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Abstract

Due to the developments and the interest of leading aerospace companies, additive man-
ufacturing (AM) has become a highly discussed topic in the last decades. This is mainly 
due to its capability of producing parts with high geometrical complexity, short manu-
facturing lead times, and suitability for customization as well as for low-volume produc-
tion. As is the case with aircraft fuselage body where weight reduction while keeping the 
demanding mechanical properties is of uttermost importance, modern technology appli-
cations sometimes need materials with unusual combinations of properties that cannot 
be solely provided by metals, polymers, or ceramics. In this case, composite materials 
combining two or more materials allow having the preferred properties in one material. 
Thus, AM of composites is becoming more and more important for critical applications. 
Fiber reinforcement can significantly enhance the properties of resins/polymeric matrix 
materials. Although continuous fiber composites even present higher mechanical per-
formance, the manufacturing methods for chopped fibers are more commercially avail-
able. This chapter reviews the studies in the field involving many aspects spanning from 
design, process technology, and applications to available equipment.

Keywords: additive manufacturing, polymer matrix composites, layered 
manufacturing, carbon fiber-reinforced polymers, rapid manufacturing

1. Introduction

Due to the developments and the interest of leading aerospace companies, AM, also known 

as 3D printing, became a highly discussed topic in the last decades. Due to its capability of 

producing parts with a high geometrical complexity and short manufacturing lead times, AM 

has been utilized more especially in aerospace and motorsports. Revenues from the produc-

tion of end use parts, as a proportion of total AM production, have risen from under 4% in 

2003 to 34.7% in 2013 [1]. The first step of applying AM technology was historically producing 

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



plastic prototypes using various AM processes such as fused deposition modeling (FDM), ste-

reolithography (SLA), and other processes. Producing complex net-shaped materials includ-

ing metals, ceramics, and composites as functional parts later became available [2]. Today, 

polymers and metals are considered as commercially available materials for AM processes 

(see Figure 1). Meanwhile, ceramics and composites are rather considered still under research 

and development. Table 1 shows various properties of AM processes including the state of 

State of the 

starting 

material

Process Material 

preparation

Layer creation 

method

Typical materials Applications

Filament FDM Melted in nozzle Continuous 

extrusion and 

deposition

Thermoplastics, waxes Prototypes, casting 

patterns

Robocasting Paste in nozzle Continuous 

extrusion

Ceramic paste Functional parts

Liquid SLA Resin in a vat Laser scanning UV curable resin, 

ceramic suspension

Prototypes, casting 

patterns

MJM Polymer in jet Ink-jet printing Acrylic plastic, wax Prototypes, casting 

patterns

Powder SLS Powder in bed Laser scanning Thermoplastics, waxes, 

metal powder, ceramic 

powder

Prototypes, casting 

patterns

SLM Powder in bed Laser scanning Metal Tooling, functional 

parts

EBM Powder in bed E-Beam scanning Metal Tooling, functional 

parts

3DP Powder in bed Drop-on-demand 

binder printing

Polymer, metal, ceramic, 

and other materials

Prototypes, casting 

shells, tooling

Solid sheet LOM Laser cutting Feeding and 

binding of sheets 

with adhesives

Paper, plastic, metal Prototypes, casting 

models

Table 1. Analysis of the state of starting material working principle for AM processes [5].

Figure 1. (a) Safran obtains the first certification for a 3D-printed gas turbine engine major part in the auxiliary power 
unit (APU) from Hastelloy X: conventionally machined by Inconel casting, the 3D-printed part is now 35% lighter and is 

now comprised of only four versus eight components prior to the new manufacturing technique [3]. (b) GE LEAP engine 

fuel nozzle: the 3D-printed nozzle combined all 20 parts into a single unit, but it also weighed 25% less [4].
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starting material, material preparation, layer creation method, typical materials, as well as 

applications [5]. As is the case with aircraft fuselage body where weight reduction while keep-

ing the demanding mechanical properties is of uttermost importance, modern technology 
applications sometimes need materials with unusual combinations of properties which can-

not be solely provided by metals, polymers, or ceramics. In this case, composite materials 

combining two or more materials allow us to have the preferred properties in one material [2].

Fused deposition modeling (FDM) (see Figure 2) is one of the AM technologies and a widely 

used method for fabricating thermoplastic parts with advantages of low cost, minimal waste, 

and ease of material change [7]. In order to improve the mechanical properties of pure ther-

moplastic materials, one of the methods is to reinforce plastic matrix by different materials 
like carbon fibers to produce CFRPs (carbon fiber-reinforced polymers) composites which 
can be directly used as functional end parts. FDM is an advantageous process for producing 

polymer matrix composites because of the possibility to use multiple nozzles with loading 

of different materials. Moreover, being low-cost and high-speed, simplicity makes FDM a 
suitable process for composite manufacturing. One drawback of the FDM process for pro-

ducing PMCs is that the input material has to be in filament form to enable the extrusion. 
Additionally, the usable matrix material is limited to thermoplastic materials due to needed 

melt viscosity (high enough for structural rigidity and low enough for extrusion) [6].

2. AM composites: literature review

Producing CFRPs (carbon fiber-reinforced polymers) by AM is quite a new research topic, and 
therefore there are a very limited number of studies that can be found in the literature as the 

summary in Table 2 presents. Zhong et al. have studied the processability of glass fiber-rein-

forced ABS matrix composites with three different glass contents used as feedstock filaments 
in FDM leading to the result that the reinforcement could improve the tensile strength and 

surface rigidity at the expense of flexibility and handleability [8]. These limits were overcome 

Figure 2. Schematic of fused deposition modeling [7].
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by adding a small amount of plasticizer and compatibilizer. Gray et al. reinforced polypropyl-

ene with thermotropic liquid crystalline polymer fibers and provided a significantly increased 
tensile strength, whereas they encountered some problems of poor adhesion and delami-

nation [9]. Shofner et al. studied reinforcing ABS matrix with vapor-grown carbon fibers 
at nanoscale. Although the tensile properties were improved, the amount of improvement 

depended on built parameters as well as the degree of interlayer and intralayer fusion [10]. 

Tekinalp et al. [11] have studied carbon fiber-reinforced ABS polymers in order to evaluate 
the potential for load-bearing components leading to the result that composites with highly 

dispersed and highly oriented carbon fibers can be printed by FDM process (see Figure 3)  

[11]. Ning et al. have provided a more comprehensive study on the effect of fiber content 
on mechanical properties. Carbon fiber content varying between 0 and 15% was studied on 
tensile and flexural properties of carbon fiber-reinforced ABS plastics. Some limitations such 
as decrease in toughness and ductility as well as encountered porosity were identified [7]. 

Love et al. have addressed reinforcement of ABS material with carbon fibers regarding the 
thermal deformations and leading geometrical tolerances in addition to strength and stiffness 
achieved (see Figure 4). They have concluded that carbon fiber additions can significantly 
reduce the distortion and warping of the material during processing allowing large-scale, out-

of-the-oven, high deposition rate manufacturing [12].

The effect of fiber content on the mechanical properties is also another interesting research 
topic. Tekinalp et al. [11] have investigated the fiber loading on the tensile strength and modu-

lus as shown in Figure 5. Some interesting results were obtained in this study. The results 

Reinforced by Matrix material Investigated 

properties

Limitations

Zhong et al. 

[8]

Glass fibers ABS Tensile strength and 

surface rigidity

Flexibility and handleability

Gray et al. [9] Thermotropic liquid 

crystalline polymer

Polypropylene Tensile strength Poor adhesion and 

delamination

Shofner et al. 

[10]

Vapor-grown carbon 

fibers
ABS Tensile strength and 

tensile modulus

Interlayer and intralayer 

fusion;

change behavior from ductile 

to brittle

Tekinalp et al. 

[11]

Carbon fiber ABS Tensile strength and 

tensile modulus

Porosity, weak interfacial 

adhesion between the fibers 
and the matrix, and fiber 
breakage

Ning et al. [7] Carbon fiber ABS Tensile strength, 

Young’s modulus, 

flexural properties

Decrease in toughness, 

yield strength, and ductility; 

increase of porosity with an 

increased level of carbon fiber

Love et al. 

[12]

Carbon fiber ABS Strength, stiffness, 
thermal properties, 

and distortion and 

geometric tolerances

—

Table 2. A summary of studies in FDM of chopped fibers.
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leading to the fact that modification/optimization of the mixing process to minimize fiber 
breakage and modification of the FDM process to minimize inner-pore formation may result 
in a much more optimized process are summarized as follows [11]:

• An increase in fiber length and fiber orientation improves the tensile properties, whereas 
an increase in void fraction reduces the strength of a composite by both creating stress con-

centration points and lowering the fiber-matrix interface and bonding.

• Tensile strength increases with increasing fiber content in both CM and FDM processes.

• The ABS samples with 0% fiber loading prepared by the FDM process have higher ten-

sile strength, while the standard deviations in tensile strength measurements for the FDM 

samples were significantly lower than those for the CM samples.

Figure 3. Schematic presentation of 3D-printed fiber-reinforced composite by fused deposition modeling [11].

Figure 4. Tensile test specimens produced along z-axis and deformation coupons showing the difference between carbon 
fiber-reinforced ABS and no reinforcement part in terms of deformation [12].
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• The FDM process increases the orientation of the polymer molecules in addition to improv-

ing fiber dispersion and uniformity since the parts are manufactured in a layer-wise and 
line-wise manner.

• The FDM samples can compensate the negative effect of porosity/weak fiber bonding by 
the strongly enhanced fiber and thus still reach strength values close to CM samples.

• For both processes, the tensile strength increase with the increase of the fiber content be-

comes less obvious at higher fiber loadings. This can be attributed to the decrease in aver-

age fiber length with increasing fiber content.

• At 40 wt% fiber loading, the modulus value of the CM composites is increased by nearly an 
order of magnitude. However, the FDM samples could not be fully fabricated due to the 

repeated nozzle clogging at this high fiber loading. These samples could only be printed to 
a few layers of thickness. This thickness difference possibly caused the difference in moduli 
between the FDM and CM specimens [11].

However, the optimum fiber loading obtained in [11] is not in line with the results of Ning 

et al. [7] due to differences in the material in terms of fiber distribution and interfacial bonding 
strength which leads to the conclusion that a basic standard for design and processing needs 

to be established as is the case with many other AM processes. Ning et al. concluded that the 

best performance of the produced parts was obtained with 5% fiber loading and higher load-

ing of fiber reduced the performance. The studies found in the literature have tested up to 40 
wt%, and the composites with higher loading could not be produced due to nozzle clogging 

issues. In addition, it is difficult to make filaments with such high fiber content due to the 
loss of toughness. As a solution to improve feedstock processability, plasticizers are added as 

already mentioned [8]. To eliminate the voids impairing the mechanical properties of FDM 

parts, a novel solution was found by [13]. Thermally expandable microspheres are added to 

the matrix, and a thermal treatment is combined with FDM. The results show that tensile and 

compressive strength of treated specimens increase 25.4 and 52.2%, respectively, in compari-

son to the untreated ones when 2 wt% microspheres are added [13].

Figure 5. Effect of fiber loading on tensile strength and modulus in comparison to compression molded specimens [11].
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Fused deposition modeling is not the only method to produce polymer matrix composites by 

additive manufacturing. Selective laser sintering, a powder-bed AM technology, is also inves-

tigated in this field. Jansson and Pejryd have characterized carbon fiber-reinforced polyamide 
manufactured by this technology using the CarbonMide® (CF/PA12) material provided by 
EOS [14]. The material in its raw form is a powder consisting of polyamide spherical particles 

and carbon fibers of diameter 10 μm and length 100–200 μm. However, porosity is a significant 
problem as is the case with other studies [15–17]. The study given in [14] also has confirmed 
that porosity was concentrated in between the layers produced weakening the material in the 

direction normal to the layered structure. They also obtained different mechanical properties 
along different build directions mainly due to fiber orientation and porosity. They also con-

cluded that the fiber orientation is linked to the powder rake mechanisms (see Figure 6). Some 

sample products produced by CarbonMide® material are demonstrated in Figure 7.

More recently, studies on embedding continuous fiber in the plastic materials are realized 
mainly using fused deposition modeling (FDM) for different applications [20–27]. Yao et al. 

have investigated embedding carbon fiber tows which provided a tensile strength increase of 
70% and flexural strength increase of 18.7% compared to non-reinforced specimens. As seen 
in Figure 8, an artificial hand printed by FDM with embedded carbon fibers is manufactured 

Figure 6. Illustration of the rake spreading a powder layer in the build chamber [14].

Figure 7. Sample products produced from CarbonMide® material [18, 19].
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as a demonstration part [20]. Dickson et al. have utilized a Mark One 3D printer in order to 

reinforce glass, carbon, and Kevlar fibers into nylon material (see Figure 9). For each of the 

printed composites relative to that obtained for the nylon samples with no reinforcement, up 

Figure 9. Schematic description of the process (left) and produced specimens with different types of reinforcement fibers 
(right) [21].

Figure 8. (a) Test specimen geometries per ISO 527-4:1997 for tensile and ISO 14125:1998 for flexural tests and (b) 
demonstration part [20].
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to a 6.3- and 5-fold enhancement in the tensile and flexural strengths were obtained, respec-

tively, and the fiber type superior to others was observed to be carbon fiber [21]. Some studies 

did not only look into material but also equipment development as is the case with [22].

Gardner et al. have investigated reinforcing ULTEM® material with carbon nano-yarn fila-

ments leading to better tensile and electrical conductivity properties (see Figure 10) [22]. 

Rather than FDM or selective laser sintering, some new techniques are proposed by some 

researchers. For example, Parandoush et al. proposed a novel method for AM of fiber compos-

ites by using prepreg composite. A laser is used to heat successive layers of prepreg tapes, and 

a compaction roller is utilized to bond these layers (see Figure 11) [23]. Moreover, Tian et al. 

also proposed a new methodology for continuous fiber reinforcement in AM (see Figure 12 for 

Figure 10. Samples produced: (a) Uniaxial CNT yarn filament layer (b) embedded electrical signal (c) at higher 
magnification (d) Letters nAno printed (e) printed thin walls (f) at higher magnification [22].

Figure 11. Schematic demonstration of the process [23].
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Reinforced by Matrix material Investigated properties Limitations

Yao et al. [20] Carbon fiber Epoxy resin + 

polyamide

Flexural and tensile 

properties, weight 

reduction

Adhesion between fibers 
and matrix and carbon 

fiber placement

Dickson et al. [21] Carbon, glass, and 

Kevlar fiber
Nylon Tensile and flexural 

properties

Weak bonding and 

porosity

Gardner et al. [22] Carbon nanotube 

yarn

ULTEM® Tensile strength, specific 
modulus, and electrical 

conductivity

Cutting mechanism

Parandoush et al. 

[23]

Continuous glass

fiber

Polypropylene Tensile and flexural 
properties

Adhesion

Tian et al. [24] Carbon fiber PLA (polylactic acid) Flexural strength and 

modulus

None reported

Matsuzaki et al. 

[25, 26]

Carbon fiber PLA (polylactic acid) Tensile modulus and 

strength

Irregularity and 

discontinuity of fiber

Table 3. A summary of studies in FDM of continuous fibers.

schematic demonstration of the process). In their study, the influence of process parameters on 
the interfaces and performance of printed composites have been investigated. With the opti-

mized parameters, a fiber content of about 27% could achieve the maximum flexural strength 
of 335 MPa and flexural modulus of 30 GPa [24].

A similar technology is presented by Matsuzaki in [25], while another study conducted by 

Matsuzaki et al. [26] reports a very significant mechanical improvement by reinforcing con-

tinuous carbon fibers by FDM. Their results show that the tensile modulus and strength 
of 3D-printed continuous carbon fiber-reinforced PLA composites are 19.5 ± 2.08 GPa and 
185.2 ± 24.6 MPa, respectively, which are 599 and 435% of the tensile modulus and strength 

Figure 12. (a) Equipment for 3D printing for CFR PLA composites (b) Schematic printing process [24].
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of the pure PLA specimens. This mechanical improvement is much larger compared to that 

of short fiber-reinforced PLA composites [25]. Table 3 gives a summary of studies involving 

continuous fiber reinforcement by FDM technology.

3. AM equipment for processing composites

The commercial machines available in the market for producing composite materials by AM 

are limited as given in Table 4. As seen, only MarkForged equipment (Mark X and Mark 

Two) can build composites with continuous fibers. Some examples of parts produced on a 
Mark Two machine are demonstrated in Figure 13. It is crucial to note that the MarkForged 

company producing Mark series for 3D printing of continuous fiber-reinforced plastics holds 
a patent for this technology [27]. The fiber replacement in Eiger software, which is compatible 
with MarkForged equipment, can be done in different ways as shown in Figure 14. Concentric 

fill strategy involves following the outer profile of the part and fitting a single strand of fiber 
inward in rings from that boundary. The other option is isotropic fill where the whole layer 
is covered with a single strand where the angle of filling can be changed from in 45° changes. 
Moreover, a combination of two fill options is also possible.

Another company working on commercializing continuous fiber-reinforced polymers is 
based in Russia and entitled as Anisoprint [30]. Their equipment named as Composer is 

shown in Figure 15 with sample products. However, the technology is not yet fully commer-

cialized, and thus sufficiently detailed information cannot be found in open literature about 
the technology.

The other machines available in the market for producing composites give the only option 

of using chopped fiber (generally of about 20–35%) in combination with a plastic matrix. For 
example, Roboze offers a material called Carbon PA including 20% chopped carbon fiber 
in nylon combining chemical resistance of nylon and mechanical properties of carbon fiber. 
Some examples of products manufactured on Roboze are shown in Figure 16. Some com-

panies like GE are also investigating this technology, as entitled “fused filament fabrication 
(FFF)” for lightweight structures from other materials like PEEK [31, 32]. Processing high-

temperature materials like PEEK and PEI are advantages of Roboze One+400 compared to 

Roboze One (see Table 4).

Stratasys also offers equipment for processing a composite material FDM Nylon 12CF. The 
material comprises of a blend of Nylon 12 resin and chopped carbon fiber, at a loading of 35% by 
weight. Some sample parts are shown in Figure 17 [33]. Some mechanical properties of Nylon 

12CF and Carbon PA are given in Table 5 to give a general understanding. However, they are 

not comparable due to the fact that the tested specimens are produced along different axes.

At the moment, the easiest method to reinforce carbon fiber in the AM is considered to be the 
use of a filament which typically combines chopped fiber with a thermoplastic polymer for 
FDM processes which are simple and cheap as described above [34]. The manufacturers of 

the filaments are various. It can be either a machine vendor, as is the case with MarkForged 
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MarkForged Mark X MarkForged Mark Two Stratasys Fortus 450 Roboze ONE Roboze One + 400

50 μm resolution 100 μm resolution Minimum layer thickness 

0.127 mm

Not specified 25 μm resolution

330 x 250 x 200 mm 320 × 132 × 154 mm 406 × 355 × 406 mm 280 × 220 × 200 mm 200 × 200 × 200 mm

Dimensional accuracy 

online measurement

Parts are produced within 

an accuracy of ±0.127 mm 
or ±0.0015 mm/mm 
whichever is greater

The X and Y motion is provided by helical 

racks and pinions, enabling positioning 

precision of 0.025 mm. A C7 ball screw with 

flexible motor coupling, enabling precision 
of up to 0.025 mm for z axis

Extruders over 400 C designed for 

reaching very high temperatures 

and to print high viscosity 

materials (patent pending)

Plastic materials: nylon 

and onyx

Fiber materials: carbon, 

fiberglass, Kevlar, 
high-strength high-

temperature fiberglass

CW fiber

Plastic materials: nylon 

and onyx

Fiber materials: carbon, 

fiberglass, Kevlar, 
high-strength high-

temperature fiberglass

CW fiber

No CW fiber-chopped fiber

ABS, PC, nylon, ULTEM, 

nylon 12CF

Carbon PA (20% chopped fiber, no CW), 
ABS, nylon, ASA

Carbon PA (20% chopped fiber, 
no CW), ABS, nylon, ASA + PEEK, 

PEI

Table 4. The commercially available machines for producing composites by AM.
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[29], or material supplier. colorFabb, based in the Netherlands, produces XT-CF20 combining 

polyethylene terephthalate glycol-modified (PETG) copolyester with 20% chopped carbon 
fiber (see Figure 18 (left)) [35]. Proto-pasta’s Carbon Fiber PLA is a mix of PLA and chopped 

carbon fiber [36]. 3DXTECH makes a variety of carbon fiber filaments ranging from PLA 
to ABS, nylon, ULTEM®, and PEEK having different characteristics [37]. A PLA composite 

may be the easiest to print with, whereas ABS may be a bit stronger. Nylon may be even 

tougher and more wear resistant. PEEK may be the ultimate choice for functional applications 

requiring resistance to higher temperatures and chemical attack [34]. Fuel intake runners 

printed from PEEK filament are demonstrated in Figure 18 [38]. Although these filaments 
give superior strength compared to non-reinforced polymers, due to their chopped nature of 

the carbon fibers, the enhancement is limited. Therefore, Arevo Labs has worked on 6-Axis 
Composite Part Additive Manufacturing Platform [39]. Arevo Labs has developed filaments 
with chopped carbon fiber, in addition to continuous carbon fiber filament as well as mate-

rials with carbon nanotubes/nanofibers. In order to overcome the problem of delamination 
with AM of chopped fiber-reinforced polymers, in collaboration with ABB, they have worked 
on a robotic solution for AM of polymer matrix composites [34]. Instead of stacking 2D layers 

on top of each other, the robot can deposit material on a 3D surface, which is not limited to XY 

plane only as demonstrated in Figure 19 [39].

Figure 13. Holder with Kevlar reinforcement (left), head support for go-cart cars with carbon reinforcement (middle), 

and a structural part made of nylon and carbon fiber (right) [28].

Figure 14. Different infill properties for the reinforcement of fibers [29]: left- concentric fiber replacement and right- 
isotropic fiber replacement.

Additive Manufacturing of Polymer Matrix Composites
http://dx.doi.org/10.5772/intechopen.75628

159



Impossible objects’ composite-based AM (CBAM) technology may overcome some limita-

tions of AM of composites by combining fiber reinforcement with any number of matrix 
materials potentially at high speeds and at scalable sizes. In this process, namely, CBAM, 

a CAD file has been sliced into layers, which are converted into individual bitmaps. Then, 
for every layer, the printer leaves an aqueous solution into the shape of that bitmap onto a 

substrate sheet made from a given reinforcement material [40]. The substrate sheet is subse-

quently poured with the thermoplastic matrix material in powder form, which sticks only 

to the wet from deposited aqueous solution. The excessive powder is then removed, leaving 

only the plastic powder adhering to the liquid (see Figure 20 for process steps). This cycle is 

repeated with each layer of the part to be produced. After all the substrate sheets are layered 

on top of each other, they are heated to the melting temperature and compressed to the final 
height. After the object is then taken out of the oven, the excess un-bonded portions of the 

reinforcement material are removed. The result is a thermoplastic print reinforced with a 

wide variety of options ranging from carbon fiber to silk and cotton [40]. Figure 21 depicts 

some samples produced by CBAM. While the technology as a whole is very promising 

in terms of unlimited geometric complexity, every 3D printing process has its limitations 

when it comes to the exact shapes a system can produce. In CBAM, the geometry is par-

tially determined by the chosen substrate material which brings a restriction on the design. 

Removing carbon fiber requires sand blasting, creating similar limitations faced by SLS due 
to the fact that the sand must be able to access the interior of the part to remove excess car-

bon fiber. This is a limitation regarding internal features. However, a chemical process is 

Figure 15. Anisoprint’s composer (left) and sample products (right) [30].

Figure 16. Products from Carbon PA on Roboze equipment [31].
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used to remove other reinforcement materials, such as Kevlar and polyester. In those cases, 

the geometric complexity is more similar to that possible with FDM, when using soluble 

supports [40].

Another company on the horizon of developing new composite AM methods is EnvisionTEC 

with their first and only industrial thermoplastic reinforced woven composite printer, 
SLCOM (Selective Lamination Composite Object Manufacturing) [42]. SLCOM allows build-

ing composite parts using thermoplastic composite fabric sheets from a roll in a layer-wise 

manner. This technology utilizes a wide range of matrix materials such as PEEK (polyether-

ketoneketone), PEKK (polyetherketoneketone), PC (polycarbonate), PPS (polyphenylene 

sulfide), PEI (polyetherimide), PE (polyethylene), and polyamides (Nylon 6, Nylon 11, or 
Nylon 12), whereas the possible fiber reinforcements include carbon fiber, fiberglass, and 
aramid fiber along with metal fibers (see Figure 22) [42]. The supply roll is fed into the print 

bed. Later, the thermoplastic within the roll is melted and compressed with a heated roller 

passing over. At the same time, a mechanism similar to an ink-jet head deposits a waxlike 

substance and a binding agent to the metal. A carbon blade with an attached ultrasonic 
emitter cleanly cuts away any area with wax. However, the price tag of 1 M USD makes it 
an expensive option.

Figure 17. Products made of Nylon 12CF [33].

Material Vendor Machine 

model

Build 

plane

Yield 

tensile 

stress 

(MPa)

Ultimate 

tensile 

strength 

(MPa)

Tensile 

modulus 

(MPa)

Tensile 

elongation 

at break 

(%)

Tensile 

elongation 

at yield (%)

Melting 

point (°C)

Nylon 12 

CF

Stratasys Fortus XZ 63.4 75.6 7515 1.9 0.9 233

ZX 28.8 34.4 2300 1.2 1.1 233

Carbon 

PA

Roboze ONE XZ 98.0 7850 178

XY 94.0 6400 178

Table 5. Comparison of mechanical properties provided by Nylon 12CF produced on a Fortus equipment from Stratasys 

and by carbon PA produced on a one equipment from Roboze.
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Another interesting development in the field of AM of composites is BAAM (Big Area Additive 
Manufacturing) technology [43, 44]. The Oak Ridge National Laboratory has developed this 

technology, which is a large scale out of the oven extrusion-based 3D printer that enables 

faster and cheaper fabrication of large parts. Cincinnati Incorporated has commercialized the 

Figure 20. Process steps of CBAM [41].

Figure 18. 3D-printed car from XT-CF20 material (left) [34]; fuel intake runners 3D printed with Arevo Labs’ PEEK 

filament (right) [38].

Figure 19. Six-axis composite part additive manufacturing platform from Arevo Labs [39].
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system for ABS, PPS, PEEK, and ULTEM® materials. By adding carbon fiber and glass fiber, 
it is possible to increase the strength and thermal stability. It is possible to have built volumes 

up to 6096 × 2286 × 864 mm which allows making huge parts as shown in Figure 23 [45].

Despite the dominance of polymer matrix composites by carbon fiber, graphene is also con-

sidered as an interesting reinforcement material. With a thickness of a single carbon atom, 

graphene is about 100 times stronger than steel, incredibly lightweight, and electrically and 

thermally conductive. The difficulty of 3D printing with graphene is the inability to deposit 
this hydrophobic wonder material from a print head. PLA-based graphene filaments are com-

mercially available from Graphene 3D Lab [46], but no commercial application seems to have 

created impact other than at laboratory scale [47, 48] in open literature.

Figure 21. Sample products produced by Impossible Objects’ CBAM technology [34].

Figure 22. EnvisionTEC’s SLCOM process demonstration (left) and sample parts (right) [34, 42].

Figure 23. Large parts produced by BAAM technology [45].
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Figure 24. Limitations of the AM of polymer matrix composites similar to other materials in their development phases 

adapted from [6].

Figure 25. The number of papers considering filament winding, AFP (automated fiber placement), ATL (automated tape 
layup), and AM (data from Google Scholar) [49].
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4. Summary

Although additive manufacturing of polymer matrix composites has gone through a signifi-

cant improvement in the last years (see the dates of publications in the references list), it 

is still not widely adopted by various industrial sectors for functional applications. Several 

limitations that need to be overcome are demonstrated in Figure 24. These problems are very 

similar to other AM techniques, such as direct metal laser sintering, which are more mature 

and overcome these restrictions for a wider infusion into industry. As seen in Figure 25, the 

interest of the industry and academia in AM for producing polymer matrix composites has 

been growing significantly, and this seems to continue exponentially in the coming years.
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