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Abstract

In this chapter, we present the experimental and numerical study of an optoelectronics
flexible logic gate using a chaotic erbium-doped fiber laser. The implementation consists
of three elements: a chaotic erbium-doped fiber laser, a threshold controller, and the logic
gate output. The output signal of the fiber laser is sent to the logic gate input as the
threshold controller. Then, the threshold controller output signal is sent to the input of
the logic gate and fed back to the fiber laser to control its dynamics. The logic gate output
consists of a difference amplifier, which compares the signals sent by the threshold con-
troller and the fiber laser, resulting in the logic output, which depends on an accessible
parameter of the threshold controller. The dynamic logic gate using the fiber laser exhibits
high ability in changing the logic gate type by modifying the threshold control parameter.

Keywords: optical logic devices, optoelectronics, fiber laser, chaos

1. Introduction

An important advantage of erbium-doped fiber lasers (EDFLs) over other optical devices is a

long interaction length of the pumping light with active ions that leads to a high gain and a

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



single transversal-mode operation for a suitable choice of fiber parameters. The EDFL with

coherent radiation at the wavelength of 1560 nm is an excellent device for applications in

medicine, remote sensing, reflectometry, and all-optical fiber communications networks [1, 2].

Rare-doped fiber lasers subjected to external modulation from semiconductor pump lasers are

known to exhibit chaotic dynamics [3–12]. Besides, a very important advantage of the EDFL

working in a chaotic regimen is its application to the development of basic logic gates [13],

since it can process different logical gates and implements diverse arithmetic operations. The

simplicity in switching chaotic EDFL between different logical operations makes this device

more suitable for general proposes than traditional computer architecture with fixed wire

hardware.

Using a chaotic system as a computing device was proposed by Sinha and Ditto [14], who

applied for this purpose a chaotic Chua’s circuit with a simple threshold mechanism. After this

pioneering work, chaotic computational elements received considerable attention from many

researchers who developed new designs allowing higher capacity for universal general com-

puting purposes enable to reproduce basic logic operations, such as AND, OR, NOT, XOR,

NAND, and NOR [15–26]. Likewise, a single chaotic element has the ability in reconfiguring

into different logic gates through a threshold-based control [15, 16]. This device is also known

as reconfigurable chaotic logic gate (RCLGs) and, due to its inherent nonlinear components,

has advantages over standard programmable gate array elements [19] where reconfiguration

is obtained by interchanging between multiple single-purpose gates. Also, discrete circuits

working as RCLGs were proposed to reconfigure all logic gates [17, 18]. Additionally,

reconfigurable chaotic logic gates arrays (RCGA), which morph between higher-order func-

tions, such as those found in a typical arithmetic logic unit (ALU), were invented [20]. Recently,

some of the authors of this work proposed an optoelectronics flexible logic gate based on a

fiber laser [27, 28].

Here, we describe in detail the implementation of the optoelectronics flexible logic gate based

on EDFL, which exploits the richness and complexity inherent to chaotic dynamics. Using a

threshold controller, NOR and NAND logic operations are realized in the chaotic EDFL.

This chapter is an extension of the article “Optoelectronic flexible logic gate based on a fiber laser.

Eur. Phys. J. Special Topics. 2014” [27]. It is organized as follows. The theoretical model of the

diode-pumped EDFL is described in Section 2. The experimental setup of the optical logic gate

based on the EDFL is given in Section 3. Likewise, the discussion of theoretical and experi-

mental results on the application of the NAND and NOR logic gates based on the EDFL as a

function of the threshold controller is presented in Section 4. Finally, main conclusions are

given in Section 5.

2. Theoretical arrangement

The EDFL is known to be extremely sensitive to external disturbances, which can destabilize

its normal operation. This makes this device very promising for many applications where small-

amplitude external modulation is required to control the laser dynamics. The mathematical
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model and experimental arrangement of the EDFL used in this work have been developed by

Pisarchik et al. [6–12].

2.1. EDFL theoretical model

Based on the power balance approach, we model diode-pumped EDFL dynamics by consider-

ing both the excited-state absorption (ESA) in erbium at the 1560-nm wavelength and the

averaged population inversion along the pumped active fiber laser. The model addresses two

evident factors, the ESA at the laser wavelength and the depleting of the pump wave at

propagation along the active fiber, leading to undumped oscillations experimentally observed

in the EDFL without external modulation [6, 12]. The energy-level diagram of the theoretical

model used in this work is shown in Figure 1.

Using a conventional system for EDFL balance Equations [6, 7], which describe the variations

of the intra-cavity laser power P (in units of s�1), that is, the sum of the contrapropagating

waves’ powers inside the cavity and the averaged population N (dimensionless variable) in the

upper laser level “2,” we can write EDFL equations as follows:

dP

dt
¼

2L

Tr
P rωα0 N ξ� η½ � � 1ð Þ � αth½ � þ Psp (1)

dN

dt
¼ �

σ12rωP

πr20
ξN � 1ð Þ �

N

τ
þ Ppump (2)

where N can take values between 0 ≤ N ≤ 1 and is defined as N ¼ 1
n0
L

Ð L
0 N2 zð Þ dz, with N2

as the upper laser-level population density “2,” n0 is the refractive index of an erbium-

doped fiber, and L is the length of the active fiber medium; σ12 is the cross section of the

absorption transition from the state “1” to the upper state “2,” σ12 is the stimulated cross

section of the transition in return from the upper state “2” to the ground state “1,” in

Figure 1. Erbium-doped fiber laser energy diagram.
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magnitude practically are the same, that is, σ21 = σ12, that gives ξ ¼ σ12þσ21
σ12

¼ 2; η ¼ σ23
σ12

is the

coefficient ratio between excited-state absorption (σ23) and the ground-state absorption

cross sections (σ12); τr ¼
2n0 Lþl0ð Þ

c is the photon round-trip time in the cavity (l0 is the length

intra-cavity tails of FBG couplers); α0 ¼ N0σ12 is the small-signal absorption of the erbium

fiber at the laser wavelength (N0 = N1 + N2 is the total erbium ions’ populations density in

the active fiber medium); αth ¼ γ0 þ
ln 1=RBð Þ

2L is the cavity losses at threshold (γ0 being the

passive fiber losses, RB is the total reflection coefficient of the fiber Bragg grating (FBG)

couplers); τ is the lifetime of erbium ions in the excited state “200; rω is the factor addressing

a match between the laser fundamental mode and erbium doped core volumes inside the

active fiber, given as

rω ¼ 1� exp �2 r0=ω0

�

Þ
2

� �

, (3)

where r0 is the fiber core radius and w0 is the radius fundamental fiber mode. The spontaneous

emission Psp into the fundamental laser mode is taken as

Psp ¼
y10�3

τTτ

λg

ω0

� �2 r20α0L

4π2σ12
: (4)

Here, we assume that the erbium luminescence spectral bandwidth (λg being the laser wave-

length) is 10�3. Ppump is the laser pump power given as

Ppump ¼ PP

1� exp �βα0L 1�Nð Þ
� �

n0πr
2
0L

, (5)

where Pp is the pump power at the fiber entrance and β ¼
αp

α0
is the dimensionless coefficient

that accounts for the ratio of absorption coefficients of the erbium fiber at pump wavelength λp

to that at laser wavelength λg. Eqs. (1) and (2) describe the laser dynamics without external

modulation. We add the modulation to the pump parameter as:

Ppump ¼ P0
p 1þ Amsin 2πFmtð Þ½ �, (6)

where P0
p is the laser pump power without modulation, Am and Fm are the modulation

amplitude and frequency, respectively.

We perform numerical simulations for the laser parameters corresponding to the following

experimental conditions from references [6, 7]: L = 90 cm, n0 = 1.45 and l0 = 20 cm, giving

Tr = 8.7 ns, r0 = 1.5 � 10�4 cm, and w0 = 3.5 � 10�4 cm. The value of w0 is measured

experimentally and using Eq. (3) resulting in rw = 0.308. The coefficients characterizing the

resonant-absorption properties of the erbium fiber at the laser and pump wavelengths are

α0 = 0.4 cm�1 and β = 0.5 (corresponding to direct measurements for doped fiber with erbium

concentration of 2300 ppm); σ12 = σ21 = 3� 10�21 cm2 and σ23 = 0.6� 10�21 cm2 giving ξ = 2 and

η = 0.2; τ = 10�2 s [6, 7]; γ0 = 0.038 and RB = 0.8 with a cavity losses at threshold of
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Figure 2. Time series of laser intensity P, with Am = 1, and (a) Fm = 3 kHz, (b) Fm = 4 kHz, (c) Fm = 3 kHz, (d) Fm = 7 kHz, (e)

Fm = 10 kHz, (f) Fm = 15 kHz, and (g) Fm = 20 kHz.
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αth = 3.92 � 10�2. The laser wavelength is λg = 1.56 � 10�4 cm (photon energy

hvg = 1.274 � 10�19 J) corresponding to the maximum reflection coefficients of both FBG’s.

The laser threshold is defined as ε = Pp/Pth, where

Pth ¼
Nth

τ

n0πrω
2
pL

1� exp �βα0L 1� yth
	 
� � (7)

is the threshold pump power, Nth ¼
1
ξ 1þ αth

rωα0

� �

is threshold population of the level “2” and

the radius of the pump beam wp = w0. In the numerical simulations, we choose the pump

power Pp = 7.4 � 1019 s�1 that yields the laser relaxation oscillation frequency f0 ≈ 30 kHz.

In order to understand the dynamics of the EDFL, the bifurcation diagram of the local maxima of

the laser power versus the pump modulation frequency Fm is calculated. To perform numerical

simulations, we normalize Eqs. (1) and (2) (as described in the appendix of reference [29]) and

obtain the following equations:

dx

dt
¼ axy� bxþ c yþ rωð Þ, (8)

dy

dt
¼ �dxy� yþ rωð Þ þ e 1� exp �βα0L 1�

N2 þ rω
ξ2rω

� �� �� 


, (9)

Figure 2 presents the time series of the laser intensity at the following driven frequencies: (a)

Fm = 3 kHz, the laser behavior is chaotic, (b) Fm = 4 kHz, the EDFL response is a period 4, (c)

Fm = 3 kHz, the EDFL response is a period 3, (d) Fm = 7 kHz, the EDFL response is a period 2,

(e) Fm = 10 KHz, chaos, (f) Fm = 15 kHz and (g) Fm = 20 kHz, a period 1 with decreasing

amplitude as the modulation frequency is increased.

The constant parameters of Eqs. (8) and (9) are shown in Table 1 [30].

Figure 3 shows the numerical bifurcation diagram of the laser peak intensity versus the

modulation frequency (0–20 kHz) for the 100% modulation depth (Am = 1). The laser dynam-

ical behavior (periodic or chaotic) is determined by the modulation frequency.

In this work, we are interested in a chaotic regime. Figure 4 shows the times series corresponding

to chaos for Fm = 10 kHz.

Constant parameter Values (a.u.)

a 6.6207 � 107

b 7.4151 � 106

c 0.0163

d 4.0763 � 103

e 506

Table 1. Normalized constant parameters of Eqs. (8) and (9).
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Figure 3. Numerical bifurcation diagram of laser peak intensity versus modulation frequency (Fm) for Am = 1.

Figure 4. Time series of laser intensity P for Fm = 10 kHz and Am = 1.
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3. Implementation of the optoelectronics flexible logic gate using

the EDFL

Figure 5 shows the scheme of the proposed optoelectronics flexible logic gate using the EDFL. The

reconfigurable logical gate contains two principal elements: a chaotic EDFL and a threshold con-

troller. The dynamics behavior of the EDFL is described by the balance Eqs. (1) and (2). The

threshold controller compares laser powerPwith valueVT generated by the controller that releases

outputVT =E ifP>E andVT =Potherwise,withE as threshold value. This output signalVT is added

to the diode pump current Ppump with a coupling coefficient K. The logic gate output subtracts VT

fromP yieldingV0 = P� VT. Next, we consider the laser and the controllermodels separately.

3.1. Threshold controller

In our numerical simulations, we use the laser power P calculated by Eqs. (1), (2), and (6) as the

input signal for the threshold controller. The output signal VT from the controller is used to

control the diode pump current as:

Ppump ¼ Pp 1þ Amsin 2πFmtð Þ þ KVT½ � (10)

The threshold controller has two logic inputs 0 and 1, which generate the corresponding values

I1 and I2, where I1,2 = 0 for input 0 and I1,2 = Vin otherwise, where Vin is a certain value to define

the threshold for E. A type of the logic gate is determined by a parameter Vc. The procedure to

obtain this parameter is explained in detail in section Results and Discussions.

The controller generates an initial value E defined by the inputs I1 and I2 being either 0 or Vin

and takes the value:

E ¼ Vc þ I1 þ I2 (11)

Figure 5. Arrangement of the optoelectronics logic gate. E is the threshold controller, Vc determines the logic response, I1,2
is the logic input which takes the value of either Vin or 0, VT is the output controller signal, P is the laser output intensity,

Ppump is the diode laser pump intensity, Pp is the continuous component of the pumping, Am and Fm are the modulation

depth and frequency, and K is the gain factor.
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so that there are three possible options:

E ¼

VC for 0; 0ð Þ,

VC þ V in, for
0;V inð Þ

V in; 0ð Þ
,

VC þ 2V in, for V in;V inð Þ:

8

>

>

<

>

>

:

(12)

The controller output is determined as:

VT ¼
E if P > E,

P if P ≤E:

�

(13)

Figure 6. Electronic circuits of the threshold controller.
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where VT becomes the threshold signal.

Figure 6 shows the electronic circuits in the controller to generate E, VR, V0, and Ppump signals.

The electronic components used in the controller are presented in Table 2.

3.2. EDFL experimental arrangement

The experimental arrangement presented in Figure 7 consists of EDFL pumped by a laser diode

(LD) from Thorlabs PL980 operating at 1560 and 977 nm, respectively. The Fabry-Perot fiber laser

cavity with total length of 4.81 m is formed by an active, long EDFL of 88-cm length, and a 2.7-

μm core diameter, incorporating two fiber Bragg gratings (FBG1 and FBG2) with 0.288 and

0.544-nm full widths on half-magnitude bandwidth, having, respectively, 〜100% and 〜96%

Electronic component Value

R1–R9 100 Ω

R10–R15, R17, R19–R28 10 kΩ

R16 100 KΩ

R18 2.2 MΩ

C1, C2 100 μF

D1, D2 Zener diode

OA1 � OA6 LM741CN

I/O Phoenix connector

Table 2. Parameters for electronic components of circuits shown in Figure 6.

Figure 7. Experimental scheme of the optoelectronics logical gate based on EDFL.
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reflectivity at the laser operating wavelength. A fiber laser formed by an erbium doped fiber

(EDF) and two Bragg gratings (FBG1 and FBG2), is externally driven by the harmonic pump

signal Ppump ¼ Pp 1þ Amsin 2πFmtð Þ þ KVT½ � (through a sum circuit CI 741) applied to a diode

pump laser (LD) current via a laser diode controller (LDC) from a wave function generator

(WFG). A single-mode fiber is used to connect the optical components.

The current and temperature of the LD are controlled by a laser diode controller (LDC)

(Thorlabs ITC510). The 145.5-mA pump current is selected to guarantee that the laser relaxa-

tion oscillation frequency is around Fr = 30 kHz to provide a 20-mW power; which is above a

110-mA EDFL threshold current. A harmonic modulation signal Amsin 2πFmtð Þ from wave

function generator (WFG) (Tektronix AFG3102) is supplied to the diode pump current. The

fiber laser output after passing through a polarization controller (P), wavelength division

multiplexer (WDM), and an optical isolator (OI) is recorded with a photodiode (PD), and the

electronic signal is compared with the signal generated by the threshold controller. The thresh-

old controller with E ¼ Vc þ I1 þ I2 is a summing circuit (CI 741) with dynamical control

signal Vc and inputs logic signals I1,2 controlled by a USB NI 6803, VT is a comparator circuit

between laser intensity P and threshold controller E. The logic gate output V0 is sent back to

the driver (Ppump) of the EDFL to change its dynamics. The signals P from the EDFL, I1,2, VT,

and V0 from the threshold controller are analyzed with a multichannel oscilloscope.

4. Results and discussions

4.1. Numerical results

In order to use the arrangement of the optoelectronics logic gate shown in Figure 5, it is

necessary to determine Vc and Vin signals and find the required logic gates NAND or NOR.

Figure 8. Diagram of values for Vc and Vin to determine the logic gate type, either NAND or NOR.
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The value of Vc was gradually changed (�20 V < Vc < 2 V) and for each value of Vc the value of

Vin was changed (2 V < Vin < 20 V). Figure 8 shows the values of Vc versus Vin which we use to

determine the logical gates NAND and NOR. If we set the parameter Vin = 10 V and Vc varies

from �1 to �9 V, we get the NOR gate; but if Vc changes from �11 to �20 V, the NAND gate is

used.

Figure 9. Numerical simulation results. (a)–(b) inputs I1,2, (c) dynamical control signal Vc, (d) threshold controller signal

VT, (e) logic gate output V0, and (f) recover logic output from signal V0.
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The numerical results of NOR and NAND operations of the reconfigurable dynamic logic gate

Eqs. (1), (2), and (10)–(13) are shown in Figure 9 for Am = 1 V and Fm = 10 kHz.

For the time interval from t = 0 to 6.5 ms, we have a NOR logic gate, where the signal from

Vc = � 3 V to Vin = 15 V produces three different combinations of the threshold controller VT as

1. For input I1,2 ¼ V in;V inð Þ, E ¼ 27 resulting in P ≤E and the threshold level VT ¼ P, that

yields V0 ¼ 0.

2. For input I1,2 ¼ 0;V inð Þ= V in; 0ð Þ, E ¼ 12 resulting in P ≤E and the threshold level VT ¼ P,

that yields V0 ¼ 0.

3. For input I1,2 ¼ 0; 0ð Þ, E ¼ Vc ¼ �3 resulting in P > E and the threshold level VT ¼ E, that

yields V0 ¼ P� E.

For the time interval from t = 6.5 to t = 13 ms, Figure 9 shows a NAND logic gate, where the

signal from Vc = �20 V to Vin = 15 V produces three different combinations of the threshold

controller VT as

1. For input I1,2 ¼ V in;V inð Þ, E ¼ Vc þ I1 þ I2 ¼ Vc þ 2V in ¼ 10 resulting in P ≤E and the

threshold level VT ¼ P, that yields V0 ¼ 0:

2. For input I1,2 ¼ 0;V inð Þ= V in; 0ð Þ, E ¼ Vc þ I1 þ I2 ¼ Vc þ V in ¼ �5 resulting in P > E and

the threshold level VT ¼ E, that yields V0 ¼ P� E.

3. For input I1,2 ¼ 0; 0ð Þ, E ¼ Vc ¼ �20 resulting in P > E and the threshold level VT ¼ E,

that yields V0 ¼ P� E.

4.2. Experimental results

Similar to the results of the numerical simulations, a change was made in the parameters for Vc

versus Vin to determine required NAND or NOR logic gates. Figure 10 shows the values of Vc

Figure 10. Diagram of values for Vc and Vin to determine the logic gate type, either NAND or NOR.
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versus Vin which we use to determine the NAND and NOR logic gates. If we set the parameter

Vin = 160 mVand changes Vc =�10.7 mV, we get the NOR gate, but if we change Vc =�170.3 mV,

the NAND gate is used.

Figure 11 and Table 3 show the experimental results of the dynamic NOR and NAND logic

operations for Am = 700 mV, Fm = 15 kHz, and Vin = 200 mV. The NOR gate corresponds to the

time series from t = 0 ms to t = 8 ms for Vc = ©40 mV, and for the NAND gate for the time series

Figure 11. Experimental results. (a)–(b) inputs I1,2, (c) dynamical control signal Vc, (d) threshold controller signal VT, (e)

logic gate output V0, and (f) recover logic output from signal V0.
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from t = 8 to t = 16 ms for Vc = �220 mV. By comparing Figure 9 with Figure 11, we can see a

good agreement between the numerical and experimental results.

5. Conclusions

In this chapter, we have described the implementation of an optoelectronics logic gate based

on a diode-pumped EDFL. We have demonstrated good functionality of our system for NOR

and NAND logic operations, taking advantage of optical chaos and a threshold controller. The

system was controlled by a split signal from the threshold controller, allowing the diode pump

laser to mismatch between the output threshold controller signal and the output EDFL signal.

The numerical results obtained from the EDFL equations have displayed good agreement with

the experimental results. We have demonstrated that the chaotic dynamic behavior of the

diode-pumped EDFL and the electronic threshold controller can be successfully used to obtain

NAND or NOR logic gates to be constructive bricks of different logic systems. The main

contribution of the developed optoelectronics logic gate is addressed in optical computing.

The proposed device is more adaptable and faster than a conventional wired hardware, since it

can be implemented as an arithmetic processing unit or an optical memory RAM.
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