotherm, then

fraction of the surface covered by reactant R and oxygen can be represented by expressions 5

and 6, respectively.

θR ¼
KR R½ �

1þ KR R½ � þ KO2
O2½ �ng

(5)

θO2
¼

KO2
O2½ �ng

1þ KR R½ � þ KO2
O2½ �ng

(6)

KR and KO2 represent adsorption coefficient for dye R and oxygen, respectively. The value of n

can be taken as 1 or 0.5 for molecular or dissociative adsorption of oxygen, respectively.

Putting the values of θR and θO2 from Eqs. (5) and (6) in Eq. (4), we get Eq. (7).

Rate ¼ kr
KR R½ �KO2

O2½ �ng

1þ KR R½ � þ KO2
O2½ �ng

� �2
(7)

At constant flow of oxygen, the expression 7 transforms to.

Rate ¼
ab R½ �

cþ b R½ �ð Þ2
(8)

where a, b and c are kr KO2 [O2], KR and 1 + KO2 [O2], respectively.

If the adsorption of reactant R and oxygen at the catalyst surface is taking place according to

the non-competitive Langmuir adsorption isotherm, then fraction of the surface covered by

reactant R and oxygen may be represented by expression 9 and 10, respectively.

θR ¼
KR R½ �

1þ KR R½ �
(9)

θO2
¼

KO2
O2½ �ng

1þ KO2
O2½ �ng

(10)

Putting the values of θR and θO2 from Eqs. (9) and (10) in Eq. (4), we get.

Rate ¼ kr
KR R½ �KO2

O2½ �ng

1þ KR R½ �ð Þ 1þ KO2
O2½ �ð Þ

(11)
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At constant flow/pressure of oxygen, the expression 11 transforms to Eq. (12).

Rate ¼
ab R½ �

1þ b R½ �
(12)

Similarly, if adsorption of dye and oxygen at the surface of catalyst follow Temkin or

Freundlich isotherm, then the rate expression becomes Eqs. (13) and (14), respectively.

Rate ¼ k
�

r K1lnK2 R½ �ð Þ (13)

Rate ¼ k
�

rKR R½ �
1 n= (14)

Like Langmuir-Hinshelwood mechanism, Mars-van Krevelen mechanism also comprises of

two steps. In the first step, the lattice oxygen of the catalyst oxidizes the substrate molecule and

hence produces a partially reduced catalyst. In the second step, the reduced catalyst is

reoxidised by molecular oxygen. The rate equation for Mars-van Krevelen can be given by

expression 15.

Rate ¼
k1 R½ �k2 O2½ �ng

βk1 R½ � þ k2 O2½ �ng
(15)

k1, k2 and β is the rate constant for degradation of dye, R is the rate constant for reoxidation of

catalyst and stoichiometric coefficient of oxygen (0.5), respectively. At constant flow of oxygen,

expression 15 changes to expression 16.

Rate ¼
a R½ �

bþ c R½ �
(16)

According to the Eley-Rideal mechanism (E-R) mechanism, the gaseous reactant gets adsorbed

on the surface of the catalyst while the second reactant, dye, reacts with the adsorbed reactant

from the fluid phase. In the present case, oxygen is adsorbed at the surface while reactant R

remains in the fluid phase.

Rate expression for the Eley-Rideal mechanism (E-R) can be given by Eq. (17) as below:

Rate ¼ krθO2
R½ � (17)

In case of constant pressure of oxygen, the above equation can be transformed to Eq. (18) by

lumping all the constants together as given below.

Rate ¼ a R½ � (18)

All these equations can be applied to experimental data of heterogenous catalytic degradation

of dyes in the aqueous medium by linear and non-linear method of analysis. We studied the

degradation of rhodamine B and methylene blue dyes catalyzed by CoFe2O4 in aqueous
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medium [38]. Th data obtained was subjected to kinetic analysis according to above equations

using Curve Expert software. It was found that Eq. (12) was best applicable to the data

indicating that reactions were taking place according to the Langmuir-Hinshelwood mecha-

nism. The constants determined using Curve Expert are given in Table 1. In another study [39]

we employed nickel hydroxide as catalyst for degradation of black dye in aqueous medium.

The experimental data was analysed according to kinetics discussed above. It was found that

the reaction followed the Langmuir-Hinshelwood mechanism. The constants determined by

Curve Expert software are listed in Table 2. Similarly, the degradation of methylene blue dye

catalyzed by nickel hydroxide was also investigated [40]. The experimental data was analysed

using the Curve Expert software. The Langmuir-Hinshelwood mechanism was applicable

in this study as well. The rate constants and adsorption equilibrium constants are listed in

Table 3.

T (K) kr (/min) kx (L/mol)

RhB MB RhB MB

303 0.028 0.031 1.61 1.74

313 0.066 0.069 1.60 1.71

323 0.098 0.098 1.58 1.69

333 0.128 0.131 1.55 1.67

Table 1. Kinetics parameter determined by application of Langmuir model (Eq. 12) to time profile data of CoFe2O4

catalyzed degradation of rhodamine B and methylene blue dyes dyes using Curve Expert software.

T (K) kr (/min) kx (L/mol)

313 0.051 0.153

323 0.093 0.125

333 0.218 0.079

Table 2. Kinetics parameter determined by application of Langmuir model (Eq. 12) to time profile data of nickel

hydroxide catalyzed degradation of direct black dye using Curve Expert software.

T (K) kr (/min) kx (L/mol)

313 1.12 0.0112

323 1.55 0.0093

333 2.05 0.0084

Table 3. Kinetics parameter determined by application of Langmuir model (Eq. 12) to time profile data of nickel

hydroxide catalyzed degradation of methylene blue dye using Curve Expert software.
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5. Conclusion

Water pollution by textile industry is an emerging issue. Textile industry releases about 20% of

the total world production of dyes in wastewater effluents. Photo catalysis and catalytic wet

oxidation are best techniques for elimination of these dyes from aqueous system. In photo

catalysis, the dye molecules are degraded to inorganic non-toxic compounds by irradiation of

dye solution under visible or ultraviolet light in the presence of semiconductor metal-oxide

photo catalysts. In catalytic wet oxidation, various metal-based catalysts in supported or

unsupported form can be used as heterogeneous catalysts for degradation of dyes in the

presence of oxygen or hydrogen peroxide. These processes have several preferences like easy

separation of catalysts from the reaction mixture and recycling of the catalyst.
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