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Abstract

Xenobiotics in the environment include a wide variety of compounds, e.g. pesticides,
drugs, textile dyes, personal care products, stabilisers, and many others. These com-
pounds enter natural waters by rain washing of treated areas, via leaching through soil
from places of application and via waste waters of manufacturing facilities or municipal
waste waters (excretion of unmetabolised drugs, disposal of unused drugs). In natural
waters, physical, chemical, and biological processes contribute to the decrease of xenobi-
otics concentrations. For substances resistant to biological degradation processes and the
chemical reactions such as hydrolysis, photoinitiated processes may represent important
degradation pathways. Photochemical processes can be categorised in connection with the
environmental fate of xenobiotics into two fundamental groups: those that may occur in
natural waters and those that have been tested for decontamination of waste waters. The
first group is focused mainly on photosensitization and homogeneous photocatalysis. The
second class comprises advanced oxidation processes (AOPs) of which especially hetero-
geneous photocatalysis on semiconductors is the most investigated technique. The chapter
covers all these processes and brings examples of their applications.

Keywords: natural waters, xenobiotics, emerging pollutants, photochemical degradation,
advanced oxidation processes

1. Introduction

While most water assessments emphasise water quantity, water quality is also critical to

satisfying basic human and environmental needs. The quality of the world’s water is under

increasing threat as a result of population growth, expanding industrial and agricultural

activities, and climate change. Poor water quality threatens human and ecosystem health,

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



increases water treatment costs, and reduces the availability of safe water for drinking and

other uses [1]. It also limits economic productivity and development opportunities. Indeed, the

United Nations find that “water quality is a global concern as risks of degradation translate

directly into social and economic impacts” [2].

Human society relies on rivers for many functions and services including drinking water,

irrigation, navigation, transport, recreation, and waste disposal. It has been estimated that

despite accounting for just 0.4% of the Earth’s surface area and 0.006% of the Earth’s freshwater,

rivers contain 6% of all described species and provide 5.1% of global ecosystem services [3, 4].

Water quality concerns are widespread, though the true extent of the problem remains

undisclosed. In developing countries, an estimated 90% of sewage and 70% of industrial waste

are discharged into waterways entirely untreated [5].

In recent times, anthropogenic activities, namely the production and consumption of chemi-

cally manufactured products, have been linked to growing environmental pollution and

resulting health challenges. Currently, the pollution of the global water cycle with persistent

organic contaminants appears to be one of the most important challenges of the twenty-first

century. The majority of these organic substances are only partially removed by conventional

wastewater treatment plants; hence they enter the environment and spread across different

ecological compartments.

Most of the persistent contaminants are unregulated or in the process of regulation, yet they

possess possible toxic effects in long-term exposure or potent endocrine disrupting properties,

which lie in their interference with the hormonal function of living organisms including

humans [6, 7].

Therefore, the studies of many scientists are focused on getting information on the environ-

mental occurrence of the compounds belonging to this vast family of species. Other studies

investigate the environmental fate of these compounds as well as the feasibility of their

degradation in wastewaters. Among these studies, those concentrating on the photochemical

processes and techniques have recently acquired a particular attention.

2. Organic micropollutants in the environment

Chemicals of emerging concern have no clearly stated definition; therefore, no comprehensive

list of them exists. Kümmerer [8] defined emerging micropollutants as unregulated com-

pounds or those with limited regulation which are present in the environment at low range

(μg/l and below), irrespective of their chemical structure, and which thus require monitoring.

Marcoux et al. [9] summarised emerging micropollutants as newly detected substances in the

environment or those already identified as risky and the use of which in manufactured items is

prohibited, or substances already known but the recent use of which in products may cause

problems during their future treatment as waste. According to the US Geological Society [10],

emerging contaminants are any synthetic or naturally occurring chemical or any microorgan-

ism or metabolite that is not commonly monitored in the environment but has the potential to
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Family/use Emerging contaminant Prescription 2012 (kg) Surface waters (ng/l)

Antibacterial Amoxicillin 158,231 2.5–245

Erythromycin 41,057 0.5–159

Metronidazole 12,300 1.5–12

Ofloxacin 219 —

Oxytetracycline 17,143 —

Trimethoprim 10,998 1.5–108

Non-steroid anti-inflammatory drug Paracetamol (acetaminophen) ˃2,000,000 1.5–1388

Ibuprofen 108,435 1–2370

Naproxen 126,258 1–59

Ketoprofen 243 1–4

Lipid regulator Simvastatin 49,198 <0.6

Bezafibrate 7966 10–60

Beta blocker Propranolol 9076 0.5–107

Atenolol 20,725 1–487

Metoprolol 2311 0.5–10

Calcium channel blocker Diltiazem 21,922 1–17

Hypertension Valsartan 6484 1–55

Antidepressant Venlafaxine 16,211 1.1–35

Amitriptyline 10,171 <0.6–30

Fluoxetine 5319 5.8–14

Dosulepin 3270 0.5–25

Nortriptyline 439 0.8–6.8

Antiepileptic Gabapentin 104,110 0.6–1879

Hypnotic Temazepam 883 3.2–34

Diazepam 335 0.6–0.9

Oxazepam 85 2.4–11

Sunscreen agent 1-benzophenone 0.3–9

2-benzophenone 0.5–18

3-benzophenone 15–36

4-benzophenone 3–227

Preservative Methylparaben 0.3–68

Ethylparaben 1–13

Propylparaben 0.2–7

Butylparaben 0.3–6

Table 1. Examples of emerging contaminant occurrence for wastewaters and surface waters in the United Kingdom—

based on the review by Petrie et al. [12].

Photochemical Degradation of Organic Xenobiotics in Natural Waters
http://dx.doi.org/10.5772/intechopen.74756

69



enter the environment and cause known or suspected adverse ecological and/or human health

effects.

An overview of micropollutants, their sources and effects, and their occurrence in different

types of water including analytical detection techniques and concentration ranges is provided

by an outstanding review by Tijany et al. [11]. Another comprehensive review by Petrie et al.

[12] presents information about contaminants occurrence in wastewaters and surface waters in

the United Kingdom, spatial distribution and seasonality, possibilities of microbial transfor-

mation, and possible ecotoxicological effects, together with some recommendations for the

environmental monitoring of these substances. As can be seen from the lists of the substances

covered in the above-mentioned studies as emerging xenobiotic compounds, categories such

as pharmaceuticals (antibiotics, antidiabetics, antiepileptics, anti-inflammatories, analgetics,

antidepressants) and personal care products (disinfectants, preservatives) are the most abun-

dant representatives. Selected substances from the study of Petrie et al. [12] which represent

the highest load on the environment are presented in Table 1. According to recent studies,

more the 200 different pharmaceuticals alone have been reported in river waters globally to

date, with concentrations mainly in the ng/l to μg/l range in surface waters [13–17], but in some

cases, concentrations of even several orders of magnitude higher have been reported. Effluent

concentrations from pharmaceutical formulation facilities in the USA (New York) reached

1.7 mg/l for the analgesic oxacodone and 3.8 mg/l for the muscle relaxant metaxalone [18]. Li

et al. [19] found very high concentrations of tetracycline derivatives up to 800 and 2 mg/l in the

effluent and receiving waters, respectively, from a sewage treatment plant serving an antibiotic

manufacturing facility in China.

Besides these emerging contaminants, there are other organic pollutants, e.g. pesticides, chiefly

herbicides, the presence of which in the aquatic environment has been known for a long time

[20–23].

Most of the xenobiotics detected in natural waters are persistent compounds that are

recalcitrant to microbial decay and resist chemical degradation through hydrolysis or other

chemical reactions. Many of them contain aromatic rings, heteroatoms, and functional

groups that can either absorb solar radiation or react with photogenerated transient species

in natural waters (e.g. reactive oxygen species and/or photoexcited natural organic matter).

Some of these compounds carry functional groups and structures such as phenol, carboxyl,

nitro, and naphthyloxy that have been found to undergo photodegradation [24]; many of

the pesticide compounds are chlorine derivatives, which predispose them to dechlorination

and hydroxyderivative formation [25].

3. Photoinitiated reactions related to the organic xenobiotics degradation

Each reaction started by absorption of radiation may be classified as a photochemical or

photoinitiated reaction. According to the mechanism of the photoinitiated reaction related to

the degradation of xenobiotics, photolytic, photosensitized, and photocatalytic reactions can

be distinguished.
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3.1. Photolytic reactions

A photolytic reaction is usually understood as a reaction in which the absorbed quantum of

radiation has enough energy to cause the breaking of a covalent bond in the substrate com-

pound. Usually, highly energetic UV radiation (254 nm) is necessary for this purpose. The

reaction includes only one reactant, the molecule that undergoes photolysis; therefore, the

reaction follows first-order kinetics.

3.2. Photosensitised reactions

A photosensitised reaction needs a sensitizer molecule. This is a molecule that can absorb

radiation and transfer the absorbed excitation energy onto another molecule. The energy can

be transferred either onto an organic molecule, substrate (xenobiotic compound), or onto an

oxygen molecule, which results in the formation of singlet oxygen. The possible reactions are

illustrated in Eqs. (1)–(5).

1Sensþ hv !
1Sens∗ (1)

1Sens∗ þ 1Substrate !
1Substrate∗ þ 1Sens ! Productþ 1Sens (2)

1Sens∗ ! through ISC !
3Sens∗ (3)

3Sens∗ þ 3O2 !
1O2 (4)

1O2 þ
1Substrate ! Oxidised product (5)

Eq. (1) represents excitation of the sensitizer from the ground state (which is always a singlet

state, i.e. all electrons in the molecule are paired) to the first excited singlet state. Eq. (2)

represents energy transfer onto the substrate and its subsequent reaction into a product.

Eq. (3) shows the possible conversion of the sensitizer from the first excited singlet state into

the first triplet state (where two electrons are unpaired) through so-called intersystem crossing

(ISC). The sensitizer in the triplet state is able to react with molecular oxygen dissolved in the

reaction mixture (Eq. (4)) because the ground state of molecular oxygen with its two unpaired

electrons is a triplet state. The reaction provides an excited form of oxygen, singlet oxygen,

which is a powerful oxidative species; singlet oxygen then can react with organic substrate

molecules and oxidise them (Eq. (5)).

Humic substances are considered to be the most common naturally occurring sensitisers.

Humic substances, comprising two major classes, humic acids and fulvic acids, are organic

constituents of not only soil humus and peat but also streams, dystrophic lakes, and ocean

water. They are produced by the biodegradation of dead organic matter as products of micro-

bial metabolism although they are not synthesised as a life-sustaining carbon structures or

compounds serving as energy storage. A typical humic substance is not a single, well-defined

molecule, but a mixture of many molecules which typically include aromatic nuclei with

carboxylic and phenolic groups as demonstrated in the structure proposed by Stevenson [26],
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which is illustrated in Figure 1. Their molecular weight ranges from a few hundred to several

million of daltons [27].

The distinction between humic and fulvic acid is based on their solubility: humic acids are

soluble in water at neutral and alkaline pH values and insoluble at acid pH, while fulvic acid is

soluble in water across the full range of pH. Fulvic acids have usually smaller molecules and

less extent of aromaticity, which results in less content of phenolic groups and more hydroxylic

groups in side chains.

These functional groups contribute most to the surface charge and reactivity of humic sub-

stances. Humic and fulvic acids behave as mixtures of dibasic acids with a pK1 value of around

4 for protonation of carboxyl groups and around 8 for protonation of phenolate groups [28].

In natural waters, myriads of other sensitisers can be found—natural pigments such as

heme/porphyrine-based molecules (chlorophylls, bilirubin, hemocyanin, haemoglobin), carot-

enoids, or flavonoids (anthocyanins), but all of these are present in extremely low concentra-

tions in the water environment and are therefore not considered to be of real significance for

photochemical transformation of organic xenobiotic compounds.

3.3. Photocatalytic reactions

Photocatalysis may occur as a homogeneous process or as a heterogeneous process.

In homogeneous photocatalytic reactions, light contributes to the production of a catalytically

active form of a catalyst. One example of such a reaction is the photochemically induced

reduction of ferric ions in the presence of an electron donor to ferrous ions that exhibit much

higher catalytic activity in comparison with the oxidised form [29, 30]. The subsequent cata-

lytic reaction of a substrate is a ‘dark’ reaction, i.e. not photochemical, since the reaction does

not need light. The active form of the catalyst enables the otherwise spin-forbidden reaction

between a singlet substrate and triplet dissolved molecular oxygen.

Homogeneous photocatalytic reactions also include the so-called photo-Fenton reactions.

Fenton’s reagent is a solution of hydrogen peroxide with ferrous ions as a catalyst of an

oxidative reaction with organic substrates. The reagent was described by H. J. H. Fenton in

Figure 1. Proposed structure of humic acids [26].
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1894. The sequence of reactions leading to the formation of reactive oxygen species (hydroxyl

radicals and superoxide radicals) is represented in Eqs. (6)–(9).

Fe2þ þH2O2 ! HO•þ Fe3þ þHO� (6)

Fe3þ þH2O2 ! HOO•þ Fe2þ þHþ (7)

Fe2þ þHO• ! Fe3þ þHO� (8)

Since ferrous ions are quickly reoxidised in a Fenton reaction mixture, the photochemical

variant is used; in the photo-Fenton reaction, the ferric ions are photochemically reduced in

situ. Additional sources of OH radicals through photolysis of H2O2 and through the reduction

of Fe3+ ions under UV light (Eqs. (9) and (10)) are thus obtained.

H2O2 þ hv ! 2 HO• (9)

Fe3þ þH2Oþ hv ! HO•þ Fe2þ þHþ (10)

Heterogeneous photocatalysis is usually understood as any photochemical reaction on a semi-

conductor.

Semiconductor photocatalysis uses solid catalytic systems while the substrate to be degraded

is dissolved or dissipated in the solution (or in the gaseous phase) around the catalyst. Five

distinct steps in the process of the reaction on a semiconductor are involved:

• The transfer of liquid or gaseous phase reactant to the catalytic surface by diffusion.

• The adsorption of the reactant on the catalyst surface.

• The reaction of the adsorbed molecules.

• The desorption of products.

• The removal of products from the interface region by diffusion.

The initiation of the photocatalytic process involves the photochemical formation of an

electron-hole pair after the absorption of a photon of sufficient energy for the excitation of an

electron from the valence band of the semiconductor to its conduction band. The holes and

electrons react with the solvent (water) and dissolved oxygen to produce oxidative species,

mainly OH and superoxide radicals by the sequence of reactions presented in Eqs. (11)–(16).

h
þ
þH2O ! HO▪

þHþ (11)

h
þ
þOH�

! HO▪ (12)

O2 þ e
�
! O2

▪� (13)

O2
▪�

þHþ
! HO2

▪ (14)

2HO2
▪

! H2O2 þO2 (15)

H2O2 þO2
▪�

! HO▪

þO2 þOH� (16)
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Various metal oxides were tested in semiconductor photocatalytic reactions. The most fre-

quently used is not only TiO2 [31–33] but also other materials such as ZnO [34, 35], ZnS [36],

Fe2O3 [37], and many others including semiconductor composites as well as semiconductors

doped with precious metals or modified semiconductors [31, 38–41].

Heterogeneous photocatalytic reactions are usually described by first-order kinetics though

actually pseudo-first order kinetics (with OH radicals in excess to the reactant) is the relevant

kinetic model.

4. Photochemistry of organic xenobiotics

4.1. Environmental relevance of the study approaches

Generally, three types of photochemical studies of xenobiotic compounds can be recognised:

• Environmental photochemical studies, i.e. field or laboratory studies under natural con-

ditions (sun irradiation or irradiation with the source simulating as much as possible the

solar spectrum, concentrations of substances the same as in natural aquatic systems).

• Studies relevant to environmental conditions (irradiation sources simulating part of the

solar spectrum, concentrations of organic substrates usually higher than those found in

natural waters).

• Other photochemical studies, using short wavelengths not relevant to environmental

conditions, addition of chemicals such as O3, H2O2, additional components such as semi-

conductors acting as photocatalysts.

The first two approaches enable us to quantify transformation rates, identify photoproducts,

and estimate the importance of the photochemical reactions to the mass balance of pollutants

in the natural environment or at least (in the second case) make an extrapolation to the

environmental conditions relatively straightforward.

The third approach is not aimed at the elucidation of environmental processes; its goal lies in

the removal of polluting substances remaining in wastewaters after the application of the

classical procedure consisting of microfiltration, ultrafiltration, reverse osmosis, activated car-

bon absorption, and sand filtration [42]. To achieve this goal, techniques involving advanced

oxidation processes (AOPs) are usually applied [43, 44].

For environmental photochemical studies or for those relevant to the environmental condition,

solar spectrum radiation must be considered. UV region represents only a small part of the

solar spectrum; it is estimated that the region from 290 to 380 nm forms ca 5% of the overall

ultraviolet plus visible range [45]. Although UV solar radiation reaching the Earth’s surface

represents a small part of the solar spectrum, it plays an important role in its photochemical

effects since it contains the radiation of highest energies. Nevertheless, considering photo-

chemical reactions of xenobiotics, it is necessary to keep in mind that these compounds often

exhibit negligible or none absorption in the region of wavelengths longer than 290 nm, since
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their absorption lies in the shorter UV wavelength range; therefore, many of the compounds

cannot react directly under sun irradiation. Homogeneous photocatalytic degradation in the

presence of dissolved metal ions, photosensitized reactions, or heterogeneous photocatalytic

degradation on particulate metal compounds may contribute to the photochemical degrada-

tion of xenobiotics.

4.2. Examples of xenobiotic photodegradation studies

Pharmaceuticals and personal care products have been increasingly detected in aquatic field

samples not only in Europe—e.g. in Italy [46, 47], Spain [48], United Kingdom [12, 49], Poland

[50], and a EU-widemonitoring survey [16], but also in theUSA [51, 52], China [53], and Japan [54].

The ecological impact of xenobiotics of the families of pharmaceuticals and personal care

products is presently not sufficiently understood, partially because the environmental persis-

tence of nearly all of these compounds has not yet been investigated. There are several indica-

tions that photochemical degradation may be a central factor in determining the environmental

fate of these compounds. One of the supporting evidence lies in the structure of these sub-

stances—they often contain structural features that have been found photodegradable in other

categories of compounds such as pesticides [30, 55].

As pointed out by Boreen et al. [24], the pesticides, carbaryl and napropamide, which

photodegrade readily [55], contain the naphthoxy chromophore group that is found in phar-

maceuticals, such as the non-steroid anti-inflammatory drugs, naproxen and nabumetone, and

the beta-blocker, propranolol. The structure of carbaryl and naproxen is shown in Figure 2.

Because many of the pharmaceutical pollutants in surface waters have already eluded the

biodegradation procedures of wastewater treatment, photochemistry in sunlit surface waters

may be expected to play a much larger role than any naturally occurring biodegradation

processes. Nevertheless, some compounds may evade photochemical degradation through

sorption to suspended particles, which may be the case for substances such as the tetracyclines

that have a high affinity for soil particles [56].

Many studies concerning emerging contaminants are focused on antibacterials, especially

those used in both human and veterinary medicine, such as fluoroquinolones. Several repre-

sentatives of fluoroquinolones are illustrated in Figure 3. Photochemical degradation of three

representants of this group, norfloxacin, enrofloxacin, and ciprofloxacin, was studied, e.g., by

Figure 2. Chemical structure of the pesticide carbaryl (A) and anti-inflammatory drug naproxen (B).
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Babić et al. [57]. The source of radiation used in the study was a xenon lamp (emitting

radiation in the 300–800 nm range); experiments were done in three matrices—MiliQ water,

river water, and synthetic wastewater. It has been demonstrated that solar irradiation contrib-

utes significantly to the degradation of all three fluoroquinone derivatives—the mother com-

pounds were degraded in 10 min after exposition to the radiation. Similar results were

provided by the study of Sturini et al. [58] in which the reaction mixtures of two other

fluoroquinolones, marbofloxacin and enrofloxacin, were investigated. The degradation was

completed in about 1 h by exposure to solar light (Pavia, Italy, summer–noon time). The

structure of the primary photoproducts showed that the degradation pathway proceeds via

oxidative degradation of the piperazine side chain, reductive defluorination, and fluorine

solvolysis.

Another important group of pharmaceutical products in connection with water pollution is

antidepressants. Antidepressants are a class of pharmaceuticals used primarily to treat the

symptoms of depression but can also be used to treat a wide variety of other medical condi-

tions including sleep and eating disorders, alcohol and drug abuse, post-traumatic stress

disorders, panic, and chronic pain. They are commonly prescribed for long-term use, leading

to an increasing production volume compared to many other types of pharmaceuticals.

According to Kessler et al. [59], almost 15 million American aged 18 and older suffer from a

diagnosable major depressive disorder, thus giving rise to a market for branded antidepres-

sants estimated to be worth US $14 billion [60].

Jeong-Wook Kwon and Armbrust [61] studied the laboratory persistence of fluoxetine (Figure 4),

an antidepressant known under the brand names Prozac or Sarafen, which belongs to the

selective serotonin reuptake inhibitor (SSRI) class of antidepressants. In the study, fluorescent

lamps with a wavelength output of between 290 and 400 nm were adopted. In the experiments,

fluoxetine was photochemically stable in buffered solutions as well as in two lake waters, the

half-lives being greater than 100 days. This is not surprising since fluoxetine has a negligible

absorption of radiation with wavelengths longer than 270 nm. The only exception was synthetic

Figure 3. Examples of fluoroquinolone antibiotics: A—norfloxacin, B—enrofloxacin, and C—ciprofloxacin.
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humic water in which the half-life was 21 day. Therefore, a photosensitised reaction with humic

substances as sensitisers either for direct energy transfer or for reactive oxygen species (singlet

oxygen) production can be hypothesised to be responsible for photoinitiated degradation in

synthetic humic water.

The environmental fate of another SSRI antidepressant representant, sertraline, known under

the brand name Zoloft, was explored by Jakimska et al. [62]. Simulated solar radiation (xenon

lamp) was used for the experiments in eight different matrices: wastewater influent and

effluent, untreated and treated water, river water, ultrapure water (pH 3 and 10), and metha-

nol. The half-lives fell in the range of several days for most of the samples (from 4.9 days for

wastewater effluent to 16.8 days for treated water); the only exceptions were ultrapure water

with pH adjusted to 3 (127 days) and methanol (129 days). Since the authors observed a delay

time in several cases, they proposed an autocatalytic mechanism as a plausible explanation for

this observation.

Advanced oxidation treatment and the photochemical fate of three selected antidepressants in

a solution of river humic acid was the subject of a study by Santoke et al. [63]. They focused on

two antidepressants from the class of serotonin-norepinephrine reuptake inhibitors, SNRIs,

duloxetine (brand name Cymbalta) and venlafaxine (brand name Effexor), which act on the

two named neurotransmitters in the brain and are therefore more widely used than the older

selective serotonin reuptake inhibitors, SSRIs, which act on only one neurotransmitter. The

third substance, bupropion (brand name Wellbutrin or Zyban), is a norepinephrine-dopamine

reuptake inhibitor, used both as an antidepressant and as a smoking cessation aid [64]. A

Rayonet RPR-100 photochemical reactor with sixteen 350 nm fluorescent lamps and a solar

simulator with a xenon lamp were employed for irradiation, commercially available Suwannee

River humic acid was used as a sensitiser. In this study, concentrations of individual reactive

species (singlet oxygen, hydroxyl radicals, hydrated electrons, and triplet excited state

dissolved organic matter) were evaluated through specific probe reactions. Of the three anti-

depressant studied, only duloxetine was susceptible to direct photoreaction; venlafaxine and

bupropion underwent indirect photoreaction to only a limited extent. The hydroxyl radicals

were proven to be more important in the degradation of all three compounds in water to

which humic acid had been added, compared to singlet oxygen or the hydrated electron.

Pathways for the reaction of the antidepressants with hydroxyl radicals include hydroxylation

and fragmentation. In the case of duloxetine, excited triplet state dissolved organic matter

accounts partially for the photodegradation.

Figure 4. Structure of fluoxetine (A) and sertraline (B).
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A significant group of organic xenobiotics in aquatic systems is parabens, p-hydroxybenzoic

acid esters (Figure 5), widely used as preservatives in food products, cosmetics, toiletries, and

pharmaceuticals. Parabens were first used as antimicrobial preservatives in pharmaceutical

products in the mid-1920s and remained as preservative favourites for almost a century since

they met several of the criteria of an ideal preservative: they exhibit a broad spectrum of

antimicrobial activity, they have been considered safe to use, and they are stable over the

broad pH range and sufficiently soluble in water to produce the effective concentration in the

aqueous phase. In recent years, concern has been raised about their safety since several

parabens have been reported to have estrogenic activity in experimental cell systems and

animal models. Several studies, e.g. studies of Gomez et al. [65], Thuy et al. [66], and Chuang

and Luo [67], investigated the photocatalytic degradation of parabens, namely ethylparaben

and butylparaben, on TiO2, focusing on operational parameters such as pH values and the

initial concentration of parabens. Ethylparaben and butylparaben were demonstrated to have

similar properties in terms of the values of adsorption constants and intrinsic reaction rates.

The pH dependence was not significantly pronounced, but the reaction rate was slightly

higher at pH = 4 than at other values (6, 9, 11). A study of transformation product led to a

proposed pathway including an attack of the hydroxyl radical on the alkyl chain and the

opening of the aromatic ring through hydroxylation to form alkyl carboxylic acid.

Klementova et al. [68] studied a set of pharmaceuticals of different classes including three

parabens: methylparaben, ethylparaben, and propylparaben—both in homogeneous

photocatalytic reaction mixture irradiated in the Rayonet RPR reactor with fluorescent lamps

emitting wavelengths 300–350 nm and on TiO2 with the lamps emitting in the region of 350–

410 nm. Parabens were the most resistant substrates of all studied compounds. In the homo-

geneous reaction mixture, methylparaben exhibited mild photodegradation (40% of the sub-

strate degraded in 90 min of irradiation) only in an extremely high, environmentally irrelevant,

concentration of added Fe(III)—25 mg/l. Ethylparaben and propylparaben were more reactive

than methylparaben—40% of ethylparaben and 60% of propylparaben were degraded after 90

min of irradiation in the presence of 5 mg of Fe(III) per 1 L of the reaction mixture. The

measurement of the reduced form of iron (i.e. of the active catalytic form) in the reaction

mixture revealed that steady state concentration of Fe(II) was attained in less than 5 min of

irradiation; the steady state concentration of Fe(II) reached values between 60 and 70% of the

total added ferric ions in the reaction mixtures of all parabens.

On TiO2, methylparaben was again the least reactive substrate of the parabens studied—its

degradation does not reach more than about 20% of the original amount in 120 min of

Figure 5. General chemical structure of a paraben.
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irradiation. Ethylparaben and methylparaben reactivity was similar—48 and 52% of degraded

ethylparaben and propylparaben, respectively.

An additional measurement of total organic carbon (TOC) in the reaction mixture [69] revealed

that although the extent of the substrates degradation on TiO2 is lower than in the homoge-

neous photocatalytic reaction, the decrease of organic carbon is higher in the reaction on TiO2

compared with the homogeneous catalytic reaction. It means that mineralisation to CO2 is

more efficient with TiO2 as the catalyst.

As accentuated earlier, organic xenobiotics reported in natural waters represent not only an

extremely variegated, complex chemical system, including the above-mentioned drugs and

preservatives, but also all groups of pesticides, chemicals used in the dye industry, explosives

(TNTand its derivatives), solvents, and many others. For all these categories of compounds, the

photochemical degradation processes, especially AOPs techniques, have been investigated. To

mention just several of them, let us start with the photo-Fenton process. Yardin and Chiron [70]

and Kröger and Fels [71] used it for the mineralisation of TNT and its derivatives. Haseneder

et al. [72] and Santos et al. [73] employed the process for the degradation of polyethylene

glycol, a substance with a wide range of application in both the industrial and pharmaceutical

sectors. González et al. [74] and Dias et al. [75] achieved a significant mineralisation of the

antibiotic sulfamethoxazole in wastewaters with this technique. Peternel et al. [35] and Sohrabi

[76] conducted studies on the elimination of the persistent, non-biodegradable dyes, textile dye

Red 45 and edible dye Carmoisine, respectively, by the photo-Fenton process.

A combination of ozone and UV radiation was shown to be effective in the degradation of

dinitrotoluene and trinitrotoluene [77] as well as for some insecticides of the carbamate group

such as carbofuran [78], for an industrial solvent N-methyl-2-pyrolidone [79], and for the

reduction of trihalomethanes formation during drinking water treatment [80].

Heterogeneous photocatalysis with TiO2 as the photocatalyst has been used for the degrada-

tion of sulfosalicylic acid in effluent [81]; the plant growth regulator 2,4-dichlorophenoxyacetic

acid [82]; neonicotinoid insecticides [83]; the textile fibre reactive azo dye Procion Red MX-5B

[84]; the extremely recalcitrant dye C.I. Reactive Red 2, RR2 [85]; and drugs such as paraceta-

mol [86, 87]; tetracycline and beta-blockers [87], the calcium channel blocker verapamil, the

corticosteroid cortisol, and the female sex hormone 17β-estradiol [68].

5. Conclusions

The photochemical reactions of pharmaceutical compounds as well as of many other contam-

inants are likely to play a major role in their fate in the aquatic environment. More information

on their photodegradation pathways and on the degradation products and their persistence in

the environment is essential for a better understanding of the impact of these contaminants on

aquatic organisms and humans. The newly designed and quickly developing current advanced

oxidation techniques are expected to help in the safe, efficient, and economic removal of the

majority of these contaminants from wastewater effluents.

Photochemical Degradation of Organic Xenobiotics in Natural Waters
http://dx.doi.org/10.5772/intechopen.74756

79



Acknowledgements

The authors gratefully acknowledge the financial support of the research provided by Faculty

of Science, University of South Bohemia.

Conflict of interest

Hereby, I solemnly declare that I am the only author of the presented chapter and that no

conflict of interest for a given manuscript exists that could inappropriately influence my

judgement.

Author details

Sarka Klementova

Address all correspondence to: sklement@jcu.cz

Faculty of Science, University of South Bohemie, Ceske Budejovice, Czech Republic

References

[1] Palaniappan M, Gleick PH, Allen L, Cohen MJ, Christian-Smith J, Smith C. Clearing the

Waters: A Focus on Water Quality Solutions. Report Prepared for the United Nations Envi-

ronment Programme. Oakland, CA: Pacific Institute. Available from: http://pacinst.org/

publication/clearing-the-waters-focus-on-water-quality-solutions/; 2010 [Accessed:December

2017]

[2] Managing Water under Uncertainty and Risk. In: World Water Development Report 4.

Paris: UNESCO Publishing; UN, United Nations. 2012. Available from: http://unesdoc.

unesco.org/images/0021/002156/215644e.pdf [Accessed: January 2018]

[3] Dudgeon D, Arthington AH, Gessner MO, Kawabata Z, Knowler DJ, Leveque C, Naiman

RJ, Prieur-Richard AH, Soto D, Stiassny ML, Sullivan CA. Freshwater biodiversity:

Importance, threats, status and conservation challenges. Biological Reviews of the Cam-

bridge Philosophical Society. 2006;81:163-182

[4] Hughes SR. Occurrence and Effects of Pharmaceuticals in Freshwater Ecosystems [doc-

toral thesis]. University of Leeds. Available from: http://etheses.whiterose.ac.uk/5283/1/S

%20R%20Hughes%20-%20Corrected%20PhD%20Thesis%20%28Oct%202013%29.pdf;

2013 [Accessed: December 2017]

Photochemistry and Photophysics - Fundamentals to Applications80



[5] Water: A Matter of Life and Death. Fact Sheet. International Year of Freshwater. UN, United

Nations. 2003. Available from: http://www.un.org/events/water/factsheet.pdf [Accessed:

December 2017]

[6] Gavrilescu M, Demnerova K, Aamand J, Agathos S, Fava F. Emerging pollutants in the

environment: Present and future challenges in biomonitoring, ecological risks and biore-

mediation. New Biotechnology. 2015;32:147-156. DOI: 10.1016/j.nbt.2014.01.001 [Accessed:

December 2017]

[7] Milić N, Milanović M, Letić NJ, Sekulić MT, Radonić J, Mihajlović I, Miloradov MV.

Occurrence of antibiotics as emerging contaminant substances in aquatic environment.

International Journal of Environmental Health Research. 2013;23:296-310. DOI: 10.1080/

09603123.2012.733934

[8] Kümmerer K. Emerging contaminants versus micro-pollutants. Clean Soil Air Water. 2011;

39:889-890. Available from: http://onlinelibrary.wiley.com/doi/10.1002/clen.201110002/full

[Accessed: December 2017]

[9] Marcoux MA, Matias M, Olivier F, Keck G. Review and prospect of emerging contami-

nants in waste—Key issues and challenges linked to their presence in wastewater treat-

ment schemes: General aspects and focus on nanoparticles. Waste Management. 2013;33:

2147-2156. DOI: 10.1016/j.wasman.2013.06.022

[10] US Geological Survey. Contaminants of emerging concern in ambient groundwater in

urbanized areas of Minnesota, 2009-2012. 2014. Available from: https://pubs.usgs.gov/sir/

2014/5096/pdf/sir2014-5096.pdf [ccessed December 2017)

[11] Tijany JO, Fatoba OO, Babajide OO, Petrik LF. Environmental Chemistry Letters. 2016;14:27-49.

Available from: https://link.springer.com/article/10.1007/s10311-015-0537-z [Accessed: Decem-

ber 2017]

[12] Petrie B, Barden R, Kasprzyk/Hordern B. A review on emerging contaminants in waste-

waters and the environment: Current knowledge, understanding areas and recommen-

dations for future monitoring. Water Research. 2015;72:3-27. Available from: https://

www.sciencedirect.com/science/article/pii/S0043135414006307 [[Accessed: January 2018]

[13] Kasprzyk-Hordern B, Baker DR. Enantiomeric profiling of chiral drugs in wastewater and

receiving waters. Environmental Science & Technology. 2012;43:1681-1691

[14] Fernando-Climent L, Rodriguez-Mozaz S, Barceló D. Development of a UPLC-MS/MS

method for the determination of ten anticancer drugs in hospital and urban wastewaters,

and its application for the screening of human metabolites assisted by information-

dependent acquisition tool (IDA) in sewage samples. Analytical and Bioanalytical Chem-

istry. 2013;405:5937-5952

[15] Fenech C, Nolan K, Rock L, Morrissey A. An SPE LC-MA/MS method for the analysis of

human and veterinary chemical markers within surface waters: An environmental foren-

sics application. Environmental Pollution. 2013;181:250-256

Photochemical Degradation of Organic Xenobiotics in Natural Waters
http://dx.doi.org/10.5772/intechopen.74756

81



[16] Loos R, Carvalho R, António DC, Comero S, Locoro G, Tavazzi S, Paracchini B, Gieani M,

Lettieri T, Blaha L, Jarosova B, Voorspoels S, Servaes K, Haglund PL, Fick J, Lindberg RH,

Schweig D, Gawlik BM. EU-wide monitoring survey on emerging polar organic contam-

inants in wastewater treatment plant effluents. Water Research. 2013;47:6475-6487. DOI:

10.1016/j.watres.2013.08.024

[17] López-Serna R, Petrovic M, Barceló D. Development of a fast instrumental method for the

analysis of pharmaceuticals in environmental and wastewaters based on ultrahigh per-

formance liquid chromatography (UHPLC)-tandem mass spectrometry (MS/MS).

Chemosphere. 2011;85:1390-1399

[18] Phillips PJ, Smith SG, Kolpin DW, Zaug SD, Buxton HT, Furlong ET, et al. Pharmaceutical

formulation facilities as sources of opioids and other pharmaceuticals to wastewater

treatment plant effluents. Environmental Science & Technology. 2010;44:4910-4916

[19] Li D, Yang M, Hu J, Ren L, Zhang Y, Li K. Determination and fate of oxytetracycline and

related compounds in oxytetracycline production wastewater and the receiving river.

Environmental Toxicology and Chemistry. 2008;27(1):80-86

[20] Aly OM, Faust SD. Herbicides in surface waters; studies on fate of 2,4-D and ester

derivatives in natural surface waters. Journal of Agricultural and Food Chemistry. 1964;

12:541-546

[21] Wauchope RD. The pesticide content of surface water draining from agricultural fields—

A review. Journal of Environmental Quality. 1978;7:459-472

[22] Thurman EM, Goolsby DA, Meyer MT, Kolpin DW. Herbicides in surface waters of the

midwestern United States: The effect of spring flush. Environmental Science & Technol-

ogy. 1991;25:1794-1796

[23] Readman JW, Albanis TA, Barcelo D, Galassi S, Tronczynski J, Gabrielides GP. Herbicide

contamination of Mediterranean estuarine waters: Results from MED. POL. Pilot survey.

Marine Pollution Bulletin. 1993;26:613-619

[24] Boreen AL, Arnold WA, McNeill K. Photodegradation of pharmaceuticals in the aquatic

environment: A review. Aquatic Sciences. 2003;65:320-341. Available from: https://link.

springer.com/content/pdf/10.1007%2Fs00027-003-0672-7.pdf [Accessed: December 2017]

[25] Klementova S, Zlamal M. Photochemical degradation of triazine herbicides—Compari-

son of homogeneous and heterogeneous photocatalysis. Photochemical & Photobiologi-

cal Sciences. 2013;12:660-663

[26] Stevenson FJ. Humus Chemistry. New York: Wiley; 1982

[27] Perminova IV, Frimmel FH, Kudryavtsev AV, Kulikova NA, Abbt-Braun G, Hesse S,

Petrosyan VS. Molecular weight characteristics of humic substances from different envi-

ronments as determined by size exclusion chromatography and their statistical evalua-

tion. Environmental Science & Technology. 37:2477-2485

Photochemistry and Photophysics - Fundamentals to Applications82



[28] Ghabbour EA, Davies G, editors. Humic Substances: Structures, Models and Functions.

Cambridge, U.K.: RSC Publishing; 2001

[29] Klementova S, Hamsova K. Catalysis and sensitization in photochemical degradation of

Triazines. Research Journal of Chemistry and Environment. 2000;4:7-12

[30] Klementova S. A critical view of the photoinitiated degradation of herbicides. In: Moham-

med Naguib Abd El-Ghany Hasaneen, editor. Herbicides—Properties, Synthesis and

Control of Weeds. 2012. ISBN: 978-953-307-803-8, InTech. Available from: http://www.

intechopen.com/articles/show/title/a-critical-view-of-the-photoinitiated-degradation-of-

herbicides [Accessed: December 2017]

[31] Hashimoto K, Irie H, Fujishima A. TiO2 Photocatalysis: A historical overview and future

prospects. Japanese Journal of Applied Physics. 2005;44:8269-8285. Available from: https://

www.jsap.or.jp/jsapi/Pdf/Number14/04_JJAP-IRP.pdf [Accessed: 19 December 2017]

[32] Chen J, Poon C-s. Photocatalytic construction and building materials: From fundamentals

to applications. Building and Environment. 44:1899-1906. Available from: http://www.

sciencedirect.com/science/article/pii/S0360132309000134 [Accessed: December 2017]

[33] Lacombe S, Keller N. Photocatalysis: Fundamentals and applications in JEP 2011. Envi-

ronmental Science and Pollution Research. 2012;19:3651-3654. Available from: https://

www.researchgate.net/publication/229160470_Photocatalysis_Fundamentals_and_appli-

cations_in_JEP_2011 [Accessed: December 2017]

[34] Chakrabarti S, Dutta BK. Photocatalytic degradation of model textile dyes in wastewater using

ZnO as semiconductor catalyst. Journal of Hazardous Materials. 2004;112:269-278. Available

from: http://www.sciencedirect.com/science/article/pii/S0304389404002584 [Accessed: Decem-

ber 2017]

[35] Peternel IT, Koprivanac N, Bozić AM, KusićHM. Comparative study of UV/TiO2, UV/ZnO

and photo-Fenton processes for the organic reactive dye degradation in aqueous solution.

Journal of Hazardous Materials. 2007;148:477-484. DOI: 10.1016/j.jhazmat.2007.02.072.

PMID 17400374

[36] Hu J-S, Ren L-L, Guo Y-G, Liang H-P, Cao A-M, Wan L-J, Bai C-L. Mass production and

high photocatalytic activity of ZnS nanoporous nanoparticles. Angewandte Chemie. 2005;

117:1295-1299. Available from: http://onlinelibrary.wiley.com/doi/10.1002/ange.200462057/

full [Accessed: December 2017]

[37] Hu Y-S, Kleiman-Shwarsctein A, Forman AJ, Hazen D, Park J-N, McFarland EW. Pt-

doper α-Fe2O3 thin films active for photoelectrochemical water splitting. Chemistry of

Materials. 2008;20:3803-3805

[38] Byrappa K, Subramani AK, Ananda S, Lokanatha Rai KM, Dinesh R, Yoshimura M.

Photocatalytic degradation of Rhodamine B dye using hydrothermally synthesized ZnO.

Bulletin of Material. Science. 2006;29:433-438. Available from: http://www.ias.ac.in/

matersci/bmsoct2006/433.pdf [Accessed: December 2017]

Photochemical Degradation of Organic Xenobiotics in Natural Waters
http://dx.doi.org/10.5772/intechopen.74756

83



[39] Zha Y, Zhang S, Pang H. Preparation, characterization and photocatalytic activity of CeO2

nanocrystalline using ammonium bicarbonate as precipitant. Material Letters. 2007;61:1863-

1866. Available from: http://www.sciencedirect.com/science/article/pii/S0167577X06009633

[Accessed: December 2017]

[40] Guo Y, Quan X, Lu N, Zhao H, Chen S. High photocatalytic capability of self-assembled

nanoporous WO3 with preferential orientation of (002) planes. Environmental Science

and Technology. 2007;41:4422-4427

[41] Granados-Oliveros G, Páez-Mozo EA, Martínez-Ortega F, Ferronato C, Chovelon JM.

Degradation of atrazine using metalloporphyrins supported on TiO2 under visible light

irradiation. Applied Catalysis B: Environmental. 2009;89:448-454

[42] Moreno-Escobar B, Gomez Nieto MA, Hontoria Garcia E. Simple tertiary treatment

systems. Water Science and Technology. Water Supply. 2005;5:35-41. Available from:

http://ws.iwaponline.com/content/5/3-4/35 [Accessed: December 2017]

[43] Walid KL, Al-Quodah Z. Combined advanced oxidation and biological treatment pro-

cesses for the removal of pesticides from aqueous solutions. Journal Hazardous Material.

2006;137:489-497. DOI: 10.1016/j.jhazmat.2006.02.027

[44] Poyatos JM, Munio MM, Almecija MC, Torres JC, Hotoria E, Osorio F. Advanced oxida-

tion processes for wastewater treatment: State of the art. Water, Air, and Soil Pollution.

2010;205:187-204

[45] Canada J, Pedros G, Bosca JV. Relationships between UV (0.290-0.385 μm) and broad band

solar radiation hourly values in Valencia and Códoba, Spain. Energy. 2003;28:199-217.

Available from:https://ac.els-cdn.com/S0360544202001111/1-s2.0-S0360544202001111-main.

pdf?_tid=7bea51c6-e1a2-11e7-bdb9-00000aacb35d&acdnat=1513347544_a05da2847b6837a8

bf8c07251766eaf6 [Accessed: December 2017]

[46] Zuccato E, Calamari D, Natangelo M, Fanelli R. Presence of therapeutic drugs in the

environment. Lancet. 2000;355:1789-1790

[47] Calamari D, Zuccato E, Castiglioni S, Bagnati R, Fanelli R. Strategic survey of therapeutic

drugs in the rivers Po and Lambro in northern Italy. Environmental Science & Technol-

ogy. 2003;37:1241-1248

[48] Albero B, Pérez RA, Sánchez-Brunete C, Tadeo JL. Occurrence and analysis of parabens in

municipal sewage sludge from wastewater treatment plants in Madrid (Spain). Journal of

Hazardous Materials. 2012;239:48-55. Available from: http://www.sciencedirect.com/sci-

ence/article/pii/S0304389412004992 [Accessed: December 2017]

[49] Baker DR, Barron L, Kasprzyk-Hordern B. Illicit and pharmaceutical drug consumption

estimated via wastewater analysis. Part A: Chemical analysis and drug use estimates.

Science of the Total Environment. 2014;487:629-641. DOI: 10.1016/j.scitotenv.2013.11.107

[50] Zgola-Grześkowiak A, Jeszka-Skowron M, Czazczyńska-Goślińska B, Grześkowiak T.

Determination of parabens in Polish River and lake water as a function of season. Ana-

lytical Letters. 2016;49:1734-1747

Photochemistry and Photophysics - Fundamentals to Applications84



[51] Loraine GA, Pettigrove ME. Seasonal variations in concentrations of pharmaceuticals and

personal care products in drinking water and reclaimed wastewater in Southern Califor-

nia. Environmental Science & Technology. 2006;40:687-695

[52] Fram MS, Belitz K. Occurrence and concentrations of pharmaceutical compounds in

groundwater used for public drinking supply in California. Science of the Total Environ-

ment. 2011;409:3409-3417

[53] Peng X, Yu Y, Tang C, Tan J, Huang Q, Wang Z. Occurrence of steroid estrogens,

endocrine-disrupting phenols, and acid pharmaceuticals in Uran riverine water of the

Pearl river Delta, South China. Science of the Total Environment. 2008;397:158-166. Avail-

able from: https://ac.els-cdn.com/S0048969708002441/1-s2.0-S0048969708002441-main.pdf?_

tid=8eb936e6-ebb6-11e7-a31e-00000aab0f6b&acdnat=1514455677_86218ac05be58a0ae99b43

21c1d8fe62 [Accessed: December 2017]

[54] Tamura I, Yasuda Y, Kagota KI, Yoneda S, Nakada N, Kumar V, Kameda Y, Kimura K,

Tatarazako N, Yamamoto H. Contribution of pharmaceuticals and personal care products

(PPCPs) to whole toxicity of water samples collected in effluent-dominated urban streams.

Ecotoxicology and Environmental Safety. 2017;144:338-350. DOI: 10.1016/j.ecoenv.2017.06.032

[55] Burrows HD, Canle LM, Santaballa JA, Seenken S. Reaction pathways and mechanisms of

photodegradation of pesticides. Journal of Photochemistry and Photobiology B: Biology.

2002;67:71-108

[56] Tolls J. Sorption of veterinary pharmaceuticals in soils: A review. Environmental Science

& Technology. 2001;35:3397-3406

[57] Babić S, Periša M, Škorić I. Photolytic degradation of norfloxacin, enrofloxacin and cipro-

floxacin in various aqueous media. Chemosphere. 2013;91:1635-1642

[58] Sturini M, Speltini A, Maraschi F, Profumo A, Pretali L, Fasani E, Albini A. Photochemical

degradation of Marbofloxacin and Enrofloxacin in natural waters. Environmental Science

& Technology. 2010;44:4564-4569

[59] Kesler RC, Chiu Wai T, Demler O, Meriknagas KR, Walters EE. Prevalence, severity, and

comorbidity of 12-month DSM-IV disorders in the National Comorbidity Survey Replica-

tion. Archives of General Psychiatry. 2005;62:617-627

[60] Bartholow M. Top 200 Prescription Drugs of 2009. Pharmacy Times—Practical Informa-

tion for Today’s Pharmacist. 2010. Available from: http://www.pharmacytimes.com/pub-

lications/issue/2010/may2010/rxfocustopdrugs-0510 [Accessed: December 2017]

[61] Kwon J-W, Armbrust KL. Laboratory persistence and fate of fluoxetine in aquatic envi-

ronments. Environmental Toxicology and Chemistry. 2006;25:2561-2568. Available from:

http://onlinelibrary.wiley.com/doi/10.1897/05-613R.1/full [Accessed: December 2017]

[62] Jakimska A, Śliwka Kaszyńska M, Nagórski P, Kot Wasik A, Nmeiśnik J. Environmental

Fate of Two Psychiatric Drugs, Diazepam and Sertraline: Phototransformation and Investi-

gation of their Photoproducts inNaturalWaters. J. Chromatogr. Sep. Tech. 2014;5 (no pages,

open access). DOI:10.4172/2157-7064.1000253

Photochemical Degradation of Organic Xenobiotics in Natural Waters
http://dx.doi.org/10.5772/intechopen.74756

85



[63] Santoke H, Weihua S, Cooper W J, Peake BM. Advanced oxidation treatment and photo-

chemical fate of selected antidepressant pharmaceuticals in solutions of Suwannee River

humic acid. Journal of Hazardous Materials. 2012;217-218:382-390

[64] Gonzales D, Rennard SI, Nides M, Oncken C Azoulay S, Billing CB, Watsky EJ, Gong

J, Williams KE, Reeves KR. Varenicline, an alpha-4-beta-2 nicotinic acetylcholine

receptor partial agonist, vs sustained-release bupropion and placebo for smoking

cessation. The Journal of the American Medical Association. 2006;296:47-55. Available

from: https://jamanetwork.com/journals/jama/fullarticle/211000 [Accessed: December

2017]

[65] Gomez E, Pillon A, Fenet H, Rosain D, Duchesne MJ, Nicolas JC, Balaguer P, Casellas C.

Estrogenic activity of cosmetic components in reporter cell lines: Parabens, UV screens,

and Musks. Journal of Toxicology and Environmental Health, Part A. 2005;68:239-251

[66] Vo TTB, Yoo Y-M, Choi K-C, Jeung E-B. Potential estrogenic effect(s) of parabens at the

prepubertal stage of a postnatal female rat model. Reproductive Toxicology. 2010;29:306-316.

DOI: 10.1016/j.reprotox.2010.01.013

[67] Chuang LC, Luo CH. Photocatalytic degradation of parabens in aquatic environment:

Kinetics and degradation pathway. Kinetics and Catalysis. 2015;56:412-418. Available

from: https://link.springer.com/content/pdf/10.1134%2FS0023158415040047.pdf [Accessed:

December 2017]

[68] Klementova S, Kahoun D, Doubkova L, Frejlachova K, Dusakova M, Zlamal M. Catalytic

photodegradation of pharmaceuticals—Homogeneous and heterogeneous photocatalysis.

Photochemical & Photobiological Sciences. 2017;16:67-71

[69] Frejlachová K. Photochemical degradation of parabens [Mgr Thesis] (in Czech). České

Budějovice, Czech Rep: Faculty of Science, University of South Bohemia; 2017

[70] Yardin G, Chiron S. Photo-Fenton treatment of TNT contaminated soil extract solutions

obtained by soil flushing with cyclodextrin. Chemistry. 2006;62:1395-1402. DOI: 10.1016/j.

chemosphere.2005.05.019

[71] Kröger M, Fels G. Combined biological—Chemical procedure for the mineralization of

TNT. Biodegradation. 2007;18:413-425

[72] Haseneder R, Fdez-Navamuel B, Härtel G. Degradation of polyethylene glycol by Fenton

reaction: A comparative study. Water Science and Technology. 2007;55:83-87

[73] Santos LC, Schmitt CC, Poli AL, Neumann MG. Photo-fenton degradation of poly

(ethyleneglycol). The Journal of the Brazilian Chemical Society. 2011;22:no pages, open

access. DOI: 10.1590/S0103-50532011000300018

[74] González O, Sans C, Espulgas S. Sulfamethoxazole abatement by photo-Fenton: Toxicity,

inhibition and biodegradability assessment of intermediates. Journal of Hazardous Mate-

rials. 2007;146:459-464

Photochemistry and Photophysics - Fundamentals to Applications86



[75] Dias IN, Souza BS, Pereira JHOS, Mreira FC, Dezotti M, Boaventura RAR, Vilar VJP.

Enhancement of the photo-Fenton reaction at near neutral pH through the use of

ferrioxalate complexes: A case study on trimethoprim and sulfamethoxazole antibiotics

removal from aqueous solution. Chemical Engineering Journal. 2014;247:302-313. DOI:

10.1016/j.cej.2014.03.020

[76] Sohrabi MR, Shariati Sb KA, Sn S. Removal of Carmoisine edible dye by Fenton and

photo Fenton processes using Taguchi orthogonal array design. Arabian Journal of

Chemistry. 2017;10:S3523-S3531. DOI: 10.1016/j.arabjc.2014.02.019

[77] Chen W, Juan C, Wei K. Decomposition of dinitrotoluene isomers and 2,4,6-trinitrotolu-

ene in spent acid from toluene nitration process by ozonation and photo-ozonation.

Journal of Hazardous Materials. 2007;147:97-104

[78] Lau T, Graham N. Degradation of the endocrine disruptor carbofuran by UV, O3 and O3/

UV. Water Science and Technology. 2007;55:275-280

[79] Wu JJ, Muruganandham M, Chang LT, Yang JS, Chen SH. Ozone-based advanced oxida-

tion processes for the decomposition of N-methyl-2-pyrolidone in aqueous medium.

Ozone: Science & Engineering. 2007;29:177-183

[80] Borikar D, Mohseni M, Jasim S. Evaluations of conventional, ozone and UV/H2O2 for

removal of emerging contaminants and THM-FPs. Water Quality Research Journal. 2015;

50:140-151

[81] Tong SP, Xie DM, Wei H, Liu WP. Degradation of sulfosalicylic effluents by O3/UV, O3/

TiO2/UV and O3/V-O/TiO2: A comparative study. Ozone Science & Engineering. 2005;27:

233-238

[82] Giri RR, Ozaki H, Ishida T, Takanami R, Taniguchi S. Synergy ozonation and

photocatalysis to mineralize low concentration 2,4-dichlorophenoxiacetic acid in aqueous

solution. Chemosphere. 2007;66:1610-1617

[83] Černigoj U, Štangar UL, Trebše P. Degradation of neonicotinoid insecticides by different

advanced oxidation processes and studying the effect of ozone on TiO2 photocatalysis.

Applied Catalysis B Environmental. 2007;75:229-238

[84] Lin YC, Lee HS. Effects of TiO2 coating dosage and operational parameters on a TiO2/Ag

photocatalysis system for decolorizing Procion red MS-5B. Journal of Hazardous Mate-

rials. 2010;179:462-470. DOI: 10.1016/j.jhazmat.2010.03.026

[85] Wang X, Jia J, Wang Y. Degradation of C.I. Reactive red 2 through photocatalysis coupled

with water jet cavitation. Journal of Hazardous Materials. 2011;185:315-321. DOI: 10.1016/

j.jhazmat.2010.09.036

[86] Borges ME, García DM, Hernández T, Ruiz-Morales JC, Esparza P. Supported

photocatalyst for removal of emerging contaminants from wastewater in a continuous

packed-bed photoreactor configuration. Catalysts. 2015;5:77-87. Available from: https://

Photochemical Degradation of Organic Xenobiotics in Natural Waters
http://dx.doi.org/10.5772/intechopen.74756

87



pdfs.semanticscholar.org/b9c2/0c51c20dc10fecc4fee060ed17658ed7ad8a.pdf [Accessed:

December 2017]

[87] Rimoldi L, Meroni D, Falletta E, Pifferi V, Falciola L, Cappelletti G, Ardizzone S. Emerging

pollutant mixture mineralization by TiO2 photocatalysts. The role of the water medium.

Photochemical & Photobiological Sciences. 2017;16:60-66. Available from: http://pubs.rsc.

org/-/content/articlehtml/2017/pp/c6pp00214e [Accessed: 29 December 2017]

Photochemistry and Photophysics - Fundamentals to Applications88


