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Abstract

The circulatory system plays a vital role in the survival of an organism by supplying it 
with essential nutrients, signaling molecules and eliminating the waste or toxic products 
from the body. This flow is tightly regulated by various factors, procoagulants support 
the formation of hemostatic plugs to prevent the leakage or blood loss and anticoagulants 
prevent the formation of unwanted clots. Disruption or dysregulation of procoagulants 
and anticoagulants lead to clinical complexities. In this chapter defects in the coagulation 
system, hereditary, acquired coagulation disorders, their diagnosis and recent clinical 
modulators of the coagulation system are discussed.
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1. Introduction

Blood carries a set of zymogen serine proteases called procoagulants these serine proteases 

are activated upon injury and promote the formation of a clot [1]. The clot formation initi-

ates by two mechanisms [1–4]. One of the mechanisms is termed as tissue factor pathway or 

extrinsic pathway, and the other pathway is called as contact pathway or intrinsic pathway [2]. 

Extrinsic pathway or tissue factor pathway is initiated by the tissue factor (TF) released form 

the damaged cell [1–4]. TF proteolytically cleaves a zymogen factor VII (FVII) and activates it 

[1–4]. Activated factor VII (FVIIa) forms a complex with TF, forming a potent protease com-

plex which activates the downstream cascade by limited proteolysis. TF-FVIIa complex con-

verts the inactive factor IX (FIX) and factor X to activated factor IX (FIXa) and activated factor X 

(FXa). The activated FIXa binds to activated Factor VIIIa(FVIIIa) to form X-ase complex on the 
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phosphatidylserine-rich membrane surface, this complex converts FX to FXa. Intrinsic/ contact 

pathway is initiated by artificial surfaces in the plasma. Artificial surfaces induce conforma-

tional change in factor XII (FXII) and results in activation of small amount of FXII. Activated 

factor XII (FXIIa) activates high molecular weight kininogen (HK) and plasma prekallikrein 

(PK) and this acts as a positive feedback loop for FXII activation [1–4]. Further, FXIIa activates 

Factor XI (FXI) to FXIa, which intern activates FIX. Both extrinsic and intrinsic pathways col-

laborate with a common pathway that involves activated FXa. FXa binds to activated factor V 

(FVa), forming prothrombinase complex and Prothrombinase complex cleaves prothrombin 

to generate activated thrombin. Thrombin cleaves fibrinogen to fibrin, these fibrin monomers 
polymerizes to form insoluble fibrin polymer (Figure 1A).

Along with the clotting factors, platelets play a vital role in regulating the hemostasis by 
forming a cellular plug at the site of injury. The circulating platelets get immobilized at the 

sub endothelial surface of the site of injury by binding to the von Willebrand factor (VWF) 

[3]. Platelet receptor GPIb-IXV is essential for this process. Similarly, receptor GPVI helps 

to anchor the platelets at the site of injury with the help of collagen. Further these platelets 

get activated and expose phosphatidylserine, which provides a lipid surface for the clotting 
factors [3]. Among the clotting factors, fibrin helps in activating the platelets by cleaving the 
protease activated receptors (PARs) that include PAR1 and PAR4 (Figure 1B).

Hemostasis is tightly monitored by feedback mechanisms, where anticoagulants inhibit the 

protease function of coagulation favors by directly inhibiting them or their cofactors [1–4]. 

The natural anticoagulants include tissue factor pathway inhibitor (TFPI), Activated protein 

C (APC), Protein S (PS) and Protein Z (PZ). These anticoagulants help in regulating blood clot 

Figure 1. (A) Schematic representation of coagulation cascade. (B) Schematic representation of platelet plug formation. 

(C) TFPI pathway. (D) APC function. (E) PZI pathway. (F) Clot lysis.
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formation [5–7]. TFPI directly binds to FVIIa and Xa complex and inhibits their function and 

the TFPI function is accelerated in presence of PS. APC proteolytically cleaves FVIIIa and FVa 

[7]. PS was discovered as a cofactor for TFPI, APC and recent reports demonstrated that PS 

can directly bind and inhibit the functions of FVa, FIXa and FXa [5–7]. Protein Z-dependent 

protease inhibitor inhibits FXa and FXIa, in the presence of PZ and calcium [8] (Figure 1C-E).

Blood clots from the healthy system are removed by fibrinolytic system [9]. In the fibrinolysis 
process tissue specific plasminogen activators (tPA) or urokinase plasminogen activator acti-
vates plasminogen by proteolytically cleaving it into activated plasmin. Plasmin cleaves the 

insoluble fibrin polymers into soluble peptides [9] (Figure 1F).

2. Defects in hemostasis

Quantitative or qualitative defects in the coagulation factors lead to hemostatic defects such 

as hemophilia or thrombosis [10, 11]. Hemophilia is characterized by defects in clotting fac-

tors and it is characterized by spontaneous or periodic bleedings [11]. Whereas, thrombosis is 

caused by the high amount of procoagulants in the plasma, hyper activation of procoagulants 

or defects in anticoagulants [10]. Thrombosis is characterized by systemic clots which impair 

the normal hemostasis. Bleeding disorders are also classified hereditary and acquired disorders. 
Hereditary disorders are associated with gene mutations and inherited to the offspring [11]. The 

major hereditary disorders are hemophilia, rare bleeding disorders and thrombosis. Acquired 

disorders are caused by several factors such as infections, habits and environmental effects [12].

3. Hemophilia

Hemophilia is an inherited bleeding disorder, caused by the deficiency of procoagulants. 
Deficiency of FVIII is known as hemophilia A, deficiency of FIX is known as hemophilia B 
and deficiency of FXI is known as hemophilia C [13–17]. The hemophilia A and B are X chro-

mosome linked disorders and they are mainly observed in the male population [14, 15, 17]. 

Hemophilia A cases are observed in 1 in 5000 males whereas, hemophilia B cases are observed 

in 1 in 20,000 males (https://www.hemophilia.org/About-Us/Fast-Facts). Hemophilia is clas-

sified based on the functional antigen levels. Patients with <1% activity with spontaneous 
bleeding are termed as severe hemophilia, patients with 1–5% activity are called moderate 
hemophilia and individuals with >5%, <40% are termed as mild hemophilia [17].

3.1. Hemophilia a and factor VIII

Hemophilia A is majorly caused by deficiency in FVIII antigen levels or mutations in FVIII 
gene that effect FVIII functions [18, 19]. FVIII is encoded by the gene that localized on the long 

arm of X chromosome and the gene consists of 26 exons [18, 19]. A total of  2537 mutations are 

identified on FVIII gene [20]. FVIII is highly expressed in the liver [21, 22]. The mature FVIII 

protein consists of 2332 amino acids with 6 domains. These domains include A1, A2, B, A3, C1 

and C2 [23, 24]. In the blood FVIII is activated by thrombin or FXa [25, 26]. Thrombin cleaves 

FVIII at R372, R740 and R1689 and removes B domain [26]. Similarly, FXa cleaves FVIII at 
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K36, R336, R562, R740, R1689 and R1721 [27]. FXa mediated cleavage of FVIII at K36 and R336 

leads to inactivation of FVIIIa [27]. APC inactivates FVIII by proteolytically cleaving FVIIIa 

at R336 and R562 which leads to destabilization of A1 and A2 domain interaction [28, 29] 

(Figure 2). In 1960s, major treatment for hemophilia A is whole blood or plasma transfusion 

[30, 31]. This treatment has a drawback of viral transfusion along with the coagulation factors. 

Treatments of mild hemophilia A include vasopressin analogs to enhance the synthesis of 

FVIII, 1-Desamino-8d-arginine vasopressin (DDAVP) is a vasopressin analog clinically used 

to enhance the plasma levels of FVIII [32, 33]. Recombinant FVIIa and FVIII are also used to 

prevent bleeding events in the hemophilia patients [34].These clotting factors are also supple-

mented with FVIIa or factor FVII inhibitor bypassing agent (FEIBA) to enhance the function 

of FVIIa and FVIII, whereas FEIBA enhanced the risk of thrombosis [35, 36]. Recent studies 

elucidated that stabilized recombinant FVIII can be used as a therapeutic for hemophilia A, 

this includes more stable isoforms of FVIII such as B domain deleted FVIII (BDD FVIII) [37] 

(Table 1). The ongoing research is focusing on using BDD FVIII as a gene therapy by incorpo-

rating it into the viral vectors and delivering it into the patient [38].

3.2. Hemophilia B and its treatment

Hemophilia B is another bleeding disorder considered to be indistinguishable from hemo-

philia A whereas, recent evidences elucidated that hemophilia B patients have less severe 

bleeding phenotype lower bleeding frequency and better long term outcomes compared to 
hemophilia A [42]. Hemophilia B is caused due to FIX deficiency [43]. FIX is encoded by a 

gene present on X chromosome, FIX is a major component of intrinsic pathway of coagulation 

cascade and it is activated into FIXa by FXIa or FVIIa [44–46]. Activated FIX forms a X-ase 

complex with FVIIIa and phosphatidylserine [47]. Tenase complex converts X to Xa [47]. The 

bleeding tendency depends on FIX activity in the plasma [48]. FIX deficiencies are classified 
based on the plasma FIX activity and they are severe (<1% FIX activity), moderate (1–5%) and 

Figure 2. Schematic representation for FVIII biosynthesis and inactivation.
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mild (5–40%) [48]. Current therapies for hemophilia B include plasma derived FIX, recombi-

nant FIX, recombinant FIX fused with polyethylene glycol (PEG), recombinant FIX fused with 

Fc portion of immunoglobulin G, FIX fused with albumin mutant FIX [48]. The disadvantages 

of plasma derived FIX is that it has a very short half-life in the patient plasma and plasma 

derived FIX has chances of viral contamination. Recombinant FIX is produced in Chinese 

hamster ovary cells [48]. rFIX has an increased half-life compared to plasma derived FIX, it 

over came the problem of viral contamination, however rFIX showed 30% less activity com-

pared to plasma derived FIX, due to variations in the glycosylation. Conjugation of FIX with 

PEG is known as PEGylation. PEG serves as a shield for PEGylated FIX and protects it from 

proteolytic cleavage. PEGylated FIX’s half-life is five times in mice compared to the half-life 
of rFIX [48]. FC fused FIX has a half-life of 48 h. The other FIX fusion protein in clinical trial 

is FIX fused with albumin. Single amino acid mutation in the catalytic domain of FIX (R338L) 

increased its Tenase activity by 2 fold and thrombin generation activity by 6 fold, therefore by 

FIX R338L usage in gene therapy is under investigation [49].

3.3. Hemophilia C

Hemophilia C is caused by FXI deficiency where factor XI activity of 15–20 U/dL or lower. 
Surprisingly FXI deficiency does not show a severe bleeding phenotype [16].

4. Platelets in hemophilia

Platelets are key components of primary coagulation system [50]. TF released from the damaged 

endothelial cells activates the platelets [51].Activated platelets get adhere to the site of damage 

with help of vWF [52]. Upon activation platelets expose phosphatidylserine which gives the lipid 
surface to the coagulation cascade [51]. Recent studies elucidate that platelets can play a major role 

in hemophilia, as hemophilia patients with same FIX or FVIII antigen levels has different clotting 
time due to variations in the platelet mediated coagulation activity [53–55]. Platelets store FVIII in 

the alpha granules therefore, platelets are being used as therapeutic components for hemophilia 

treatment, majorly in gene therapy. In a recent study, hemophilic dogs were transfused with 

genetically modified platelets (which can over express FVIII gene). Bleeding events were stopped 
in the hemophilic dogs after transfusing them with genetically altered platelets [53].

FVIII-product Half-life in hours

Full length Plasma derived [31] 14.8–17.5

Plasma derived FVIII-vWF complex [39] 12.2–17.9

Recombinant Full length FVII [34] 14.6 ± 4.9

B-Domain Deleted FVIII [34] 14.5 ± 5.3

BDD-PEGylated [40] 14.69 ± 3.79

BDD-rFVIII-Fc [41] 19.7 ± 2.3

BDD-rFVIII EHL single chain [30] 14.2

Table 1. Development of FVIII therapy for hemophilia.
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5. Rare bleeding disorders

Rare inherited bleeding disorders (RBDs) include deficiencies of coagulation factors such as 
fibrinogen, factor II (FII), FV, combined deficiency of FV and FVII, FVIII, FX, FXI, FXIII and 
vitamin K dependent factors. RBDs are mostly autosomal recessive disorders varying from 

1 in 500,000 to 1 in 2–3 million [56]. These disorders are diagnosed by clotting assays such 
as thrombin time, prothrombin time and activated partial thromboplastin time followed by 

molecular diagnosis [56].

5.1. Fibrinogen deficiency

Fibrinogen is a 340 kDa hexamer assembled by the combination of 3 homologous polypep-

tide chains (Aα, Bβ and γ) [57]. Fibrinogen plays an important role in clot formation where 

thrombin converts fibrinogen into soluble fibrin which further forms an insoluble polymer 
mesh, fibrin also plays an active role in platelet aggregation by binding to glycoprotein IIb/
IIIa on the activated platelets [57]. The genes encoding for Bβ (FGB), Aα (FGA) and γ (FGG) 
are located on chromosome 4 from centromere to telomere [58]. Fibrinogen is primarily syn-

thesized in liver [59]. Fibrin deficiency is identified as two phenotypes termed as afibrino-

genemia/hypofibrinogenemia and it is characterized by low plasma and platelet fibrinogen 
antigens whereas, dys/hypodysfibrinogenemia is characterized by the deficiency of func-

tional fibrinogen levels [60, 61]. Afibrinogenemia is detected by prolonged prothrombin 
time, thrombin time, activated partial thromboplastin time, impaired platelet adhesion and 

impaired platelet aggregation induced by ADP [60, 62]. Clinical manifestations of fibrinogen 
include umbilical stump bleeding, possible gastrointestinal bleeding, recurrent episodes of 

intracranial hemorrhage [60, 63]. Treatment for fibrinogen deficiency include replacement 
therapy by cryoprecipitate [63].

5.2. Prothrombin deficiency

Prothrombin is a vitamin K dependent glycoprotein synthesized in the liver [64]. Prothrombin 

is encoded by 21 kb gene present on chromosome 11 [65, 66]. Prothrombin deficiency is 
observed in 1 in 2 million [65]. Prothrombin deficiency is classified into two types, hypopro-

thrombinemia caused by low prothrombin production and dysprothrombinemia is caused 

by deficiency of functional prothrombin [65]. Hypoprothrombinemia with less than 5% pro-

thrombin antigen is characterized by severe bleeding whereas dysprothrombinemia causes 

variable bleeding tendencies [65]. Treatments for prothrombin deficiency include prothrom-

bin complex concentrate and fresh frozen plasma [67].

5.3. Factor V deficiency

FV is a single polypeptide encoded by chromosome 1 and primarily synthesized in the liver 

and some evidences show that FV is also produced by megakaryocytes [68–70]. The activated 

FV acts as a cofactor for FXa, to form a prothrombinase complex and it also serves as a target 

for APC-PS complex in inhibiting the coagulation cascade [71]. Patients with FV deficiency 
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surprisingly do not show bleeding phenotype. Recent evidences elucidated that platelets endo-

cytose FV from plasma, modify them intracellularly and release it at the site of injury. This 

platelet released FV is resistant for inhibition. If symptomatic patients usually have umbilical 

stump bleeding, skin and mucosal tract hemorrhage [72].

5.4. FVII deficiency

FVII is a 50 Kda single chain polypeptide encoded by F7 gene located on chromosome 13 

and FVII levels are influenced by age, sex and health condition such as blood cholesterol 
and triglyceride levels [73, 74]. FVII deficiency is observed in 1 in 500,000, with variable 
phenotypes [74]. Some patients do not show bleeding phenotype despite very low FVII lev-

els, whereas others with similar FVII antigen levels show severe bleeding phenotype [74]. 

The bleeding phenotypes of FVII deficiency include central nervous system hemorrhage, 
epistatic and menorrhagia [74]. Frozen fresh plasma, prothrombin complex concentrates, 

plasma derived FVII concentrate, recombinant FVIIa are typically used to treat FVII defi-

ciency [75, 76].

5.5. FX deficiency

Factor X is a single chain polypeptide with a molecular weight of 58,900 kDa and circulates in 

plasma with a concentration of 10 μg/ml [77]. FX is encoded by FX gene present on chromo-

some 13 [78]. FX deficiency is characterized by central nervous system and gastro intestinal 
bleeding [79, 80]. FX deficiency is one of the very rare disorders observed in 1 in 500,000–
1000,000 [79, 80]. Treatments of FX deficiency include highly purified plasma FX, recombinant 
FX, fresh frozen plasma and prothrombin complex concentrates [79, 80].

5.6. FXI deficiency

FXI is a 80 kDa protein with a plasma concentration of 30 nM, encoded by a 23 kb gene pres-

ent on chromosome 4 [81–83]. Mutations in the coding region are the major causes for FXI 

deficiency and the prevalence of FXI deficiency is 1 in 1000,000 [83, 84]. The common symp-

toms of FXI deficiency are oral and post-operative bleeding. FXI deficient women are prone 
to menorrhagia. Fresh frozen plasma, FXI concentrate and antifibrinolytic agents are used to 
treat FXI deficiency [84].

5.7. FXIII deficiency

The functional FXIII consist 2 catalytic A subunits (FXIII-A) and 2 carrier subunits (FXIIIB) 

[85]. FXIII-B is encoded by chromosome 6 and synthesized by the cells derived from bone 

marrow, whereas FXIIIA is encoded by chromosome 1 and secreted from liver [85, 86]. FXIII 

crosslinks α and γ subunits of fibrin thereby increases the strength of fibrin clot and increases 
fibrinolytic resistance [86]. Prevalence of FXIII deficiency is 1 in 2 million, patients with 
FXIII-A have high tendency of bleeding [87]. 2–5% plasma FXIII is sufficient to prevent bleed-

ing, FXIII concentrates are usually used to treat FXIII deficiency and frozen fresh plasma and 
cryoprecipitate are also recommended [87].
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5.8. Vitamin K dependent coagulation factors deficiency (VKCFD)

Procoagulants such as FII, FVII, FIX and FX, as well as anticoagulants Protein C, S and Z contain 

a Glutamic acid rich domain [88, 89]. The Glutamate residues require γ-carboxylation to enable 
these proteins to bind to the phospholipid membrane in the presence of calcium and carry out 

their functions [90]. Hepatic γ-glutamyl carboxylase (GGCX) and its cofactor, reduced vitamin K 
(KH2) aids the carboxylation process and in this process vitamin K is converted into vitamin K 

epoxide [91, 92]. The vitamin K epoxide is recycled to reduced vitamin K by the vitamin K epox-

ide reductase (VKOR) enzyme complex [91, 92]. GGCX is encoded by the gene located on chro-

mosome 2 and VKORC1 is encoded by the gene present on chromosome 16 [93, 94]. Mutations 

in these gene cause loss of GGCX or VKOR complex function and lead to vitamin K dependent 

coagulation factor deficiency [95]. The clinical manifestations of VKCFD include intracranial 

hemorrhage or umbilical stump bleeding [95]. Viral inactivated frozen fresh plasma is the agent 

of choice for VKCFD patients, who require surgical procedures or have acute bleeding [95].

6. Thrombosis

Blood clotting occurs at the site of injury to prevent the leakage of the blood However in 

thrombosis, blood clots are formed in the blood vessel without any damage response and 

occlude the blood vessel [96]. Thrombosis is classified based on the location of the clot forma-

tion, it includes atrial thrombosis, venous thromboembolism (VTE) and pulmonary embo-

lism (PE) [97, 98]. Thrombosis causes high mortality in United States where, annually 900,000 
patients develop VTE and 300,000 people die due to PE [99–101]. Atrial emboli is found pre-

dominantly in surgical and intensive care patients due to preexisting conditions such as age, 

hypercoagulability, cardiac abnormalities and atherosclerosis [102]. Most often the clots are 

found in the veins due to low shear rates in veins (20–200/s) compared to arteries (300–800/s) 

[103]. Thrombosis found in veins is termed as venous thrombosis. The thrombus formation 

in the deep veins is termed as deep vein thrombosis. The risk factors for thrombosis are clas-

sified by Virchow and they referred as Virchow’s Triad [104]. The triad includes endothelial 

injury, stasis or turbulence of blood flow, and blood hypercoagulability. Endothelial injuries 
generally happen during surgery, the turbulence of blood flow occurs due to cardiovascular 
disorders or hypertension [104]. Hypercoagulability is caused by the environment, unhealthy 

habits and age. The environmental risk factors include exposure to high altitudes and hypoxic 

environment [103]. The external risk factors for the thrombosis include smoking, chronic alco-

holism and consumption of oral contraceptive pills [103]. Similarly, health conditions like can-

cer, obesity and aging promote the risk of thrombosis [103]. The molecular mechanisms under 

these risk factors are yet to be understood. Thrombosis is also caused by inherited factors such 

as mutations in the genes that encode for coagulation factors or anticoagulants.

6.1. Procoagulants - thrombosis

Serine proteases of coagulation cascade play a vital role in the progression of clot formation 

[3]. Mutations in the proteases convert them into hyper active forms and some of the mutations 
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prevent their degradation and enhance thrombin generation. High levels of FVIII, FIX, FVII 

and TF are known to cause the thrombosis [105].

6.1.1. FVIII and thrombosis

FVIII is secreted from the hepatocytes, the mature FVIII zymogen circulates in the blood stream 

at a concentration of 0.1–0.2 μg/ml (<100 IU/dl) [105]. In blood FVIII is bound to vWF pro-

duced by the endothelial cells, with a dissociation constant of 0.2–0.4 nM [106]. The complex of 

vWF-FVIII stabilizes FVIII by preventing the cleavage of inactive FVIII by FXa and APC and it 

also blocks the procoagulant of FVIII by allowing the selective activation of FVIII by thrombin 

(Figure 2). vWF anchors and multimerizes at the site of tissue damage and helps in the forma-

tion of platelet plugs [106]. These vWF multimers are cleaved by ADAMTS13 (ADAMTS13 

is a Disintegrin like and Metalloprotease with ThromboSpodin repeats family metallopro-

tease) [107]. Mutations in vWF or ADAMTS13 increases plasma FVIII levels. Increase in the 

plasma FVIII above 150 IU/dl increases the risk of thrombosis by 4.8 fold [105, 108]. Further 

each increase in FVIII level with 10 IU/dl is associated with a 10% increase in the risk of a first 
event of thrombosis.

6.1.2. FIX and thrombosis

FIX is a key component of intrinsic/contact pathway. Levels of FIX are important to regulate 

the hemostasis [3]. Lower levels of FIX antigen leads to hemophilia and recently two studies 

showed that higher levels of FIX lead to thrombosis [109]. Saenko et al. demonstrated that 

risk of thrombosis increases by 2.3–2.8 fold in the subjects with plasma FIX activity >150 IU/dl 
and van HylckamaVlieg et al. demonstrated that risk of thrombosis increases by 2.8 fold with 

plasma FIX levels >129 U/dl [110, 111]. Age, increase in blood lipids and use of oral contracep-

tive pills are some of the reasons for elevated plasma FIX levels [110, 111]. Some of the muta-

tions in FIX gene lead to increase in FIX activity thereby, increase in the risk of thrombosis. FIX 

Padua variant is a one among the FIX mutants to show enhanced risk of thrombosis. FIX Padua 

is a single amino acid substitution variant where arginine 388 is mutated to leucine [112].

6.1.3. Tissue factor and thrombosis

Tissue factor is also known as Factor III (FIII), it is a 47 kDa glycoprotein highly expressed in the 

pericytes and adventitial fibroblasts, low levels of TF expression are observed in CD14-positive 
monocytes [113]. TF is expressed in the parenchyma of highly vascularized organs such as 

placenta, brain, heart, kidneys, and lungs [114]. Circulatory TF is found in macrovesicles pro-

duced by apoptotic bodies, smooth muscle cells, monocytes and cancer cells. TF expression is 

enhanced by pathological conditions such as bacterial infections and cancer [115, 116].

6.1.4. Other procoagulants and thrombosis

FXI levels more than 110 IU/dl increases the chances of thrombosis by 2 fold and inhibition of FXI 
in thrombosis models rescues the DVT. Prothrombin levels more than 115 IU/dl increases the risk 
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of thrombosis by 2.1 fold. Plasma thrombin levels are reported to increase due to polymorphic 

variations. FV leiden is one the well-known FV variant that causes high risk of thrombosis. Koster 

et al. reported increase in fibrinogen levels increases the risk of thrombosis by 2.8 fold [105].

6.2. Anticoagulants - thrombosis

Activated Protein C, Protein S, Protein Z and Tissue factor pathway inhibitor are natural anti-

coagulants that help in preventing the accidental or pathological thrombi formation. Defects 

in these clotting factors lead to thrombosis [10].

6.2.1. Protein C (PC)

PC is a vitamin K dependent serine protease majorly synthesized by liver and its expression 

has also been identified in epididymis, kidney, lung, brain and male reproductive organ. PC 
is a single polypeptide of 461 amino acids, consist one Gla domain, a helical aromatic segment, 

two epidermal growth factor (EGF)-like domains, an activation peptide and a trypsin-like ser-

ine protease domain [117]. In the presence of Calcium, PC binds to the endothelial membrane 

through its Gla domain and interacts with its receptor (endothelial PC receptor: EPCR) [117]. 

The complex of PC-EPCR facilitates the activation of PC by thrombin, thrombomodulin complex 

where, thrombin cleaves PC at Arg169-Leu170. This cleavage removes activation peptide from 

PC. Activated Protein C (APC) cleaves FV and FVIII, and inactivates them. Zymogen PC circu-

lates in the blood at a concentration of 63 nM with a half-life of 2–3 hours whereas, plasma APC 

concentration is 40 pM with a half-life of 20 min. APC function is increased in presence of Protein 

S (PS) as PS acts as a cofactor for APC. Reduction of plasma APC antigen levels or loss of APC 

function is one of the causes for thrombosis. Causes for PC deficiency include congenital/ heredi-
tary deficiencies due to mutations in PC gene. Till date 380 mutations are reported in PC gene 
(http://www.hgmd.cf.ac.uk/ac/gene.php?gene=PROC). Hereditary PC deficiency is treated by a 
protein C zymogen concentrate derived from human plasma known as Protexel® (Raosevich 

et al. 2003). Low plasma PC antigen levels (<10 IU/dl) are also caused by acquired PC deficiency. 
Acquired PC deficiency is caused by consumption of vitamin K antagonist or severe hepatic 
dysfunction. A recombinant analogue to the physiologic human activated PC (Drotrecogin alpha 

activated/ Xigris®) is used to treat the acquired PC deficiency. Thrombosis is also observed due 
to loss of APC function (APC resistance). APC resistance is observed due to mutations in FV (FV 

leiden) or APC resistance is acquired by smoking, chronic alcoholism and obesity [118].

6.2.2. TFPI

TFPI is a single chain polypeptide with specialized domains called Kuntz domains. It is pri-

marily synthesized in endothelial cells, liver and macrophages [7]. TFPI is mainly bound to 

the endothelial cell surface through glycosaminoglycans. TFPI circulates in the plasma at a 

concentration of 1.0–2.5 nM with a half-life of 60–120 min. Major portion of plasma TFPI is 

bound to LDL and levels of TFPI are regulated by thyroid hormones. TFPI is cleared from the 

system by liver and kidney. TFPI directly binds to FVIIa, FXa complex and inhibits their func-

tion. Inhibitory function of TFPI is enhanced in presence of Protein S [7]. Low levels of TFPI 

increases the risk of thrombosis by 2 fold [119].
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6.2.3. Protein S

PS is a vitamin K dependent single chain polypeptide consist of one Gla domain, four EGF 

like domains and two Laminin G domains. PS is primarily synthesized in liver and it circu-

lates in the plasma at a concentration of 450 nM. 60% of circulatory PS is bound to compli-
ment component binding protein 4b (C4BP) and only 40% of the circulatory PS is free [6, 120]. 

PS acts as a cofactor for APC and TFPI in inhibiting FVIIIa, FVa, and TF-FVIIa-FXa complex 

[121, 122]. PS was reported to directly interact with procoagulants such as FV, FIXa and FX 

and inhibit their function [121, 122]. PS plays a key role in regulating inflammation and clear-

ing the apoptotic bodies from the system. PS deficiency enhances the risk of thrombosis and 
PS deficiency is classified as hereditary PS deficiency and acquired PS deficiency. Hereditary 
PS is caused by mutations in the PS gene and till date ~200 mutations are reported in PS gene. 

Acquired PS deficiency is caused by several factors such as, usage of oral contraceptive pills, 
pregnancy, consumption of vitamin K antagonists and pathogen infections.

6.2.4. Protein Z and protein Z dependent protease inhibitor

Protein Z is a 62 kDa vitamin K dependent plasma protein that acts as a cofactor for 72 kDa 

serpin family protease inhibitor – Protein Z Dependent Protease Inhibitor (ZPI). ZPI-PZ com-

plex rapidly inhibits FXa and FXIa [8].

6.2.5. Anticoagulants in the treatment for thrombosis

Thrombosis is treated by selectively inhibiting the major procoagulant proteins. Major drug 

targets for the treatment of thrombosis include vitamin K agonists, FXa, FIXa, Thrombin and 

platelet inhibitors. Current oral anticoagulants approved by FDA are rivaroxaban, Apixaban, 

dabigatran and endoxaban. Revaroxaban and Apixaban inhibit FXa, whereas dabigatran and 

endoxaban inhibit thrombin. Several other procoagulant inhibitors such as RNA aptamers are 

under investigation [123].

7. Acquired coagulation disorders

An individual can acquire coagulation disorders due to several reasons. Infections such as 

streptococci cause thrombosis by inactivating Protein S [124]. Chronic smoking and chronic 

alcoholism effect coagulation system by altering the liver functions. Environmental factors 
like hypoxia, drugs like aspirin, oral contraceptive pills, dietary problems like vitamin K defi-

ciency affect the blood coagulation [12, 56–61].

7.1. Disseminated intravascular coagulation (DIC)

DIC is characterized by activation of clotting system within the vasculature which blocks the 
micro vessels and can cause further organ dysfunction [125]. In contrast, it can also accelerate 

fibrinolysis and cause severe bleeding. The international Society of Hematology (ISTH) has 
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defined DIC as “an acquired syndrome characterized by the intravascular activation of coagulation 

with loss of localization arising from different causes. It can originate from and cause damage to micro-

vasculature, which if severe, can produce organ dysfunction” [125–127]. DIC occurs in all ages, races 

and all genders. DIC is classified as acute DIC, developed due to sudden exposure of pro-

coagulants [125–127]. In acute DIC compensatory hemostatic mechanisms are quickly over-

whelmed and leads to hemorrhage development. Chronic DIC is develops due to constant or 

intermittent exposure of small amounts of tissue factor (TF) [125–127]. DIC is acquired due to 

several reasons which include external agents such as infections, snake bite, trauma, severe 

transfusion reactions and environmental changes that cause hemocytopenia [125–127]. Disease 

conditions leading to DIC include malignancy, organ disfunctions such as hepatic failure and 

pancreatitis, vascular abnormalities. The phenotypes of DIC include non-symptomatic, bleed-

ing, massive bleeding and organ failure type. If there is no observed phenotype in the patients, 

whereas the abnormalities were observed in clinical laboratory only, the diagnosis is known 

as Non-symptomatic DIC [125–127]. In the bleeding type is more predominantly observed 

phenotype in DIC, the primary symptom is bleeding due to hyperfibrinolysis [125–127]. This 

phenotype is observed in patients with leukemia, aortic aneurysm and obstetric diseases. 

Organ failure phenotype is observed in the patients with hypercoagulation, this phenotype is 

observed in patients with infections. Massive bleeding is observed when the fibrinolysis and 
hypercoagulation are remarkable. Massive bleeding often leads to death [125–127].

DIC is diagnosed by global tests such as platelet count, prothrombin time (PT), aPTT and 

the amount of fibrinogen, fibrin and fibrin degradation products. Other diagnostic markers 
include antithrombin, Protein C, Thrombin-Antithrombin (TAT) complex, VWF propep-

tide and plasminogen activator inhibitor-1 (PAI-1) (Table 2). Treatment of DIC depends 

on the type of phenotype (Table 2) [128]. Heparin treatment is recommended for the treat-

ment of non-symptomatic type whereas, antifibrinolytic treatment is not recommended. 
The recommended treatment for the organ failure type DIC is natural protease inhibitor 

whereas, antifibrinolytic treatment is not recommended [128]. Recommended treatments 

for the bleeding phenotype DIC include blood transfusion, synthetic protease inhibitors 

and a fibrinolytic treatment, the non-recommended treatments include heparin and anti-Xa 
[128] (Figure 3).

7.2. Vitamin K deficiency and warfarin therapy

Vitamin K is an essential cofactor needed for carboxylation of glutamate residues of Gla 

domain containing proteins [95]. Dietary deficiency of vitamin K leads to acquired bleed-

ing disorders. Vitamin K oral supplementation is recommended to treat the vitamin K defi-

ciency [95]. Vitamin K deficiency is diagnosed by prolonged prothrombin time, detection of 
non-carboxylated proteins and measuring the plasma vitamin K by high performance liquid 

chromatography [129].

Warfarin is a coumarin-based anticoagulant and it is used as an oral anticoagulant. It inhibits 

vitamin K epoxide reductase (VKOR) thereby prevents vitamin K recycling which in turn 

limits the availability of vitamin K. Limitation in Vitamin K prevents carboxylation of glu-

tamate residues of Gla domain containing proteins. Preventing Gla domain carboxylation of 
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clotting factors II, VII, IX and X prevents the risk of thrombosis, thereby Warfarin is used as 
an efficient oral anticoagulant/ blood thinner. Over dosage of Warfarin is lethal as it can cause 
severe bleeding. 2% of the warfarin consumers are prone to the risk of major hemorrhage 
[130]. Vitamin K is administered as an antidote for warfarin.

7.3. Acquired disorders of platelet function

Platelet activation and aggregation is essential for clot formation and fibrinolysis [131]. 

Decrease in platelet number or inhibition of platelet activation impairs blood clotting. 
Infections such as dengue virus, chickenpox, rubella and bacteria effect the circulating plate-

let number in the blood [132]. Antiplatelet drugs like aspirin impairs platelet aggregation 

therefore over dosage of aspirin can cause hemorrhage [133]. Acquired platelet disorders are 

analyzed by platelet count and their aggregation properties.

Table 2. DIC phenotypes, diagnosis and treatment.

Figure 3. Schematic representation of DIC and its phenotypes.
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7.4. Liver disorders

Liver is the major source of coagulation factors. Chronic alcoholism, smoking and high fat 

consumption affect the function of liver and there by impact the synthesis of coagulation fac-

tors [134]. Blood transfusion is recommended for treating the coagulation defects caused by 

liver disorders.

8. Diagnosis of coagulation disorders

Coagulation defects are measured by the general assays such as aPTT and PT assays, direct 

measurement of antigen levels and specific coagulation factor activity assays. Some of the 
commonly used assays were discussed here.

8.1. Prothrombin time assay (PT assay)

PT assay is used to measure the functional integrity of extrinsic pathway. Clotting is initiated 
by supplementing tissue factor and calcium chloride to the platelet poor plasma. Elongation 

of PT indicates the increase in bleeding disorders, similarly shortening of PT indicates the 

enhanced chances of thrombosis [135].

8.2. Activated prothrombin time assay (aPTT assay)

aPTT assay is used to measure the integrity of intrinsic pathway. In this method the clotting is 
initiated by supplementing Kontact reagent and calcium chloride to the platelet poor plasma. 

Similar to PT assay, prolongation of aPTT indicates the risk of bleeding disorders and short-

ening of the aPTT indicates risk of thrombosis [136].

8.3. Clot waveform analysis (CWA)

CWA is a modified form of aPTT assay, where the light absorbance of the clot measured from 

the clot initiation to the lysis of the clot and the absorbance is plotted with respect to time 

using first and second derivates. This assay is more sensitive to measure the changes in FXII, 
X, IX, VII, V and II levels in the plasma [137, 138].

8.4. Coagulation markers

The coagulation activation and fibrinolysis markers are measured to determine the defects 
in the coagulation system. One of the diagnostic method to estimate the risk of thrombosis 

is measuring the D-Dimer antigen levels in the plasma. D-Dimers are the degradation prod-

ucts of cross linked fibrinogen generated during fibrinolysis, increase in the plasma D-Dimer 
antigen levels directly corresponds to an increase in the risk of thrombosis [139]. Prothrombin 

fragment 1 + 2 (F1 + 2) are the cleavage products generated from prothrombin and F1 + 2 lev-

els are measured to diagnose the risk of thrombosis, sepsis and DIC [140]. Free thrombin that 

moves away from the site of clot formation forms a complex with antithrombin III and the 
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complex is known as TAT complex. TAT complex is used to measure the risk of thrombosis 

in patients with multiple trauma, liver dysfunction and septicemia [141, 142]. Coagulation 

factors like FXIII, Protein S and Antiphospholipid antibodies are also quantified by immune 
assays to measure the alterations in coagulation system [141].

9. Conclusions

Coagulation is a complicated biological phenomenon which maintains the hemostasis. 

Abnormalities in the genes that regulate the coagulation factors cause hereditary coagulation 

defects such as hemophilia and mutations in genes that encode anticoagulants such as Protein 

S, Protein Z cause thrombosis. Disruption in the anticoagulant and coagulation factors in the 

healthy individual causes acquired bleeding disorders. Acquired bleeding disorders include a 

bleeding disorder or a thrombotic disorder. These disorders can be diagnosed by current meth-

ods and can be treated with known methods. There is a high demand for efficient diagnostic 

and treatment methods for the abnormalities in the coagulation disorders.
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