
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

185,000 200M

TOP 1%154

6,900



8 

On the Benefits of Using Both Dual  
Frequency Side Scan Sonar and  

Optical Signatures for the Discrimination  
of Coral Reef Benthic Communities 

Tim J Malthus and Evanthia Karpouzli 
School of GeoSciences, University of Edinburgh, Drummond St, Edinburgh  

United Kingdom 

1. Introduction  

The importance of coral reef ecosystems is well established (McManus and Noordeloos, 
1998). The threats to these highly diverse and endangered communities are well known and 
a large number of reports document the dramatic effects of climate change and particularly 
global seawater warming, coastal development, pollution, and impacts from tourism, 
overfishing, and coral mining on them (Grigg & Dollar, 1990; Holden & LeDrew, 1998; 
Lough, 2000; Buddemeier, 2002; Knowlton, 2001; Sheppard, 2003). To protect these 
ecosystems the extent of their degradation must be documented through large scale 
mapping programmes, and inventories of existing coral reef areas are particularly important 
(Riegl & Purkis, 2005; Mora et al., 2006). Such programmes are essential so that the health of 
these ecosystems can be assessed and local and global changes over time can be detected 
(Holden & LeDrew, 1998).  
Seagrass beds are also recognized as playing a pivotal role in coastal ecosystems. They are 
crucial to the maintenance of estuarine biodiversity, the sustainability of many commercial 
fisheries, for stabilizing and enriching sediments and providing an important food resource 
and spawning areas for many marine organisms (Powis & Robinson, 1980; Bell & Pollard, 
1989, Dekker et al., 2006). Unprecedented declines in seagrass beds have occurred in 
temperate and tropical meadows throughout the world; their global decline highlights the 
need for monitoring programmes to manage their conservation and sustainable use (Short & 
Wyllie-Echeverria, 1996; Ward et al., 1997).  
Coral reefs, seagrass, and macroalgal habitats are commonly found in association with, and 
in close proximity to each other, and are linked by many pathways such as sediment 
deposition mechanisms, the primary productivity cycle, and the migration of many fish 
species (Mumby, 1997). Due to their nutritional biology and photosynthetic requirements, 
coral reefs generally exist in clear tropical waters and this makes them highly suited for 
optical remote sensing (Mumby, 1997; Green et al., 2000). Although less confined to them, 
macroalgal and seagrass habitats are also found in such environments. Under stress, both 
coral and seagrass ecosystems may retreat and become replaced by macroalgal or less 
productive and biologically diverse sedimentary or bare rocky habitats. Such O
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impoverishment adversely affects biodiversity and productivity and ultimately local, 
tourist-based, economies. 
The potential of marine remote sensing as an alternative mapping tool to conventional 

methods like in situ diving surveys is now well understood and recognized. Tropical coastal 

environments are well suited to optical remote sensing because sunlight is minimally 

attenuated compared to other marine regions penetrating up to depths of 25 m or greater 

(Mumby, 1997; Green et al., 2000; Isoun et al., 2003). The technique is recognised as being the 

most cost-effective and feasible means of mapping and monitoring of tropical coastal 

ecosystems over large areas (Bouvet et al., 2003; Maeder et al., 2002; Green et al., 2000; 

Luczkovich et al., 1993). 

The sensors used to monitor reef ecosystems generally can be divided into either passive or 

active systems. Passive remote sensors measure reflected sunlight in a given bandwidth of 

the electromagnetic spectrum and constitute traditional optical systems, while active remote 

sensing systems generate their own source of energy, and measure the reflected energy. 

Examples of active remote sensing systems include imaging sonars (e.g. side scan sonar) and 

Synthetic Aperture Radar (SAR).  

The mapping of both temperate and tropical marine benthic habitats using medium and 

high spatial resolution optical satellite systems shows that generally only a few classes can 

be discriminated on the basis of spectral signatures alone (Holden & Ledrew, 1999; 2001; 

Hochberg & Atkinson, 2000), owing to the limited spectral information available in 

conventional optical instruments and the similarities in reflectance of many species and 

habitats (Hochberg & Atkinson, 2000; 2003; Holden, 2001; Hochberg et al., 2003; Karpouzli et 

al., 2004). Whilst higher spectral resolution data may increase the power of habitat 

discrimination, limited availability of such data in future spaceborne systems restricts its 

application to coarse coverage only. In the last few years, high spatial resolution data from 

commercial satellites such as IKONOS and QuickBird has shown to be well suited for 

mapping coral reef systems (Maeder et al., 2002; Andrefouet 2003; Capolsini et al., 2003). In 

particular, the incorporation of additional information on small scale variability in higher 

spatial resolution remotely sensed data has been shown to improve on the accuracies of 

spectral centred classifications (Dustan et al., 2001; Jakomulska & Stawiecka, 2002; Palandro, 

2003).  

A major challenge to optical remote sensing in both temperate and tropics regions is cloud 
cover which reduces the number of images available over a period of time over an area of 
interest (Jupp et al., 1981). The attenuation of light by water also significantly limits the 
technique in deeper and more turbid waters (Holden, 2001; 2002). These limitations have 
been drivers to develop and use active remote sensing systems for imaging the seabed such 
as acoustic systems. However, in comparison to satellite or airborne optical sensors, acoustic 
systems have rarely been used to map and monitor tropical marine habitats (Prada, 2002, 
White et al., 2003; Riegl & Purkis, 2005) and their potential is still in need of evaluation 
(Bouvet, 2003). Acoustic systems such as imaging sonars may offer further advantages over 
optical systems such as the provision of structural information of different habitat types, and 
geomorphological zonation. This additional information may improve the discrimination of 
spectrally similar but structurally different bottom types. 
Despite the increasing evidence of the benefits to be gained there is presently a lack of 

studies on the synergistic use of alternative remote sensing approaches for mapping shallow 
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water marine near shore habitats (Malthus & Mumby, 2003). The most obvious advantage of 

using acoustic and optical methods in combination is the different depth ranges that each of 

the systems operate; optical systems perform best in shallow waters (generally up to a 

maximum of 25 m in the clearest waters), while the deployment of sonar systems (single and 

multibeam) can be used to depths of hundreds of metres, but it is very much limited in 

shallow waters. 

Few studies have attempted to integrate side scan sonar data with optical data to exploit the 

complementarity of the two systems and which have been in temperate waters (Pasqualini 

et al., 1998; Piazzi et al., 2000). These studies used visual photo-interpretation methods and 

occasional automated methods to classify the optical imagery, and to establish the upper 

boundary limits, whilst the sonograms were used for detecting lower depth limits. To date, 

no studies have tested the potentially improved accuracy of habitat classification when the 

optical and acoustic signatures are used in combination. 

Although the potential of incorporating additional information on small scale variability in 

higher spatial resolution data to improve spectrally centered classifications has been 

recognized by a limited number of researchers (Jakomulska & Stawiecka, 2002), few studies 

have incorporated textural and spectral parameters for classifying benthic habitats 

simultaneously where these parameters have originated from high spatial resolution 

multiband acoustic and optical datasets. This study represents a first attempt to test the 

discrimination of coral reef habitats based on textural and spectral parameters derived from 

side scan sonar and IKONOS datasets. The overall aim is to statistically evaluate optical and 

acoustic remote sensing in discriminating reef benthic communities and their associated 

habitats, both in isolation and in combination.  

2. Methods 

2.1 Study area 
The study site, selected for its conservation importance and for the availability of ancillary 

data, was focused on the littoral habitats of San Andres island (12° 34’ N; 81° 43’ W, land 

area 24 km2), Colombia, situated within the San Andres, Old Providence and Santa Catalina 

Archipelago in the western Caribbean Sea. Approximately 180 km east of the Nicaraguan 

coast and 800 km northeast of the Colombian coast, the Archipelago comprises a series of 

oceanic islands, atolls and coral shoals (Figure 1). The submerged habitats of the 

Archipelago were designated a UNESCO Biosphere Reserve in 2000. The main extent of the 

sublittoral platform of San Andres is to the east and northeast and is bordered by a barrier 

reef, where depths range between 1 and 15 m before dropping rapidly to >1000 m (Geister & 

Diaz, 1997). The typical submerged habitats found around San Andres are seagrass (mainly 

Thalassia and Syringodium genera) and algal beds in different proportions, soft and hard 

coral habitats, as well as sandy and rocky substrates. These communities have seen high 

levels of mortality during the last two decades, with studies reporting overall reductions in 

live coral by more than 50% and corresponding increases in algal cover and biomass of such 

species as Dictyotaceae and Halimeda (Diaz et al., 1995; Zea et al., 1998). These changes 

coincide with significant increases in the human population of San Andres which has risen 

from 5,675 inhabitants in 1952 to around 80,000 by 1992 making it the most densely 

populated island in the whole of the Caribbean (Vollmer, 1997).  
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Fig. 1. Map of the western Caribbean Sea showing the location of the Archipelago of San 
Andres and Providencia. 

2.2 Optical imagery 
An IKONOS multispectral satellite image (11-bit radiometric resolution, 4-m spatial 
resolution) was acquired on the 9th September 2000 to coincide with a side scan sonar 
survey, and ground-truthing biological surveys. The weather conditions at the time of 
acquisition were fair, with limited patchy cloud overlying the terrestrial part of the image. 
An independent geometric correction (linear quadratic transformation, nearest neighbour 
resampling) was performed to improve on the geometric correction, based on 21 DGPS- 
determined ground control points, and which yielded an RMS error of 0.87 m. To 
atmospherically correct the image, the empirical line method was employed, based on a 
number of pseudo-invariant land targets of varying brightness from which in situ 
reflectances were determined at the time of image acquisition, as outlined in detail in 
Karpouzli and Malthus (2003). 
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Following land masking a water column correction was applied based on the semi-
analytical approach of Maritorena et al., (1994) and Maritorena (1996) using independently 
obtained in situ water column spectral attenuation (k) and depth (z) estimates. An earlier 
study on the spatial variation of the attenuation of downwelling Photosynthetically Active 
Radiation, kd(PAR), in the littoral zone of San Andres showed that attenuation is highly 
variable (Karpouzli et al., 2003). For this reason, pixel specific values of k for each of the 
visible IKONOS bands were estimated on the basis of field measurements and simple 
models (Karpouzli, 2003; Karpouzli et al., 2003). The application of Maritorena’s model 
resulted in an image with enhanced bottom reflectance where the influence of varying 
bathymetry was greatly reduced, particularly where accurate estimates of depth and 
attenuation existed (Karpouzli, 2003). 

2.3 The acoustic dataset 
Dual frequency (100 and 500 kHz) Side Scan Sonar (SSS) backscatter and bathymetric data 

were acquired in the coastal waters of San Andres using a towed GeoAcoustics, fully digital, 

side scan sonar system (model: 159D, SS941, linked to an EOSCAN real time acquisition and 

image processing system) with the survey designed to overlap with parts of the IKONOS 

image and to encompass the full range of the marine habitats found in the area (coral, 

seagrass, algal and sediment habitats). The acoustic data were collected using a 7 m survey 

vessel equipped with a Trimble Global Positioning System. Differential correction of the 

navigation signal was conducted in real-time using the Omnisar satellite network resulting 

in a horizontal accuracy of about 0.5 m. Anamorphic and slant-range corrections were 

applied to the raw data in real time, thus eliminating lateral and longitudinal distortions in 

the sonograms, as were geometric corrections to reference the towed fish in respect to the 

position of an onboard dGPS system. Survey lines were spaced 10-30 m apart (depending on 

depth) to achieve a 100% backscatter cover of the selected survey areas. 

Depth was determined concurrently using a FURUNO haul-mounted echo-sounder at 
intervals of one second, equating to a data point approximately every metre. After tidal 
corrections, these data were merged with soundings obtained from digitised hydrographic 
charts of the area and interpolated using a radial basis function in Surfer (version 7.02). The 
resulting DEM matched the spatial resolution of the IKONOS image and was used to 
undertake the water column correction of the satellite image. 
A further geometric correction using an affine model was applied and the paired 100 kHz 
and 500 kHz subsets were corrected using image to image registration with the optical 
IKONOS dataset. 
Texture layers - The sonograms acquired were used for extracting a number of acoustic 
parameters on the basis of which the discrimination of a number of habitat classes was 
tested. These included the mean signal intensity of the 2 original sonar bands (at 100 and 500 
kHz frequencies: I100 and I500) and two statistical models of texture which created four extra 
data layers for the sonograms, two for each frequency available. Firstly, a circular variance 
filter was passed over each frequency backscatter layer where the value of the central 
effective unit in the data (the ‘texel, after Linnett et al., 1993) was the variance of the moving 
window over the original backscatter data. The result represents a measure of texture with a 
localised area (Var100 and Var500). The size and the shape of the moving window was 
optimized for the coral dominated classes; the high spatial resolution of the sonograms 
enabled the visual discrimination of individual coral mounds and the size of the kernel was 
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designed to coincide with the 3 m mean radius of coral mound aggregations found in the 
study site. In this context, variance is a 2nd-order algorithm, and the two textural layers 
produced were effectively measuring the coarseness or roughness of the original data bands 
in the two frequencies of operation. Homogeneous areas (e.g. sand beds) had a low variance 
while heterogeneous areas (e.g. rubble, coral patches) were characterised by high variance 
values. 
The second textural parameter was represented by the standard deviation of the texels 
within signature areas (SD100 and SD500). This parameter describes effectively the variation 
in texture coarseness and represents a measure of global nature as opposed with the 
previous parameter which has a local nature. The size of the signature areas varied between 
60 m2 and 400 m2 (20 x 20 m) depending on the habitat type, and was adjusted to ensure that 
it was not straddling class boundaries and encompassing adjacent classes. 

2.3 Biological surveys 
Biological surveys were carried out for the purpose of groundtruthing the satellite and side 
scan sonar images. The survey methodology was optimized for the 0.35 m side scan sonar as 
opposed to the 4 m resolution IKONOS data, employing a combination of transects and 1 x 1 
m and 0.25 x 0.25 m quadrats. The principal attribute recorded was percentage cover of the 
top layer of the dominant vegetation/lifeforms since this is the attribute recorded by optical 
remote sensors. In the case of seagrass and calcareous green algae, density was also 
recorded. Due to the penetrative nature of certain sonar frequencies (100 kHz or less, 
Blondel and Murton, 1997) which may penetrate the top few centimeters of sediments, 
detailed in situ notes of overlapping lifeforms and substrate to a depth of 5 cm below were 
also made, even when they were not exposed. Substrate types were recorded in the 
categories: bedrock, rubble, sand (coralline, terrigenous), mud, dead coral, boulders, and 
thin layer of sand on bedrock. Lifeforms were recorded most often to species level for hard 
corals, macroalgae and seagrass species and to a higher level taxon for soft corals, sponges, 
sea anemones, sea urchins and sea cucumbers. 
The biological surveys were conducted in two phases. The first phase (April-July 1999) 
collected rapid spot-check data to identify the broadscale habitats found around San 
Andres. Three replicate 1 x 1 m quadrats were employed at each site. General notes were 
also made of the type of habitats in the area within approximately a 5 m radius. Depth and 
position (DGPS) of each site were also recorded. A total of 57 spot-check sites were 
surveyed. During the second phase (September-October 2000) more detailed targeted 
surveys were conducted at 17 sites around the island, covering all available habitats, and 
guided by the results of the rapid spot check surveys. Each site measured 500 square metres 
(50 x 10 m), to match the average range of the sonar tracks (50 m). A 50 m transect, laid 
within a homogeneous patch of each habitat type at each site, was sampled at 10 m 
intervals, totalling 10 quadrats per site. These quadrats were not considered replicates since 
the distance of 10 m between them was enough in a number of cases to cause a change in the 
composition of the observed communities, and totalled to 170 samples. The depth at the 
individual sites, as with the spot-check surveys, ranged between 1 and 16 m. The start and 
the end of the central transect lines were positioned using DGPS, and the position of each 
quadrat was also determined. Video footage and still images of the whole transect and each 
quadrat were produced using a Hi-8 Sony Video recorder. Although the footage was not 
used to directly estimate benthic cover, it was used as a permanent record of the site and to 
support the surveyor’s results. 
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Classification scheme – With minor modifications, the hierarchical habitat classification 

system of Mumby and Harborne (1999) was used for this study (Table 1). This system was 

found suitable because it is based on field data from Caribbean habitats, and due to its 

hierarchical structure it could accommodate both the variable availability of data from the 

two phases of the groundtruthing surveys, as well as the different spatial scales of the 

satellite and sonar images. Some amendments were made in thresholds of different classes 

to account for regional differences. Only the first and second tiers (coarse and medium 

descriptive resolution) of the ecological component of the classification system were used to 

assign each spot-check or survey quadrat to a benthic class. The third tier (detailed 

descriptive resolution) of the scheme was considered too detailed for using with the 

remotely sensed data. In total, 4 coarse habitats were identified (coral, algal dominated, bare 

substratum, and seagrass dominated classes), and 20 bottom types in the medium 

descriptive resolution. 

2.4 Discriminant function analysis for habitat classification 
Discriminant function analysis (DFA) was used to test the discrimination of the sub-littoral 

habitat types found around San Andres, based on the IKONOS optical data and acoustic 

data in isolation and in combination. Water column corrected spectral and SSS acoustic 

backscatter and textural signatures for 125 of the detailed, ground-truthing sites were 

extracted. Only the areas for which acoustic data were also available were selected, so that 

the synergy of the two datasets could be tested. The DFA analysis was performed at both 

the coarse and medium descriptive habitat classification levels. To build a model of 

discrimination, individual bands or sonogram layers were chosen as independent variables 

within the DFA by a forward stepwise selection process. Confusion matrices were produced 

to assess the accuracy of the classifications at each level and to identify misclassifications, 

and overall accuracy rates and user’s accuracy for the individual classes were calculated. 

This was done by comparing the a posteriori classification of the habitat members with their a 

priori membership. Although this is a biased measure of discrimination, since the same 

datasets were used to derive the functions and evaluate the accuracy of the predictions (as 

opposed to using an independent dataset), this was necessary given the restricted number of 

data points available. These values were, however, useful for comparing accuracies between 

the results of the DFA based on the acoustic, optical, and combined datasets, as well as 

between the classifications at different descriptive resolutions. The study is also primarily 

concerned with estimating relative rather than absolute separability so this approach is a 

justifiable one. 

3. Results and discussion 

3.1 Optical results 
At both classification levels the stepwise DFA selected only the Blue IKONOS band, as best 

discriminating the habitat types and discarded the green and red bands as statistically 

redundant for separating the classes. Whilst this is expected for the red band as red light is 

attenuated within the top 1-3 m of the water column due to absorption by water itself, it was 

more surprising for the green band. The classification results are discussed bearing in mind 

that they were achieved on the basis of the blue band brightness alone. 
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Coarse level 
Label and 
characteristics 

Medium descriptive level 
Label and characteristics 

1. Coral classes 
1.1 Branching corals - Majority of corals are branching (eg 
Acropora spp.) 

> 1% hard coral cover 
1.2 Sheet corals - Majority of corals are branching (eg Agaricia 
spp.) 

 
1.3 Blade fire corals with green calcified algae - Majority of 
corals are blade fire corals 

 
1.4 Massive and encrusting corals - Majority of corals are 
massive and encrusting 

 1.5 Dead coral - Dead coral ≥ live coral 

 1.6 Gorgonians - Gorgonians ≥ hard coral  

2. Algal dominated 2.1 Green algae - Majority of algae are green 

≥ 50% algal cover & 
2.2 Fleshy brown and sparse gorgonians - Majority of algae are 
fleshy brown 

< 1% hard coral cover 2.3 Lobophora - Monospecific Lobophora beds 

 
2.4 Red fleshy and cructose algae - Majority of algae are red. 
Encrusting sponges present 

3. Bare substatum 
3.1 Bedrock and rubble with dense gorgonians - ≥ 30% 
gorgonians and ca 30% algal cover 

> 50% bare substratum 
3.2 Bedrock and rubble with sparse gorgonians - < 30% 
gorgonians and little algal cover  

< 1% hard coral 
3.3 Sand and rubble with sparse algae - Both sand and rubble 
present and occasionally boulders; No gorgonians 

 3.4 Sand with sparse algae - No rubble present 

 3.5 Mud - Mud is the predominant substrate 

 
3.6 Bedrock - Bedrock is the predominant substrate; Sand and 
algae met be present but sparse 

4. Seagrass dominated 4.1 Sparse seagrass - 10-30 % seagrass 

> 10% seagrass cover & 4.2 Medium density seagrass - 31-69 % seagrass 

< 50% algae 4.3 Dense seagrass - > 70 % seagrass 

 4.4 Seagrass with distinct coral patches 

Table 1. The hierarchy of classes contained within the ecological component of the modified 
classification scheme by Mumby and Harborne (1999) with quantitative diagnostic 
descriptors. 

The Discriminant function analysis (DFA) results from the extracted IKONOS signature data 
yielded an overall accuracy of 29% at the medium resolution level (10 classes) and 40% for 
the coarse level of descriptive resolution (4 classes). The greater accuracy at the coarser level 
is in agreement with findings of classification accuracies of similar habitats from optical 
imagery (Mumby and Edwards, 2002). Individual class (user’s) accuracies ranged from 12-
100% at the medium level, and 0-58% at the coarse level (Tables 2 and 3). At the medium 
descriptive level, the highest user’s accuracy was achieved for dense seagrass (100%) 
followed by sand and algae (50%), massive corals (45%) and sparse seagrass (43%). Least 
discrimination was achieved for the dead coral class (12%), sheet corals (16%) green algae 
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(17%), and medium density seagrass (18%). Most confusion at this descriptive level occurred 
between the different coral classes, the algal, coral and seagrass classes, the medium and 
dense seagrass classes, and the sand and sheet coral classes. 
 

Predicted class 
Actual class 

1.2 1.4 1.5 2.1 3.1 3.3 3.4 4.1 4.2 4.3 R
o

w
 

T
o

ta
l 

1.2 Sheet corals (mainly Agaricia) > 1% 4          4 

1.4 Massive and encrusting corals  13 4  1 3     21 

1.5 Dead coral (Dead > live coral cover) 3 4 2   1 1 1   12 

2.1 Green algae (≥ 50% algal cover,  
majority green algae) 

 2  1 1 1   1  6 

3.1 Bedrock and rubble with dense  
gorgonians (> 50% bare) 

  1  3 1     5 

3.3 Sand & rubble with some algae (> 50% 
bare) 

2  3  3 2 1 1   12 

3.4 Sand with some algae (> 50% bare) 15  1 2 4  2 2 1  27 

4.1 Sparse seagrass and algae (<50%)  3 6  1   3   13 

4.2 Medium density seagrass and algae  
(<50%) 

 3  3     2  8 

4.3 Dense seagrass and algae (<50%)  4       7 3 14 

Column Total 24 29 17 6 13 8 4 7 11 3 122 

User classification accuracy (%) 16 45 12 17 23 25 50 43 18 100  

Table 2. Classification error matrix for spectral signatures extracted from IKONOS imagery 
at the medium descriptive resolution (10 classes). Cases in row categories are classified into 
column predicted classes. Overall classification accuracy: 29%. 

Although the coarser descriptive resolution achieved a greater overall accuracy of 40%, this 
is still poor for scientific or management applications. The best discrimination was achieved 
for the bare substratum class (58%, Table 3) which is in agreement with other IKONOS case 
studies that report sand to be always well classified (Andrefouet et al., 2003). Two-way 
misclassification existed between the bare substratum and algal dominated classes. The next 
best discriminated class was seagrass (53%) with the main confusion of this class being with 
algae. This is not surprising considering that the algal class here was dominated by green 
algae and which was spectrally similar to the seagrass class. These similarities contributed to 
the entire misclassification of the algal class. Similarly, the coral class was wholly 
misclassified as seagrass or bare substratum.  
There are difficulties in comparing classification accuracies between different reef studies. 
Green et al., (1996) pointed out this difficulty due to inconsistencies in the classification 
schemes used, the different number and type of classes, differences in in situ data collection, 
image processing methods, and the means by which accuracy is assessed. Furthermore, the 
particulars of the different sites, e.g. in depth and differences in the dominant species, will 
greatly influence the accuracy rates. However, our results are in general agreement with 
those obtained elsewhere using real or simulated IKONOS data where sand-dominated 
habitats are the best discriminated, while coral classes are generally poorly classified, 
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especially when algal-dominated areas or dense seagrass beds that are spectrally similar to 
deep corals are included in the analysis (Hochberg and Atkinson, 2003; Andrefouet et al., 
2003). 
 

Predicted class 
Actual class 1. Coral 

classes 
2. Algal 

dominated
3. Bare 

substratum
4. Seagrass 
dominated 

Row total 

1. Coral classes 0 7 15 17 39 

2. Algal dominated  0 3 4 7 

3. Bare substratum 3 15 25 1 44 

4. Seagrass dominated 1 9 0 25 35 

Column Total 4 31 43 47 125 

User classification accuracy (%) 0 0 58 53  

Table 3. Classification error matrix for spectral signatures extracted from IKONOS imagery 
at the coarse descriptive resolution (4 classes). Cases in row categories are classified into 
column predicted classes. Overall classification accuracy: 40%. 

The key factors which contribute to poor classification are the similarity in spectral 
signatures between many habitat classes and the limited umber of IKONOS wavebands. 
Seagrasses, algae and reef habitats are dominated by photosynthetic organisms resulting in 
similar spectral signatures. Differences between classes are often subtle and require high 
spectral resolution and often spectral derivative analysis for segregation (Clark et al., 2000; 
Hochberg and Atkinson, 2000; Hochberg et al., 2003; Karpouzli et al., 2004). IKONOS 
spectral bands are too broad and poorly placed to detect subtle differences needed to 
discriminate between such classes.  
Mumby and Edwards (2002) and many of the case studies in Andrefouet et al., (2003) 
reported higher overall classification accuracies, and higher coral class accuracies using 
IKONOS imagery. However, our results are not directly comparable with these studies 
which employed supervised image classifications rather than classifications from extracted 
spectral signatures using DFA. After supervised classification has been applied to an image 
it is possible to improve the map accuracy for the classified image by contextual editing 
where contextual rules can be used to reclassify misclassified classes to the correct categories 
to optimise results (Andrefouet et al., 2003). However, another study that did not use 
contextual editing to improve the accuracy of the classification of IKONOS data reported 
similarly disappointing user’s accuracies for coral classes of 9.7% and 9.5% for a nine-class 
medium resolution scheme and a four-class coarse resolution scheme, respectively 
(Capolsini et al., 2003). 

3.2 Acoustic results 
Example sonograms of the two backscatter intensity bands (100 kHz and 500 kHz) from 
some of the habitat classes surveyed are shown in Figure 2. Areas of high backscatter appear 
bright, while low backscatter appears dark. Rocks and coral mounds can be seen as distinct 
features yielding a strong and highly textured return (Figure 2a, d). Due to their complex 
morphology and bathymetric relief, areas of acoustic shadows (appearing black in the SSS 
data) can be observed adjacent to them. The result is that for coral targets both 100 and 500 

www.intechopen.com



On the Benefits of Using Both Dual Frequency Side Scan Sonar and Optical Signatures  
for the Discrimination of Coral Reef Benthic Communities 

 

175 

kHz images appear highly textured with rough and irregular surfaces; signatures from these 
areas would be expected to be characterized by high variance. Sand is less reflective and 
more homogeneous in character compared to the highly textured coral patch (Figure 2a). 
The 500 kHz sonogram shows a better definition of the coral mounds and higher reflectivity 
over sand. This is due to the fact that higher frequency sound experiences less attenuation in 
penetrating sediment than lower frequency sound, resulting in overall less penetration and 
a higher backscatter (Mitchell, 1993). 
Syringodium generates bright but fuzzy backscatter indicative of a strong echo return while 
the fuzziness indicates that the return is not from a distinct hard object (Figure 2b). Seagrass 
typically returns a strong echo in comparison to the sediment surrounding the beds, 
especially in the 100 kHz sonogram attributed to the existence of lacunae in the seagrass 
leaves (Sabol et al., 2002; Siljestrom et al., 2002). Mixed algal cover exhibits highly textured 
and strong backscatter of an intermediate coarseness (Figure 2c). Halimeda has also been 
reported to have a strong backscatter in other studies (Blondel and Murton, 1997), possibly 
due to its highly calcified leaves and stems. 
Medium-fine sand produces a much weaker acoustic return than either coral or rubble 
showing a fine texture especially in the 100 kHz band (Figure 2d). In this example, the 
gorgonian reef patch shows higher reflectivity in the direction of sonification and the long 
shadows of sparse massive coral mounds suggest a change in the angle of the seabed, and 
therefore the higher relief of the reef patch. This was confirmed by dive survey. Similar 
findings for rocky, gravel and sand substrates are reported from Barnhardt et al., (1998). 
The Discriminant function analysis (DFA) results for the acoustic data yielded higher 
accuracies compared with the optical data. At the medium level of resolution (10 classes) an 
overall accuracy of 34% was achieved, which was 5% higher than achieved for the optical 
data at the same level (Table 4). Similar to the DFA results of the optical data, classification 
accuracy increased at the coarse level of descriptive resolution reaching 50%, 10% more than 
achieved with the optical data at that level (Table 5). This finding is in agreement with 
findings of classification accuracies of similar habitats from acoustical single beam data 
(White et al., 2003). 
Individual class user’s accuracies ranged from 22-50% at the medium descriptive level, and 

5-78% at the coarse level of descriptive resolution (Tables 4 and 5). However, the results of 

the DFA at the medium level suggest that it is not possible to discriminate all classes on the 

basis of their acoustic properties alone. Among them the hard coral classes were best 

discriminated with user accuracies ranging from 40 – 50%, followed by dense gorgonian 

habitats (40%), the sand and rubble classes (40%), and the sand classes (40%). The seagrass 

classes had the lowest accuracies (22 – 29%) with misclassifications occurring between them, 

as well as between them and sand or rubble habitats with some algal cover. Most confusion 

occurred between the sparse seagrass classes and the sand and rubble with sparse algae 

classes, and the medium dense, and sparse seagrass classes (Table 4). The green algae class 

(2.1) was also poorly discriminated with a classification rate of only 25%. Confusion existed 

between that class and sand and algae (3.4), the sand with rubble class (3.3), the two 

seagrass classes, and the massive coral class (1.4). With the exception of the latter, the rest of 

the classes showed a similar coarseness in texture in the sonograms, especially the seagrass 

and algal habitats which may partly explain their poor discrimination. The typical green 

algal habitats found around San Andres were on sandy substrate and most often mixed with 

seagrass species which may explain their apparently similar acoustic responses. Coarse sand 
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and seagrass also had similar textures with the main difference being in the intensity of the 

backscatter and their different response in the two frequencies. 
  

10 m

Z22L5-A-100 Z22L5-A-500 

A 

Z12L12C-500Z12L12C-100 

B 

Z9L12-A-100 Z9L12-A-500 

C 

Z18L14B-100 Z18L14B-500

D 

 

Fig. 2. 100 kHz and 500 kHz side scan sonar images from a number of habitat classes 
surveyed. Frequency is indicated by “100” or “500” at the end of the area ID. Areas of high 
backscatter are bright, low backscatter is dark. A) Medium density massive and encrusting 
coral amongst sand, B) Syringodium seagrass among fine sand, C) Medium algal density 
(principally Dictyota and Halimeda) mixed with Syringodium, D) Medium fine sand with oval 
patch of dense gorgonian coral on bed rock. 

Reducing the descriptive resolution of the DFA increased the accuracies of all classes except 
for the algal class which was reduced to 5% from 25% (Table 5). This class was largely 
misclassified as seagrass although many seagrass cases were misclassified as algal classes. 
However, seagrass classification was improved over the medium level, demonstrating the 
potential for seagrass discrimination using acoustic data at a coarser level where subclasses 
of different densities are not considered. The bare substratum class also showed an increase 
of accuracy at the coarser level of resolution, to 52%. 
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Predicted class 
Actual class 

1.2 1.4 1.5 2.1 3.1 3.3 3.4 4.1 4.2 4.3 

R
o

w
 

T
o

ta
l 

1.2 Sheet corals (mainly Agaricia) > 1% 3 1         4 

1.4 Massive and encrusting corals 2 6 2 3 2 2   4  21 

1.5 Dead coral (Dead > live coral 
cover) 

1 2 6 1    1 1  12 

2.1 Green algae (≥ 50% algal cover, 
majority green algae) 

   4  2     6 

3.1 Bedrock & rubble with dense 
gorgonians (>50% bare) 

1 1   2    1  5 

3.3 Sand & rubble with some algae 
(>50% bare) 

     8  3 1  12 

3.4 Sand with some algae  
(>50% bare) 

 2 4 4 1 4 2 2 5 3 27 

4.1 Sparse seagrass and algae (<50%)  2  2  4  4  1 13 

4.2 Medium density seagrass and 
algae (<50%) 

        5 3 8 

4.3 Dense seagrass and algae (<50%)  1  2   3 4 2 2 14 

Column Total 7 15 12 16 5 20 5 14 19 9 122 

User classification accuracy (%) 43 40 50 25 40 40 40 29 26 22  

Table 4. Classification error matrix for acoustic signatures extracted from the acoustic data at 
the medium descriptive resolution (10 classes). Cases in row categories are classified into 
column predicted classes. Overall classification accuracy: 34%. 

The class best discriminated on the basis of its textural parameters was coral with a user’s 

accuracy of 78% at the coarse descriptive resolution (Table 5). Many of the processes that 

drive coral reef dynamics such as recruitment processes or hurricane damage result in 

patchy distributions which, together with variable three dimensional structures, contribute 

to this class showing the greatest variance measures (Mumby & Edwards 2002). 

Few other studies have reported accuracy rates for mapping coral reef habitats using 

acoustic remote sensing methods (White et al., 2003; Riegl & Purkis, 2005, Lucieer, 2007). 

Whilst the results this study are not strictly comparable with those obtained using AGDS by 

White et al., (2003) and Riegl and Purkis (2005) their single beam acoustic signatures 

measured parameters of “roughness” and “hardness” of the habitats under investigation. 

White et al., (2003) reported similarly poor (28%) overall accuracies for a 10 class level of 

resolution and a higher overall accuracy (60%) at a coarser level of four classes. At the coarse 

level coral was the best discriminated class with a user’s accuracy of 68%, comparable to the 

results of this study. Riegl and Purkis (2005) presented similar classification accuracies of 

56% when attempting to classify 4 classes (coral, rock, algae and sand) on the basis of two 

signal frequencies, 50 and 200 kHz. 
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Predicted class 

Actual class 
1. Coral 
classes 

2. Algal 
dominated

3. Bare 
substratum

4. Seagrass 
dominated 

Row total 

1. Coral classes 25 1 9 3 39 

2. Algal dominated  1 2 4 7 

3. Bare substratum 7 5 18 14 44 

4. Seagrass dominated  12 5 18 35 

Column Total 32 19 35 39 125 

User classification accuracy (%) 78 5 52 46  

Table 5. Classification error matrix for acoustic signatures extracted from the acoustic data at 
the coarse descriptive resolution (4 classes). Cases in row categories are classified into 
column predicted classes. Overall classification accuracy: 50%. 

Useful acoustic variables - At the coarse classification level, the stepwise procedure selected 

three acoustic variables as best discriminating the four habitat types and discarded the rest 

as redundant for separating these classes (Table 6). The variables selected were the mean 

values of the class signatures of the 2 texture bands (Var100 and Var500) and the class standard 

deviation of the 100 kHz frequency texture bands (SD100). At the medium classification level, 

the stepwise procedure selected slightly different acoustic variables to best discriminate the 

10 habitat classes (Table 6). The variables selected were the class mean values of the 500 kHz 

texture band (Var500) and the class standard deviations of the 100 kHz and 500 kHz 

frequencies texture bands (SD100 and SD500). At both classification levels, the mean signal 

intensity data bands (I100 and I500) were discarded. Similarly, among the variables selected 

SD100 had the largest discriminant coefficients for both the first and second discriminant 

functions indicating that it was the most significant variable at both classification levels. 

 

Coarse level Medium level 

Var100 Var500 

Var500 SD100 

SD100 SD500 

Table 6. The acoustic parameters identified by the stepwise discriminant analysis to provide 
the best discrimination between habitat classes at the coarse and medium descriptive levels. 

The standard deviation of the signature areas represents large-scale spatial variability in the 
images while the two texture (variance) layers indicate small-scale spatial variability in the 
backscatter signal. The kernel size of the moving window that produced the texture layers is 
significant in determining their texel values. These values would be directly related to the 
window homogeneity and the size of the objects in the original image would influence the 
choice of kernel size, e.g. in this case the size of coral mounds. Hence, it is perhaps 
inappropriate to measure all classes and objects with the same measure, and each data set 
and application should have different kernel sizes that maximize their discrimination. In the 
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case of this study, the size of the moving window was optimized for the coral classes and 
this must have contributed to the improved classification accuracy, when compared to the 
other classes. Further research could investigate using more texture layers created by 
changing kernel sizes to optimize them for different habitat types. The applicability of 
variogram-derived texture measures using a moving window, the size of which is 
determined by the range of the variogram could also be investigated. Such variogram-
derived texture measures have been extracted from microwave images of agricultural 
landscapes with partial success and warrants further investigation (Jakomulska & Stawiecka 
2002) 
The use of dual frequency sonograms improved texture and pattern recognition since 
products from both bands were selected by the DFA, even though the 500 kHz band seemed 
visually more noisy. The lower frequency (100 kHz) seemed more useful at the coarse 
classification level, while the higher frequency (500 kHz) was more useful for the 
discrimination of the detailed scale habitats. This may be partly due to the higher resolution 
provided by the 500 kHz band, resulting in more detailed sonograms, even after the re-
sampling process. This would be translated in the textural bands of the higher frequency. 
Additional frequency bands could potentially further improve the discrimination between 
the classes and increase the classification rates. 
The side scan sonar survey had a number of limitations which may have contributed to the 
misclassifications of some of the classes. Positional and locational errors are in general 
greater for acoustic data compared with satellite data (Malthus & Mumby, 2003). Positional 
errors may have been introduced from a variety of sources including inadequate positioning 
of the towfish in relation to the survey boat, and the approximate nature of the manual 
georectification of the sonograms. Similarly, system resolution, which dictates the minimum 
size of the feature identifiable at a particular distance from the survey instrument, is a 
function of both instrumental limitations (sonar instrument specifications) and 
practical/operational considerations which will be affected by navigational errors, location 
errors of the instrument and acoustic noise (Bates et al., 2002). 

3.2 Optical and acoustic synergy results 
With the inclusion of both optical and acoustic signatures in the DFA classification accuracy 
improved significantly compared to either method used in isolation, at both the coarse and 
medium level of descriptive resolution (Tables 7 and 8). The overall accuracy of the 
classifications improved to 52% at the medium level (10 classes) and to 61% at the coarse 
level (4 classes). 
The textural information derived from the high resolution side scan sonar data made a 
significant improvement to the user’s accuracies of each class at both discrimination levels 
compared to the original spectral discrimination performed used the IKONOS data alone 
(Table 10). All except one habitat class, showed an increase of at least 10% from their optical 
classification accuracy when the acoustic data were included in the DFA. The classes that 
benefited most from the inclusion of the textural acoustic data at the detailed level of 
resolution were the three coral classes (classes 1.2, 1.4 and 1.5), the green algae class and the 
sand class (3.4), where % increases were 27%, 19%, 38%, 23% and 28%, respectively. Even 
though the overall accuracy at this level is still low (52%) and probably inadequate for 
management purposes (Mumby and Edwards, 2002), at the individual class level, classes 1.4 
and 3.4 were well discriminated. This separation is further illustrated in scatterplots of the 
first three discriminant functions in Figure 3. 
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Predicted class 
Actual class 

1.2 1.4 1.5 2.1 3.1 3.3 3.4 4.1 4.2 4.3 R
o

w
 

T
o

ta
l 

1.2 Sheet corals (mainly Agaricia) > 1% 3      1    4 

1.4 Massive and encrusting corals  9  2 3 3   3 1 21 

1.5 Dead coral (Dead > live coral cover) 3 5 2     1  1 12 

2.1 Green algae (≥ 50% algal cover,     
majority green algae) 

   2  2    2 6 

3.1 Bedrock and rubble with dense     
gorgonians  (> 50% bare) 

1  1  2    1  5 

3.3 Sand & rubble with some algae (> 50% 
bare) 

     6 3 3   12 

3.4 Sand with some algae (> 50% bare)   1  1 4 21    27 

4.1 Sparse seagrass and algae (<50%)       2 8  3 13 

4.2 Medium density seagrass and algae   
  (<50%) 

        5 3 8 

4.3 Dense seagrass and algae (<50%)    1    3 4 6 14 

Column Total 7 14 4 5 6 15 27 15 13 16 122 

User classification accuracy (%) 43 64 50 40 33 40 78 53 38 40  

Table 7. Classification error matrix for combined acoustic and optical signatures extracted 
from the sonar and IKONOS imagery at the medium descriptive resolution (10 classes). 
Cases in row categories are classified into column predicted classes. Overall classification 
accuracy 52%. 

Predicted class 

Actual class 1. Coral 
classes 

2. Algal 
dominated

3. Bare 
substratum

4. Seagrass 
dominated 

Row 
total 

1. Coral classes 25 3 5 6 39 

2. Algal dominated  1 2 4 7 

3. Bare substratum 7 7 28 2 44 

4. Seagrass dominated  11 2 22 35 

Column Total 32 22 37 34 125 

User classification accuracy (%) 78 5 76 65  

Table 8. Classification error matrix for combined acoustic and optical signatures extracted 
from the sonar and IKONOS imagery at the coarse descriptive resolution (4 classes). Cases 
in row categories are classified into column predicted classes. Overall classification 
accuracy: 61%. 
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Coarse level Medium level 

Blue Ikonos Blue Ikonos 

Var100 Var100 

Var500 Var500 

SD100 SD100 

 SD500 

Table 9. The acoustic and optical parameters identified by the stepwise discriminant analysis 
to provide the best discrimination between habitat classes at the coarse and medium 
descriptive levels. 

The better discrimination achieved at the coarse level of descriptive resolution was 

demonstrated, with the exception of the algal class, by high class user’s accuracy values 

close to or over 70% (Table 10, Figure 4). Similar to the medium level classification, the class 

that showed the greatest improvement when the textural parameters were added to the 

DFA was the coral class exhibiting an improvement in its accuracy from 0% to 78%. This 

was followed by the bare substratum class with an increase from 58% to 76%, and by the 

seagrass class where accuracy increased from 53% to 65%. 

The only classes which did not benefit from the inclusion of the textural acoustic 

information in the DFA were dense seagrass class (medium classification level) and the algal 

class (coarse level). Dense seagrasses, along with the other seagrass classes, showed 

relatively poor discrimination based on their acoustic properties alone. At the coarse level, 

when all seagrass subclasses were amalgamated into one class, the sonar classification 

accuracy was higher (46%) which had the overall effect of improving the classification 

accuracy to 65% for the combined dataset. These results may indicate the inability of sonar 

data to differentiate between different seagrass densities, and demonstrates that if a class 

has very good discrimination on the basis of one dataset as in this case (100%) but low 

discrimination on the basis of the other, then it is best classified only on the basis of the 

single dataset that gives the best results. 

The advantages to be gained from synergistic use of the two datasets is best illustrated by 

the fact that, for most classes, the discrimination achieved when both datasets were used in 

combination was equal to or greater than the best discrimination achieved on the basis of 

each dataset in isolation. This was the case for eight out of the total of ten classes at the 

medium level and for all classes at the coarse level. However, the results also indicate that 

some classes will not be successfully differentiated using either dataset (e.g. algal class 2 at 

the coarse level). 

Mumby and Edwards (2002) used textural information to improve the spectral classification 

of IKONOS data for mapping coral reef habitats and found that their inclusion improved 

overall accuracy of the thematic map at the medium level by 9%, and at the coarse level by 

7%. This study achieved a much greater improvement in accuracy: 23% at the medium level 

and 21% at the coarse level, attributable to the higher spatial resolution of the sonar data, its 

greater depth penetration, and the information contained in the sonograms regarding the 

structural organisation of the habitats. As with the present study, the high coral cover 

classes showed the greatest texture due to their greater structural heterogeneity, while sand 

had the least, but both benefited from improved classification accuracy with its inclusion. 
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Fig. 3. DF scores from the analysis of the combined optical and acoustic signatures at the 
medium descriptive level projected in discriminant function space. First and second 
functions (top graph), first and third functions (bottom graph). 
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Classification 
IKONOS 

data 
Side Scan 
Sonar data 

IKONOS & 
side scan sonar 

data 

Medium resolution classification:    

1.2 Sheet corals (mainly Agaricia) > 1% 16 43 43 

1.4 Massive and encrusting corals 45 40 64 

1.5 Dead coral (Dead > live coral cover) 12 50 50 

2.1 Green algae (≥ 50% algal cover) 17 25 40 

3.1 Bedrock and rubble with dense   
  gorgonians  (> 50% bare) 

23 40 33 

3.3 Sand & rubble with some algae (> 50% 
bare) 

25 40 40 

3.4 Sand with some algae (> 50% bare) 50 40 78 

4.1 Sparse seagrass and algae (<50%) 43 29 53 

4.2 Medium density seagrass and algae 
  (<50%) 

18 26 38 

4.3 Dense seagrass and algae (<50%) 100 22 38 

Overall accuracy (%): 29 34 52 

Coarse resolution classification:    

1. Coral classes 0 78 78 

2. Algal dominated 0 5 5 

3. Bare substratum 58 52 76 

4. Seagrass dominated 53 46 65 

Overall accuracy (%): 40 50 61 

Table 10. Individual class user’s accuracies and overall accuracies (%) from the discriminant 
function analysis of the optical, acoustic, and combined datasets at the medium and coarse 
descriptive levels. 

The improvement in the discrimination of the dead coral class with the inclusion of the 
acoustic textural data is particularly significant for monitoring coral health. The results of 
the optical classification showed that diseased coral cannot be discriminated spectrally on 
the basis of IKONOS bands alone as, due to their rapid colonization by macroalgae, they are 
spectrally indistinguishable from macroalgal beds. This is evident in the misclassifications of 
the other classes (seagrass, sand with algae, and massive coral classes into this class) into the 
dead coral class (Table 2). Even after the inclusion of the sonar data the classification 
accuracy of this class is still not satisfactory (50%), but the combination of the two datasets 
shows potential for improving the discrimination of diseased or dead coral. This may be 
attributed to the acoustic signatures of algae overlying dead coral mounds; it still identifies 
the distinct texture of coral, even though spectrally the signature is similar to algal or 
seagrass classes. 
Overall, the improvement in classification accuracies brought about by the inclusion of the 
acoustic data in the DFA was mainly due to the improved discrimination of spectrally 
similar classes but which had contrasting textural characteristics, or of classes whose 
distribution could not be resolved by the spatial resolution of the IKONOS imagery. A 
limitation of the combined dataset that may have resulted in misclassifications is the 
imperfection in the co-registration of the optical and sonar datasets. Scale differences 
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Fig. 4. DF scores from the analysis of the combined optical and acoustic signatures at the 
coarse resolution level projected in discriminant function space; first and second functions. 

between the two datasets exacerbate the co-registration process. Further improvements in 
the classification accuracies reported here could be expected to be achieved by improved 
methods of co-registration, using a supervised classifier on the IKONOS image and 
sonograms themselves, which would allow contextual editing to be implemented, or by 
entering complementary data in the classification process, such as bathymetry. 

4. Conclusion 

IKONOS imagery and dual frequency side scan sonar data were acquired in the coastal 
waters of San Andres island encompassing diverse coral, seagrass, algal and sediment 
habitats. The characteristics of both data types were compared with the aim of determining 
if synergistic use of both methods improved the accuracy of classification of these habitats. 
The optical classification showed that only a few classes can be discriminated by their 
IKONOS spectral signatures alone, and the incorporation of spatial information, in the form 
of fine scale, acoustically-derived texture, greatly improved the accuracy of the classification 
at both the coarse (habitat) and medium (community) levels. The results indicate that the 
combined use of both techniques provides a means by which the rich diversity of tropical 
reef ecosystems can be mapped and monitored with significantly greater accuracy than with 
either technique alone. 
In this study, greatest accuracies were achieved at both classification levels based on the 
Blue IKONOS water column corrected spectral band, and texture parameters derived from 
the dual frequency high spatial resolution sonograms, which best exploited the differences 
between classes, although fewer of these parameters were required at the coarse 
classification level of discrimination. 
Overall, the improvement in classification accuracies brought about by the inclusion of the 
acoustic data in the DFA was due to the improvement of the individual class accuracies that 
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were spectrally similar but had contrasting textural characteristics, or of classes whose 
distribution could not be resolved by the spatial resolution of the IKONOS imagery. 
Textural (spatial) information was of particular benefit for discriminating classes 
characterized by a complex spatial pattern, represented by heterogeneous acoustic response, 
and even though the overall classification accuracies were still not satisfactory (at 52% for 
the detailed level and 61% at the coarser level), the improvement from the optical 
classification of 23% at the fine level and 21% at the coarse level was very encouraging.  
The advantages of the synergistic use of the two datasets was illustrated by the fact that, for 
many classes, when both datasets were used in combination, accuracies were greater than 
the discrimination achieved on the basis of each of the datasets in isolation. Significant 
increases in classification accuracies were noted with the inclusion of the acoustic textural 
data, for the highly textured coral classes in particular, where individual class accuracy 
levels at 78% (coarse level resolution) were very satisfactory. The improvement in the 
discrimination of the dead coral class, the differentiation of which is very problematic when 
based on spectral data alone, has significant implications for monitoring coral health. 
The selection of a single IKONOS band for classification highlights the limited capacity of 
high and medium spatial resolution terrestrial satellite sensors to discriminate reef bottom 
types compared to higher spectral resolution systems (Maeder et al., 2002; Bouvet et al., 
2003; Karpouzli, 2003). These results confirm that sensors with wavebands different to those 
used by conventional terrestrial satellites are required for detailed mapping of reef biotic 
systems. It can be expected that higher spectral resolution data would further improve the 
classification accuracies obtained when optical and acoustic data are combined. Thus, the 
need for increased spectral resolution is highlighted – a conclusion also reached by other 
investigators (Hochberg & Atkinson 2003). 
The most obvious advantage of using acoustic and optical methods in combination is the 
different depth ranges to which each system operates. Knowledge of the upper and lower 
limits of habitats is important for management purposes (Malthus & Mumby, 2003), and the 
synergistic use of optical and acoustic data can be useful for such studies since optical 
systems perform best in shallow waters while sonar systems, are limited to depths generally 
over 2 m but can be used to depths of hundreds of metres, depending on the system 
employed. Similar conclusions were reached by Riegl and Purkis (2005) when investigating 
the synergy of IKONOS and single-beam sonar data. 
A limitation of this analysis was that the overall and user’s accuracies reported were not 
obtained from an independent dataset. Although these accuracies were useful for 
comparing relative accuracy levels between different classification levels and dataset, they 
do not necessarily reflect the accuracy with which another dataset would classify the same 
classes. This limits comparison with results from other studies where accuracies might be 
expected to be lower than those obtained here. However, as most studies report accuracies 
following supervised classification combined with contextual editing, it might be expected 
that the use of these techniques on combined optical and acoustic data may lead to greater 
accuracies than those achieved here using DFA. 
Overall, the results of this study are particularly encouraging for the benefits to be gained 
from the synergistic use of optical and acoustic data. It is perhaps easy to understand why 
the combination of texture or coarseness, and morphological information (represented by 
acoustic data) and ‘colour’ characteristics would facilitate the discrimination of different 
habitats instead of one based on colour alone. Limitations, such as those related to the side 
scan sonar survey, can be reduced or removed, and hence accuracy levels of the combined 
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dataset are likely to be higher. Discrimination of the habitats could be further improved 
with the use of contextual editing and the use of complementary data such as bathymetry. 
Few studies have used spectral and textural variables in conjunction to improve the 
classification of high spatial resolution images fewer still have derived textural parameters 
from high spatial resolution side scan sonar data. The lack of research in this area in general 
and the encouraging results presented here highlights the need for significant development 
in the synergistic use of optical remote sensing and acoustic data. 
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