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Abstract

In the proposed chapter, we are going to outline the results of a study on an arithmetical
plane of a broad family of dynamic systems having polynomial right parts. Let these
polynomials be of cubic and square reciprocal forms. The task of our investigation is to
find out all the different (in the topological sense) phase portraits in a Poincare circle and
indicate the coefficient criteria of their appearance. To achieve this goal, we use the
Poincare method of central and orthogonal consecutive displays (or mappings). As a
result of this thorough investigation, we have constructed more than 250 topologically
different phase portraits in total. Every portrait we present using a special table called a
descriptive phase portrait. Each line of such a special table corresponds to one invariant
cell of the phase portrait and describes its boundaries, as well as a source of its phase flow
and a sink of it.

Keywords: dynamic systems, phase portraits, phase flows, Poincare sphere, Poincare
circle, singular points, separatrices, trajectories

1. Introduction

A dynamic system appears to be a mathematical model of some process or phenomenon, in

which fluctuations and other so-called statistical events are not taken into consideration. It can

be characterized by its initial state and a law according to which the system goes into a

different state. A phase space of a dynamic system is the totality of all admissible states of this

system.

It is necessary to distinguish dynamic systems with the discrete time and with the continuous

time. For dynamic systems with the discrete time (they are called cascades), a system’s behavior

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
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distribution, and reproduction in any medium, provided the original work is properly cited.



is described with a sequence of its states. For dynamic systems with continuous time (which

are called flows), a state of the system is defined for each moment of time on a real or an

imaginary axis. Cascades and flows are the main subject of study in symbolic and topological

dynamics.

Dynamic systems, both with discrete and continuous time, can be usually described by an

autonomous system of differential equations, defined in a certain domain and satisfying in it

the conditions of the Cauchy theorem of existence and uniqueness of solutions of the differen-

tial equations.

Singular points of differential equations correspond to equilibrium positions of dynamic sys-

tems, and periodical solutions of differential equations correspond to closed phase curves of

dynamic systems.

The main task of the theory of dynamic systems is a study of curves, defined by differential

equations. This process includes splitting of a phase space into trajectories and studying their

limit behavior—finding and classifying the equilibrium positions, and revealing the attracting

and repulsive manifolds (i.e., attractors and repellers; sinks and sources). The most important

notions of the theory of dynamic systems are the notion of stability of equilibrium states, which

means the ability of a system under considerably small changes of initial data to remain near

an equilibrium state (or on a given manifold) for an arbitrary long period of time, as well as the

notion of roughness of a system (i.e., the saving of a system’s properties under small changes

of a model itself). A rough dynamic system is a system that preserves its qualitative character

of motion under small changes of parameters.

The research methods proposed in this chapter are new and effective; they can also be used for

the study of applied dynamic systems of the second order with polynomial right parts.

According to Jules H. Poincare, a normal autonomous second-order differential system with

polynomial right parts, in principle, allows its full qualitative investigation on an extended

arithmetical plane R
2

x,y [1]. Inspired by the great Poincare’s works, mathematicians of the next

generations, including contemporary researchers, have studied some of such systems, for

example, quadratic dynamic systems [2], ones containing nonzero linear terms, homogeneous

cubic systems, and dynamic systems with nonlinear homogeneous terms of the odd degrees

(3, 5, 7) [3], which have a center or a focus in a singular point O (0, 0) [4], as well as other

particular kinds of systems.

We consider in the present chapter a family of dynamic systems on a real plane x, y.

dx

dt
¼ X x; yð Þ,

dy

dt
¼ Y x; yð Þ (1)

such that X (x, y), Y (x, y) are reciprocal forms of x and y, X is a cubic, Y a square form, and

X (0,1) > 0, Y (0, 1) > 0. Our objective is to depict in a Poincare circle all kinds (different in

the topological sense) of possible for systems phase portraits for Eq. (1), and also to indicate

the criteria of every portrait realization close to coefficient ones. With this aim, we apply

Poincare’s method of consecutive mappings: first, the central mapping of a plane x, y (from a

Differential Equations - Theory and Current Research66



center (0, 0, 1) of a sphere ∑), augmented with a line at infinity (i.e., R
2

x,y plane) on a sphere

∑: X2 þ Y2 þ Z2 ¼ 1 with identified diametrically opposite points, and second, the orthogo-

nal mapping of a lower enclosed semi-sphere of a sphere ∑ to a circle Ω: x2 þ y2 ≤ 1 with

identified diametrically opposite points of its boundary Г. We will now describe this process

in more detail.

The circle Ω and the sphere ∑ in this process are called the Poincare circle and the Poincare

sphere, respectively [1].

2. Basic definitions and notation

φ t; pð Þ, p ¼ x; yð Þ�a fixed point: = a solution (a motion) of Eq. (1) – system with initial

data 0; pð Þ:

Lp:φ ¼ φ t; pð Þ, t∈ Imax, � a trajectory of motion φ t; pð Þ:

Lþ �ð Þ
p := + (�) – a semi-trajectory of a trajectory Lp:

O-curve of a system := the system’s semi-trajectory Lsp(p 6¼O, s∈ þ;�gf ) adjoining to a point O

under a condition such that st ! þ∞:

Oþ �ð Þ- curve of a system: = the system’s O-curve Lþ �ð Þ
p :

Oþ �ð Þ-curve of a system: = the system’s O-curve adjoining to a point O from a domain x > 0

(x < 0).

TO-curve of a system: = the system’s O-curve, which, being supplemented by a point O,

touches some ray in it.

A nodal bundle of NO-curves of a system := an open continuous family of the system’s TO-

curves Lsp, where s∈ þ;�gf is a fixed index, p∈ ᴧ, ᴧ a simple open arc, Lsp ∩ ᴧ ¼ pf g:

A saddle bundle of SO-curves of a system, a separatrix of the point O:= a fixed TO-curve,

which is not included in some bundle of NO-curves of a system.

E, H, P-O-sectors of a system: an elliptical, a hyperbolic, a parabolic sector.

A topological type (T-type) of a singular point O of a system:= a word AO consisting of letters

N, S (a word BO consisting of letters E, H, P), which describes a circular order of bundles N, S of

its O-curves (of its O-sectors E, H, P) when traversing the point O in the “ + ”-direction, i. e.,

counterclockwise, starting with some of them.

P uð Þ ≔ X 1; uð Þ � p0 þ p1uþ p2u
2 þ p3u

3,

Q uð Þ ≔ Y 1; uð Þ � aþ buþ cu2:

Note 1. For every Eq. (1) system:
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1) T-type of a singular point O in its form BO is easy to construct using its Т-type in the form

AO, and going backward (we need to determine both forms, see Corollary 1);

2) Real roots of a polynomial P(u) (polynomial Q(u)) are in fact angular coefficients of isoclines

of infinity (isoclines of a zero));

3) When we write out the real roots of the system’s polynomials P(u), Q(u), separately or all

together, we always number the roots of each one of them in an ascending order.

3. Topological type (T-type) of a singular point O(0, 0)

In order to find all O-curves and to split their totality into the bundles N, S, let us use the

method of exceptional directions of a system in the point O [1]. According to this method, the

equation of exceptional directions for the point O of the Eq. (1) system has the form.

xY x; yð Þ � x ax2 þ bxyþ cy2
� �

¼ 0:

For this, the following cases are possible:

1. When d � b2 � 4ac > 0, this equation defines simple straight lines x ¼ 0 and.

y ¼ qix, i ¼ 1, 2, q1 < q2

2. When d ¼ 0, this equation defines the straight line x ¼ 0 and the double straight line.

y ¼ qx, q ¼ �
b

2c

3. When d < 0, the equation defines only the straight line x ¼ 0:

Theorem 1 is true for the aforementioned cases [5].

Theorem 1. Words AO and BO, which define a topological type (T-type) of a singular point O

(0, 0) of the Eq. (1) system:

1) in the case of d > 0, depending on signs of values PðqiÞ ¼ 1, 2, have forms, indicated in a

Table 1;

r P (q1) P (q2) AO BO

1, 4 + + S0S
1
þN

2
þS

0N1
�S

2
� ¼ S0S

1
þNS2� PH2

2 _ _ S0N
1
þS

2
þS

0S1�N
2
� ¼ NS2þS

0S1þ PH2

3, 6 _ + S0N
1
þN

2
þS

0S1�S
2
�

PEPH3

5 + _ S0S
1
þS

2
þS

0N1
�N

2
�

H3PEP

Table 1. Т-type of a singular point when d > 0 (r = 1, 6).
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2) in the case of d ¼ 0 depending on signs of values q and P(q), they have forms, indicated in a

Table 2,

3) in the case of d < 0 they have forms: AO = S0S
0, BO = HH (Table 1).

Note 2. Let us clarify the meaning of the new symbols introduced in Theorem 1.

S0 (S
0) means a bundle S, adjoining to point O(0,0) from the domain x > 0 along a semi-axis

x ¼ 0, y < 0, when t ! þ∞ (along a semi-axis x ¼ 0, y > 0, when t! �∞).

The lower sign index “ + ” or “–” on every bundle N or S, different from S0 and S0, indicates

whether the bundle consists of Oþ-curves or of O�-curves. Upper index 1 or 2 on every such a

bundle indicates whether its O-curves are adjoining to point O along a straight line y ¼ q1x or

along a straight line y ¼ q2x:

In Table 2, row 5, 6, a bundle N does not have a lower sign index because it contains both Oþ -

curves and O� -curves simultaneously.

Corollary 1. From Theorem 1, it follows, that Eq. (1) systems do not have limit cycles on the

R2
x;y plane.

Indeed, such a cycle could surround a singular point O (0,0) of an Eq. (1) system, and then the

Poincare index of this singular point must be equal to 1 [1]. However, Bendixon’s formula for

the index of an isolated singular point of a smooth dynamic system is as follows:

I Oð Þ ¼ 1þ
e� h

2

where e hð Þ is the number of elliptical (hyperbolic) O-sectors of the system. This formula and

our Theorem 1 give: for the singular point O (0, 0) of every Eq. (1) system, Poincare index

I(O) = 0.

Corollary 2. For the singular point O (0, 0) of an Eq. (1) system, 11 different topological types

(T-types) are possible, and from the analysis of these 11 T-types we can conclude:

q P (q) AO BO

+ + S0SþNþS
0 H2P

_ _ S0NþSþS
0 PH2

+ _ S0S
0S�N� H2P

_ + S0S
0N�S� PH2

0 + S0SþNS� H2P

0 _ NSþS
0S� PH2

Table 2. T-type of the singular point O(0, 0) when d = 0.
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for every Eq. (1) system, the singular point O(0, 0) has not more than four separatrices (actually

2, 3, or 4 ones).

4. Infinitely remote singular points (IR points)

Now it is time to discuss the behavior of trajectories of the Eq. (1) systems in a neighborhood of

infinity. For the investigation of this question we use the method of Poincare consecutive

transformations, or mappings [1].

The first Poincare transformation

x ¼
1

z
, y ¼

u

z
u ¼

y

x
, z ¼

1

x

� �

:

unambiguously maps a phase plane R2

x,y of the Eq. (1) system onto a Poincare sphere ∑:

x2 þ y2 þ z2 ¼ 1 (where z ¼ �Z 1½ �) with the diametrically opposite points identified, which is

considered without its equator E, and an infinitely remote straight line of a plane R2
x,y . The first

Poincare transformation maps onto the equator E of the sphere ∑; the diametrically opposite

points are also considered to be identified.

The Eq. (1) system in this mapping transforms into a system, which in the Poincare coordinates

u, z after a time change dt ¼ �z2dτ looks like the following:

du

dτ
¼ P uð Þu�Q uð Þz,

dz

dτ
¼ P uð Þz,

where P uð Þ :� X 1; uð Þ and Q uð Þ :� Y 1; uð Þ are reciprocal polynomials.

This new system is determined on the whole sphere ∑, including its equator, and on the whole

u; zð Þ � plane α
∗, which is tangent to a sphere ∑ at point C = (1, 0, 0). We shall study this

system, namely on a plane R2
u,z , and project the received results onto a closed circle

Ω, sequentially mapping, first, a plane R2

u,z onto the sphere ∑ from its center, and second, its

lower semi-sphere H onto the Poincare circle Ω, i. e., onto a closed unit circle of a plane R2

x,y

through the orthogonal mapping.

For our new system, the axis z ¼ 0 is invariant (consists of this system’s trajectories). On this

axis, lie its singular points Oi ui; 0ð Þ, i ¼ 0, m,where ui, i ¼ 1, m are all real roots of the

polynomial P uð Þ, and u0 ¼ 0; at the same time, there may exist i0 ∈ 1;…;mgf : ui0= 0. Let us call

such points IR points of the first kind for the Eq. (1) system.

The second Poincare transformation

x ¼
v

z
, y ¼

1

z
v ¼

x

y
; z ¼

1

y

� �
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also unambiguously maps a phase plane R2

x,y onto a Poincare sphere ∑ with the diametrically

opposite points identified, considered without its equator. Every Eq. (1) system transforms into

a system, which in the coordinates τ, v, z looks like the following:

dv

dτ
¼ �X v; 1ð Þ þ Y v; 1ð Þvz,

dz

dτ
¼ Y v; 1ð Þz2:

This last system is determined on the whole sphere ∑, and on the whole v; zð Þ � plane bα,
which is tangent to a sphere

P
at point D ¼ 0; 1; 0ð Þ [1]. A set z ¼ 0 is invariant for this last

system. On this set, lie its singular points v0; 0ð Þ,where v0 is any real root of the polynomial

X v; 1ð Þ � p3 þ p2vþ p1v
2 þ p0v

3: It would be natural to call such points IR points of the second

kind for Eq. (1) systems, but each of these points, for which v0 6¼ 0, obviously coincides with

one of the IR-points of the first kind, namely with the point 1
v0
; 0

� �
,

while v0 ¼ 0 is not a root of the polynomial X(x, 1), because X(0, 1) = p36¼ 0 for the Eq. (1)

system. Consequently, the following corollary is correct.

Corollary 3. The infinitely remote singular points of any Eq. (1) system are only IR-points of

the first kind.

With the orthogonal projection of a closed lower semi-sphere H of a Poincare sphere ∑ onto a

plane x, y, its open part H one-to-one maps onto an open Poincare circleΩ, while its boundary

E (an equator of the Poincare sphere ∑) maps onto the boundary of the Poincare circle Γ¼∂Ω,

which implies the following. 1) Trajectories of any Eq.(– (including its singular point O (0, 0))

are displayed in a circle Ω, filling it.

2) Such a system’s infinitely remote trajectories (including IR points) are displayed on the

boundary Γ of a circle Ω, filling it.

Following Poincare, we call the first trajectories of the Eq. (1) system in Ω, and the second, we

call trajectories of the Eq. (1) system on Γ.

As it follows from the aforementioned conclusions, to each IR point Oi ui; 0ð Þ, of the Eq. (1)

system, i∈ 1;…;mg,f correspond two diametrically opposite points situated on the Γ circle.

O�
i ui; 0ð Þ : Oþ

i O�
i

� �
∈ Γ

þ �ð Þ
≔ Γ

��
x>0 x<0ð Þ

:

∀i∈ 1;…;mg for the point Oþ
i O�

i

� �
,

	
we shall introduce the following notation.

1. Let a Oþ
i O�

i

� �
—curve be a semi-trajectory of the Eq. (1) system in Ω, starting in an

ordinary point p∈Ω and adjacent to a point O
þ �ð Þ
i :

2. A notation for bundles N, S, adjacent to a point Oþ
i O�

i

� �
from the circle Ω, similar to the

notation introduced for the point O (0, 0).

Phase Portraits of Cubic Dynamic Systems in a Poincare Circle
http://dx.doi.org/10.5772/intechopen.75527

71



3. A notation of a word Aþ
i (A

�
i Þ consisting of letters N,S, which fixes an order of bundles of

Oþ
i O�

i

� �

-curves at a semi-circumvention of the point Oþ
i O�

i

� �

in the circle Ω in the direc-

tion of increasing u.

We shall describe a T-type of a point Oþ
i O�

i

� �

with a word Aþ
i (A

�
i Þ, and a T-type of a point

Oi with words A�
i .

T-types of IR points O�
0 0; 0ð Þ of Eq. (1) systems are described in the following theorem.

Theorem 2. Let a number u ¼ 0 be the multiplicity k∈ 0;…; 3f g of the root of a polynomial

P uð Þ of the Eq. (1) system. Then, words A�
0 ,which determine the topological types (T-types) of

IR points O�
0 0; 0ð Þ of this system, depending on the value of k and a sign of a number apk

(where a and pk are coefficients of the system), have the forms as shown in Table 3 [5].

Corollary 4. IR points O�
0 of any Eq: 1ð Þ—system do not have separatrices.

T-types of IR points Oi ui; 0ð Þ 6¼ Oo 0; 0ð Þ, i ¼ 1, m,of Eq. (1) systems are described in the follow-

ing theorem.

Theorem 3. Let a real number ui( 6¼ 0) be a multiplicity ki∈ 1; 2; 3gf of the root of a polynomial

P uð Þ of an Eq. (1) system. Then for this system, a value gi = P (ki)(ui)Q(ui) 6¼0 and words

A�
i ,which determine topological types (T-types) of IR points O�

i ui; 0ð Þ of this system,

depending on the value of ki and signs of numbers ui and gi, have forms as shown in Table 4 [5].

Corollary 5. As can be seen from Theorems 2 and 3, for the IR points of Eq. (1) systems, only a

finite number (13) of different T-types are possible. The investigation of these T-types shows

that IR-points of each Eq. (1) system have only m separatrices: one separatrice for every

singular point Oi ui; 0ð Þ, i ¼ 1, m:

Note 3. In Tables 3 and 4, the lower sign index “ + ” or “–” on every bundle N or S, indicates

whether the bundle adjusts to the point Oþ
i or to the point O�

i

� �

from the side u > ui or from

the side u < ui of the isocline u ¼ ui.

In Table 3, row 1, a bundle N does not have a lower sign index because as the detailed study of

this case shows, it contains Oþ
i -curves (O

�
i -curves) in every domain uj j> 0 [5].

k apk Aþ
0

A�
0

0 0 N N

0, 2 + (�) Nþ N�ð Þ N� Nþð Þ

1, 3 + (�) N�Nþ ∅ð Þ ∅ N�Nþð Þ

Table 3. T-types of IR points O�
0 0; 0ð Þ.
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5. Systems containing 3 and 2 multipliers in their right parts

In this section, we present a solution to the main assigned problem for those Eq. (1) systems

whose decompositions of forms X (x, y), Y (x, y) into real forms of lower degrees contain 3 and

2 multipliers, respectively:

X x; yð Þ ¼ p3 y� u1xð Þ y� u2xð Þ y� u3xð Þ,Y x; yð Þ ¼ c y� q1x
� �

y� q2x
� �

(2)

where p3 > 0, c > 0, u1 < u2 < u3, q1 < q2, ui 6¼ qj for each i and j.

The solution process contains the follows steps.

5.1. Basic concepts and notation

The following notations are introduced for the arbitrary system under consideration in the

Section 5.

P(u), Q(u) – the system’s polynomials P, Q:

PðuÞ∶ ¼ X 1; uð Þ � p3 u� u1ð Þ u� u2ð Þ u� u3ð Þ, Q uð Þ∶ ¼ Y 1; uð Þ � c u� q1
� �

u� q2
� �

RSP (RSQ) – an ascending sequence of all real roots of then system’s polynomial P(u) (Q(u)),

RSPQ – an ascending sequence of all real roots of both the system’s polynomials P(u), Q(u).

5.2. The double change (DC) transformation

Let us call a double change of variables in this dynamic system: (t, y) ! (�t, �y). The double

change transformation transforms the system under consideration into another such system,

for which numberings and signs of roots of polynomials P(u), Q(u), as well as the direction of

motion upon trajectories with the increasing of t are reversed. Let us agree to call a pair of

different Eq. (2) systems mutually inversed in relation to the DC transformation, if this trans-

formation appears to convert one into another, and call them independent of a DC transfor-

mation in the opposite case.

Clearly, 10 different types of RSPQ are possible for an arbitrary Eq. (2) system, as C2
5 ¼

5!
3!2!

= 10.

ui ki gi Aþ
i

A�
i

+(�) 1, 3 + Nþ N�ð Þ S� Sþð Þ

+(�) 1, 3 _ S� Sþð Þ Nþ N�ð Þ

+(�) 2 + S�Nþ ∅ð Þ ∅ N�Sþð Þ

+(�) 2 _ ∅ N�Sþð Þ S�Nþ ∅ð Þ

Table 4. T-types of IR points O�
i ui; 0ð Þ, i∈ 1;…;mgf .
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As we can conclude using the DC transformation of Eq. (2) systems, six of the RSPQs appear to

be independent in pairs. Similarly, each of the remaining four systems has the mutually

inversed one among the first six Eq. (2)-systems.

Let us assign a specific number r∈ 1;…; 10f g to each one of the different RSPQs of the Eq. (2)

system in such a manner that RSPQr = 1, 6 are independent in pairs, while RSPQ sequences

with numbers r = 7, 10 are mutually inversed to RSPQ`s which have numbers r = 1, 4:

It is time to introduce the important notion of a family number r of Eq. (2) systems.

An r family of Eq. (2) systems ∶ ¼ the totality of systems (belonging to Eq. (2) family) having

the RSPQ number r:

Now following a single plan, we consistently investigate the families of Eq. (2)systems that

have numbers r = 1, 6: For families having numbers r = 7, 10, we obtain data through the DC-

transformation of families, r = 1, 4.

A plan of the investigation of each selected Eq. (2) family contains the follows items.

1. We determine a list of singular points of systems of the fixed family in a Poincare circle Ω:

They appear to be a point O (0, 0)∈Ω and points O�
i (ui, 0) ∈ Г, i = 0, 3, u0= 0. For every

point in the list, we use the notions of a saddle (S) and node (N) bundles adjacent to this

point’s semi-trajectories, of a separatrix of the singular point, and of a topodynamical type

of the singular point (TD type).

2. Further, we split the family under consideration to subfamilies with numbers s = 1, 7: For

every subfamily, we reveal topodynamical types of singular points and separatrices of them.

3. We investigate the separatrices’ behavior for all singular points of systems belonging to the

chosen subfamily ∀ s∈ {1,…, 7}. Very important are the following questions: a question of

a uniqueness of a continuation of every given separatrix from a small neighborhood of a

singular point to all the lengths of this separatrix, as well as a question about a mutual

arrangement of all separatrices in a Poincare circle Ω. We answer these questions for all

families of systems under consideration.

4. As a result of all previous studies, we depict phase portraits of dynamic systems of a given

family and outline the criteria of every portrait appearance [5, 6].

From this section, we can conclude the following:

Systems of the family number r = 1 have 25 different types of phase portraits.

Systems of families number 2 and 3: there are 9 types of phase portraits per family.

Systems of families 4 and 5: there exist 7 types of phase portraits per family.

Systems belonging to the family number r = 6 show 36 different types of phase portraits.

Hence, we have obtained 93 different types in total for the systems described in this section—a

lot of possible types at first glance. However, it is important to keep this in mind: every given

family includes an uncountable number of differential systems.
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6. Two classes of systems containing various combinations of two

different multipliers in both right parts: an A-class

In Sections 6 and 7, the problem has been solved for an Eq. (3) family. The Eq. (3) family of

Eq. (1) systems is as follows—the family consists of a totality of all Eq. (1) systems; for each of

them, decompositions of forms X (x, y), Y (x, y) into real multipliers of the lowest degrees

contain two multipliers each:

X x; yð Þ ¼ p y� u1xð Þk1 y� u2xð Þk2 ,Y x; yð Þ ¼ q y� q1x
� �

y� q2x
� �

(3)

where p, q, u1, u2, q1, q2 ∈R, p > 0, q > 0, u1 < u2, q1 < q2, ui 6¼ qj for each i,j ∈ 1; 2f g,

k1, k2 ∈N, k1 þ k2 =3.

It is natural to distinguish two classes of Eq. (3) systems. The A class contains systems with

k1 ¼ 1, k2 ¼ 2; and the B class contains systems with k1 ¼ 2, k2 ¼ 1:

In this section, we give a full solution of the assigned task for systems belonging to the A class

of the Eq. (3) family, i.e.,

dx

dt
¼ p y� u1xð Þ y� u2xð Þ2,

dy

dt
¼ q y� q1x

� �

y� q2x
� �

(4)

The process of forming the solution contains steps similar to the ones described in Section 4 of

this chapter.

For an arbitrary Eq: 4ð Þ– system, we introduce the following concepts.

Let P(u), Q(u) be the system’s polynomials P, Q:

P uð Þ∶ ¼ X 1; uð Þ � p u� u1ð Þ u� u2ð Þ2, Q uð Þ∶ ¼ Y 1; uð Þ � q u� q1
� �

u� q2
� �

,

and RSP (RSQ) be an ascending sequence of all the real roots of the system’s polynomial, while

P(u) (Q(u)),RSPQ is an ascending sequence of all the real roots of both system’s polynomials

P(u) and Q(u). There exist 6 different possible variants of RSPQ as C2
4 ¼

4!

2!2!
= 6. Let us number

them from 1 to 6 in some order.

Now let us put into use an important notion:

An r-family of Eq: 4ð Þ – systems is the totality of Eq. 4ð Þ dynamic systems with the RSPQ

number r from the list of six allowable variants.

A consistent research of families of Eq. 4ð Þ dynamic systems.

The steps of research of every fixed family belonging to Eq. 4ð Þ dynamic systems are as follows.

1. For all singular points of a given dynamic system that belongs to the family under

consideration, let us introduce notions of S (saddle) and N (node) bundles of semi-

trajectories, which are adjacent to a chosen singular point; also let us introduce a notion

for its separatrix and a notion for its topodynamical type (TD-type).
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2. Now the considered family must be divided into subfamilies numbered s∈ 1;…; 5f g:Then

it is necessary to determine the TD-types of singular points of systems belonging to the

obtained subfamilies, and separatrices of singular points ∀s ¼ 1, 5.

3. For all five subfamilies, we investigate the separatrices` of singular points behavior and

find an answer to a question concerning a uniqueness of a global continuation of every

chosen separatrix from a tiny neighborhood of a singular point to all the lengths of this

separatrix in the Poincare circle Ω, as well as an answer to a question of all separatrices`

mutual arrangement in Ω.

The mutual arrangement of all separatrices in the Poincare circle is invariable when, for a given

s, a global continuation of every separatrix of each singular point of the subfamily number s is

unique. Consequently, all systems of a chosen subfamily number s have, in a Poincare circle,

one common type of phase portrait:

But in a different situation, when, for a fixed number s, systems of such subfamily have, for

example, m separatrices with global continuations that are not unique, this subfamily is

divided into m additional subfamilies (so as to say subsubfamilies) of the next order.

As we could understand conducting their further study, for each of subsubfamilies, the global

continuation of every separatrix is unique, and the mutual arrangement of separatrices in the

Poincare circle Ω is invariable.

As a result, the topological type of phase portrait of all systems belonging to this subsubfamily

in the Ω circle is common for the chosen subsubfamily.

4. We depict phase portraits in Ω for the systems of Eq: 4ð Þ families, r = 1, 6, in the two possible

forms (the table and the graphic ones), and indicate for each portrait close to coefficient criteria

of its realization.

A conclusion for the Section 6 of our chapter is:

1. Eq. 4ð Þ–systems belonging to the number 1 family have in the Poincare circle Ω, 13

different topological types of phase portraits.

2. Eq: 4ð Þ– systems of the family number 2 have 7 types.

3. Family number 3 have 10 types.

4. Family numbers 4, 5, and 6 have 5 different types of phase portraits per number.

This means that in total, all large families of Eq: 4ð Þ dynamic systems of the A class may have 45

different topological types of phase portraits in a Poincare circle.

7. Systems with 2 different multipliers in both right parts, belonging

to a B class

In this section, the full solution of our task for Eq. (3) systems of the B class is given:
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dx

dt
¼ p y� u1xð Þ2 y� u2xð Þ,

dy

dt
¼ q y� q1x

� �

y� q2x
� �

: (5)

For an arbitrary Eq: 5ð Þ– system, P(u), Q(u) are the system’s polynomials P, Q.

P uð Þ∶ ¼ X 1; uð Þ � p u� u1ð Þ2 u� u2ð Þ, Q uð Þ∶ ¼ Y 1; uð Þ � q u� q1
� �

u� q2
� �

,

RSPQ shows 6 different variants, because C2
4 ¼ 6.

We can thus conclude that all Eq. 5ð Þ family of systems is split into 52 different subfamilies, and

all systems of each chosen subfamily show in a circle Ω, one common type of a phase portrait

belonging to this particular subfamily. We have constructed all 52 topologically different phase

portraits.

8. Systems containing 3 and 1 different multipliers in right parts

In this section, we solve the problem for an Eq. (6) family, i.e., for a family of Eq. (1) systems

dx

dt
¼ p3 y� u1xð Þ y� u2xð Þ y� u3xð Þ,

dy

dt
¼ c y� q1x

� �2
(6)

p3 > 0, c > 0, u1 < u2 < u3, q ∈Rð Þ 6¼ ui, i ¼ 1, 3:

The solution process includes the follows steps. Let us break the Eq. (6) family into subfamilies

numbered r = 1, 4:

Each of these is a totality of systems with an RSPQ number r,where r is the system’s number in

the list of possible RSPQs.

1. u1, u2, u3, q,

2. u1, u2, q, u3,

3. u1, q,u2, u3,

4. q,u1, u2, u3:

Applying to the Eq. (6) system, a double change of variables (DC): (t, y) ! (�t,-y), we reveal

that it transforms families of these systems having the numbers r = 1, 2, 3, 4, into their families

with numbers r = 4, 3, 2, 1 respectively, and backward. We emphasize: this fact means that

families of Eq. (6) systems having numbers 1 and 2 are not connected with the DC transforma-

tion, and that families having numbers 3 and 4 are not related to each other; at the same time,

family number 3 is mutually inversed by the DC transformation to the family number 2, and

family number 4 is mutually inversed to the family number 1 correspondingly. This conclusion

follows from the consideration of their RSPQ sequences [5, 6].

1. We study alternately the families of systems, r = 1,2, following the common program of

Eq. (1) systems study [5], i.e.:
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1. We fix r ∈ 1; 2g, then wef break the chosen family into subfamilies numbered s [5, 6],

s = 1, 9, and find the topodynamical types (TD-types) of singular points of these systems.

2. We construct for the systems of a fixed subfamily ∀s ¼ 1, 9, the so-called off-road map

(ORM) [5–7]. The ORM helps us to find an α ωð Þ� limit set of every α ωð Þ� separatrix. It

also lets us describe the mutual arrangement of all separatrices in the Poincare circleΩ.

3. We depict all possible topologically different phase portraits for Eq. (6) systems.

2. We investigate consistently families of Eq. (6) systems, r = 3, 4, using the DC transformation

of the results obtained for families, r = 2, 1. Then, we depict all types of existing phase

portraits for the families 3 and 4.

Then, we conclude the following.

For families of Eq. (6) systems with numbers 1, 2, 3, and 4, there exist

15 + 11 + 11 + 15 = 52

different topological types of phase portraits in a Poincare circle Ω.

9. Systems containing 2 and 1 different multipliers in right parts

In this section, we give the full solution of the problem for Eq. (7) systems, i.e., for the Eq. (1)

systems of the kind

_x ¼ p0x
3 þ p1x

2yþ p2xy
2 þ p3y

3 � p3 y� u1xð Þ2 y� u2xð Þ (7)

_y ¼ x2 þ bxyþ cy2 � c y� qxð Þ2,

where p3 > 0, c > 0, u1 < u2, q ∈Rð Þ 6¼ u1,2.

The process of study of these systems is quite similar to that previously described for other

families of Eq. (1) systems. For an arbitrary Eq. (7) system, P(u), Q(u) are the system’s poly-

nomials P, Q:

P uð Þ∶ ¼ X 1; uð Þ � p3 u� u1ð Þ2 u� u2ð Þ, Q uð Þ∶ ¼ Y 1; uð Þ � c u� qð Þ2,

and there exists 3 different variants for their RSPQs.

A conclusion from our research for this particular type of systems is the following.

We`ve revealed, that for every possible family of Eq. (7) systems, 7 different topological types

of their phase portraits are being implemented. This means that for all three existing families of

such systems, r = 1, 3, the number of different phase portraits is 21 [8, 9].
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10. Conclusions

The presented work is devoted to the original study.

The main task of the work was to depict and describe all the different, in the topological

meaning, phase portraits in a Poincare circle, possible for the dynamical differential systems

belonging to a broad family of Eq. (1) systems, and to its numerical subfamilies. The authors

have constructed all such phase portraits in two ways—in a descriptive (table) and in a graphic

form. Each table contains 5–6 rows. Every row describes one invariant cell of the phase portrait in

detail—it describes its boundary, source, and sink of its phase flow. The table was the descriptive

phase portrait.

The second objective of this work was to develop, outline, and successfully apply some new

effective methods of investigation [8–10].

This was a theoretical work, but due to aforementioned new methods, the chapter may be

useful for applied studies of dynamic systems of the second order with polynomial right parts.

The authors hope that this work may be interesting and useful for researchers and for both

students and postgraduates.
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