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Abstract

The effective and reliable management of malaria vectors is still a global challenge. 
Recently, it has been noted that the first vaccine against Plasmodium falciparum malaria, 
RTS,S/AS01 showed only transient protection, particularly in infants, and rapid resis-
tance has been developing to artemisinin-based drugs. Therefore, the control of malaria 
mosquito vectors according to strategies of integrated vector management (IVM) is 
receiving emphasis. A rather wide number of novel mosquito control tools have been 
tested, including attractive toxic sugar baits, eave tubes, nano-synthesized pesticides 
loaded with microbial- and plant-borne compounds, biocontrol agents with little non-
target effects, new adult repellents, oviposition deterrents, and even acoustic larvicides. 
However, their real-world applications remain limited. Most National Malaria Control 
Programs in Africa still rely on indoor residual spraying (IRS) and long-lasting insec-
ticidal nets (LLINs) to reduce malaria incidence but generally have insufficient impact 
on malaria prevalence. Here, we focus on facts, trends, and current challenges in the 
employment of the above-mentioned vector control tools in the fight against malaria. We 
emphasize the needs for better vector control tools used in IVM to overcome the chal-
lenges posed by outdoor transmission and growing levels of insecticide resistance, which 
are threatening the efficacy of LLINs and IRS.

Keywords: Anopheles, attractive toxic sugar baits, eave tubes, long-lasting insecticidal 
nets, mosquito insecticide resistance, Plasmodium falciparum, Plasmodium vivax

1. Introduction

Malaria is a major challenge to public health; it is caused by Plasmodium parasites, obliga-

torily transmitted to humans through the bites of infected female mosquitoes of the genus 
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Anopheles (Diptera: Culicidae). There are five known species of Plasmodium that cause malaria 
in humans, P. falciparum, P. vivax, P. ovale, P. malariae and P. knowlesi [1–5]. Currently, 91 coun-

tries are endemic for malaria [6]. However, the African region is the most affected with 90% of 
the cases and 92% of deaths [7–9]. Added to that, malaria has a major impact on the economic 
development of these countries accounting for both direct and indirect medical costs, such as 
long-term disabilities and decrease in tourism [10–13].

In the past decade, two significant developments for malaria prevention and treatment were 
achieved. The first was the discovery of artemisinin, a very effective drug against Plasmodium 

falciparum; this molecule has been studied by the Chinese scientist Y. Tu [14–16]. The second 
was the development of the vaccine against P. falciparum (RTS,S/AS01), by GlaxoSmithKline 
Biologicals, the PATH Malaria Vaccine Initiative, supported by the Bill & Melinda Gates 
Foundation, and carried out at several African research centers [17, 18]. However, the vaccine 
only protected transiently the subjects against malaria [19].

Importantly, new drugs and vaccines are needed to achieve further substantial decrease in 
the prevalence and incidence of malaria globally and address the increasingly resistance of 
Plasmodium to the drugs currently available such as chloroquine and artemisinin [20–22]. 
More importantly, effective and scientific-driven control strategies for reducing Anopheles 

vector densities remain the gold standard to prevent malaria transmission [23–25]. However, 
controlling mosquito populations is a difficult task and is unlikely to be achieved by employ-

ing only one tool, such as the use of insecticides commonly employed in the past [26, 27]. Now 
it is clear that local malaria elimination across different endemic environments will not be 
achieved with current vector control tools, but will require using several approaches together 
in the form of integrated vector management (IVM) [28].

2. New tools to fight malaria vectors in an IVM perspective

To decrease the risk of vector-borne disease transmission and increase the effectiveness and 
sustainability of IVM in reducing mosquito populations, local features should be considered 
[29]. Therefore, guidelines were developed by the global vector control response (GVCR) 
including: (1) strengthening inter- and intra-sectoral action and collaboration; (2) enhance vec-

tor control surveillance and evaluation of interventions; (3) scale up and integrate tools and 
approaches; and (4) engage and mobilize communities. The goals of this initiative included 
increasing the effectiveness of reducing mosquito vectors for both capacity and capability as 
well as encouraging applied research and innovation [13].

The use of IVM aiming for optimum mosquito control contrasts with strategies used in the 
past that heavily relied on insecticide spraying. Current mosquito control strategies make 
use of every available tool. For that reason, regular assessments of local disease transmission 
dynamics and scientific-driven decision-making criteria are important for achieving effective 
vector-borne disease transmission reduction [27].

Several tools have been proposed to control vector mosquitoes, especially for the Anopheles 

genus [23, 30]. However, current malaria management programs widely rely on indoor 
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 residual spraying (IRS), and long-lasting insecticidal nets (LLINs) [5], contrasting with 
contemporary IVM guidelines. Moreover, residual transmission of malaria has been com-

monly found using both IRS and LLINs mosquito control strategies [31]. The presence 
of the insecticide can be translated as a powerful selective pressure, selecting mosquitoes 
that are able to avoid contact with it. Key shifts in mosquito behavior such as seeking for 
human hosts outdoors, avoiding contact with LLINs, and finding resting places outside 
houses decrease the effectiveness of long-lasting insecticidal strategies [32, 33]. The efficacy 
of LLINs and IRS can be increased if used together with new tools and guidelines available 
for controlling mosquito populations, as recommended by the Vector Control Advisory 
Group (VCAG). Some environments are also suited for using Bacillus thuringiensis serovar. 
israelensis (Bti) to manage breeding sites [34–38]. Moreover, promising new tools for mos-
quito control are being developed, the most notable being “eave tubes” and attractive toxic 
sugar baits (ATSB).

Rural houses in African countries often are constructed with a gap between the walls and the 
roof to improve ventilation. Anopheles mosquitoes usually enter the houses exploiting this 
architectural structure exposing the residents to infective bites [39]. The “eave tubes” technol-
ogy comprises the use of plastic tubes with adulticide-coated mesh under the roofline and the 
installation of a screen to close the remaining gap (Figure 1). When mosquitoes try to enter 
the house through the eaves, they come in contact with the insecticide and die. This technique 
is based on the attractive power that the human residents represent for the Anopheles mos-
quitoes comprising an “attract and kill” strategy (Figure 2) [40, 41]. The ATSB method is also 
found under the same strategy of “lure and kill”; it exploits the instinct of mosquitoes, both 
males and females to seek and feed on sugar sources [42, 43]. The ATBS can be deployed in 
bait stations or sprayed on plants and are co-formulated with low-risk toxic substances, such 
as boric acid [44–50]. Even though more studies and epidemiological field trials are required, 
“eaves tubes” and ATSB methods are leading new technologies for vector control that are 
highly effective, target-specific, and with minimal nontarget effects and contamination of the 
environment.

Several other modern strategies exploiting different approaches are being developed, includ-
ing the use of cytoplasmic incompatibility caused by Wolbachia endosymbiotic bacteria. This 

Figure 1. The “eave tubes” technology comprises the use of plastic tubes with adulticide-coated mesh under the roofline 
and the installation of a screen to close the remaining gap. (A) Graphic representation of a house without “eaves tubes” 
and (B) with “eaves tubes”.
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technique has been used to control Aedes aegypti and has achieved promising results [51]. 
Currently, it is undergoing field testing in Brazil and Colombia; however, further studies 
are needed to transfer this technology to other mosquito species since there are inherent 
risks for the release of mosquitoes infected with Wolbachia, and the result should be moni-
tored for undesirable effects such as increased levels of West Nile virus infection observed 
in Culex tarsalis mosquitoes [52–54]. Other species of bacteria such as Enterobacter Esp_Z and 
Chromobacterium Csp_P have been used to inhibit the development of Plasmodium in mos-

quitoes such as Anopheles stephensi [55], by increasing the mosquito immune response to 
Plasmodium parasites [31, 56].

The release of irradiated sterile male mosquitoes that will seek and mate with wild females 
impairing the production of offspring (SIT) is once more being considered as a promising tool 
for controlling mosquitoes. However, its effectiveness is likely to be decreased by the pres-

ence of cryptic species and the presence of multiple Anopheles vectors. The same issue should 
be considered with the use of genetically modified mosquitoes carrying a lethal gene (RIDL), 
since this technique is species specific and may not be indicated to control outdoor malaria 
transmission. Genetically modified mosquito techniques based on impairing the Plasmodium 

life cycle inside the mosquito is still in preliminary phases of development and is not likely to 
be available in the near future [30, 57–61].

The above strategies can be used in the IVM context along with well-established control 
tools, such as selective microbial and plant-borne pesticides effective against immature mos-

quitoes, oviposition deterrents, insecticide-coated clothes and other surfaces for personal 
protection, spatial repellents reducing human-vector contact such as microencapsuled insec-

ticide paint formulation, as well as synthetic and plant-borne repellents [23, 62–69].

The development of plant-based larvicides is of particular interest, and several plant spe-

cies were successfully used for the synthesis of nano-mosquitocides; nonetheless, plant-based 

Figure 2. Attractive toxic sugar baits (ATSB) employing an “attract and kill” strategy. This technique consists of using 
natural attractants such as fruit or flower scent to lure mosquitoes to sugar feeding in a solution containing toxic 
substances that will lead to its death.
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 ovicidal and ovideterrent products are still scarce. This technology can provide rapid synthe-

sis of toxic substances and mosquito repellents useful to manage mosquito populations, with 
minimal toxicity to humans. Even though mosquito control strategies relying on plant-based 
larvicides are a fast-growing research area, it is still in the preliminary phase of development 
and several steps should be taken into account, that is, (1) development, characterization, and 
optimization of potential botanical components suitable for nano-biosynthesis; (2) identifi-

cation of potential toxic nanoparticles; (3) feasibility of utilization of plant-based industrial 
by-products as nano-mosquitocides; (4) field evaluation of the effectiveness of plant-based 
nanoparticles to control mosquito populations; and (5) effect of plant-based nanoparticles on 
non-target species and environment [70, 71].

Natural predators also have been used to control immature mosquitoes including cyclopoid 
copepods, Toxorhynchites mosquitoes, water bugs, backswimmers, tadpoles, and fishes [72–74].  
The efficacy of mosquito predators may vary accordingly to different environmental settings 
and their impact on non-target aquatic species and difficulty in using multiple or artificial 
breeding containers should be considered for their use in control strategies [71, 75]. Another 
approach for controlling mosquitoes is based on endectocide ivermectin, a molecule that has 
been used for more than 30 years to control lymphatic filariasis. This molecule remains in the 
human bloodstream following a standard oral dose and can kill Anopheles mosquitoes that 
feed on the blood of medicated persons [76–79]. Controlling vector mosquito populations is 
a difficult task and so the addition of new technologies to be considered for IVM will help 
improve the effectiveness of vector-borne disease transmission [80–83].

Current strategies for malaria vector control used in most African countries still rely on LLINs 
and IRS, which generally are not sufficient to achieve successful malaria control and local 
elimination [13, 25, 84]. Even though LLINs and IRS are very effective for in-house reduction 
of malaria transmission, in endemic areas, it has been showed that insecticide-treated bed 
nets reduce malaria prevalence only by 13% [85–91]. Furthermore, due to the high abundance 
of mosquitoes, even low levels of Plasmodium transmission undermine efforts to reduce the 
prevalence of malaria, since human hosts are bitten multiple times increasing the chance of 
coming in contact with the parasite. The prevalence of P. falciparum is strongly related to the 
number of infective bites per person per year or annual entomological inoculation rates (EIRs), 
ranging from <1 to >500. Malaria prevalence is positively associated with high EIRs; however, 
even low annual EIRs (<5) can be associated with malaria prevalence levels of 40–60%. For 
a significant reduction in the prevalence of malaria, EIRs must be lower than 1 [92]. Vector 
control strategies implemented in Africa have so far been unable to achieve such low levels of 
malaria transmission [93].

Besides, with the increase in the control efforts focused into indoor mosquitoes, the dynamics of 
malaria transmission is shifting from the highly endophilic to more exophilic outdoor-adapted 
species within the Anopheles gambiae complex [94–99]. In Asia, the main malaria vectors of the 
Anopheles dirus complex are exophagic and difficult to target with conventional control strate-

gies [31]. Moreover, increasing resistance to insecticides renders LLINs and IRS less effective 
for controlling Anopheles populations. As well, even though larvicides are effective against 
immature mosquitoes, they are not recommended for application in rural areas [100–105].
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3. Conclusions and issues to watch for

The importance of basic knowledge on mosquito vector behavior and ecology for the devel-
opment of tailor-made vector control strategies is considered key in the recent WHO Health 
and Environment Linkages Initiative (HELI), highlighting its importance for sustainable long-
term mosquito control actions [106–111].

Recently, an updated research agenda for malaria elimination and eradication (malERA) was 
published [26, 112–114]. It comprises a multidisciplinary approach to the most important 
challenges of controlling malaria. Several factors significantly impact the dynamics of malaria 
transmission. Specifically, shifts in mosquito ecology and behavior caused by anthropogenic 
alterations in the environment have a major impact on the effectiveness of control strategies. 
These alterations include, but not limited to, urbanization, human movement, availability 
of breeding containers and water bodies, hosts for blood feeding and availability of sugar 
sources and resting places. Moreover, mosquito insecticide resistance, behavioral avoidance, 
high vector biodiversity, competitive and food web interactions, mosquito population dynam-

ics and dispersion also play a major role in the complex scenario comprising the dynamics of 
malaria transmission [17, 115, 116].

The development of reliable and effective mosquito control strategies is no easy task, and sev-
eral challenges must be overcome to achieve a long-term sustainable reduction of mosquito 
populations. Most of the new strategies and tools developed for controlling vector mosquito 
populations are not rigorously tested, and most of the time, their real epidemiological impact 
is not properly assessed rendering the deployment of ineffective mosquito control strategies 
with limited result on the prevalence of vector-borne diseases [117]. These challenges can be 
classified as systemic, structural, informational, environmental, human movement, political 
and financial ones [13]. Key core issues have to be addressed in order to decrease the prev-
alence of malaria, such as (1) vector surveillance is often neglected or insufficient in most 
countries at risk of mosquito-borne diseases, rendering control efforts ineffective; (2) malaria 
endemic countries are often endemic for more than one major mosquito-borne disease deplet-
ing the availability of resources; (3) there is a lack of scientific evidence to guide the efforts for 
mosquito control; (4) anthropogenic alterations in the environment and global warming are 
responsible for driving the abundance of vector mosquitoes, directly affecting the effective-
ness of control strategies; (5) the increase in the human population and movement of people 
is associated with the dispersion of vector mosquitoes, exposing non-immune populations to 
new diseases; and (6) funds for vector surveillance are negligible and even though financial 
support has been made available for LLINs and IRS for controlling Anopheles mosquitoes, 
other vector-borne diseases are largely neglected [13, 17, 118, 119].

Priorities in vector control should be defined by the national vector-borne disease control pro-
gram and studies designed and performed in consultation with national and international 
experts in the relevant field. The plan should consider a list of strategic key areas necessary to 
implement vector control in a given country, followed by research guidance from academic insti-
tutes and companies [27]. The most important topics to be considered that are also in agreement 
with the WHO criteria, comprise: (1) assessment of the health system limitations to improve pro-
cesses and methods aiming for the improvement in efficacy of vector control; (2) implementation 
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of mosquito surveillance for the development of guidelines and models of the risk of disease 
transmission (Figure 3); (3) development of effective and environmentally friendly strategies to 
reduce malaria and other vector-borne disease transmission, following the recommendations by 
VCAG and considering the increase of insecticide resistance [100, 102]. To our understanding, 
traditional insecticide-based control efforts, such as IRS and LLIN, should be used in combina-

tion with novel eco-friendly tools, such as “eave tubes technology,” ATSB methods, and even 
the employment of the ectendocide ivermectin [40, 44, 76]. These new mosquito control tools 
should be accompanied by (4) an evaluation of their effectiveness, assessment of their useful-
ness and impact through randomized controlled trials with entomological and epidemiological 
outcomes (Figure 3), this has been done for traditional control strategies such as LLINs and IRS; 
(5) the monitoring of man-made alteration in the environment and its impact in the dynamics 
of malaria vectors; and (6) the establishment of a multi-disciplinary team with different areas of 
expertise (Figure 3) [100, 102, 120]. Indeed, the transdisciplinary cooperation among profession-

als is important for ensuring adequate evaluation of the epidemiological impact triggered by 
novel mosquito vector control strategies.

Here we illustrate the complex scenario comprising the epidemiology of malaria and how 
anthropogenic selective pressures are modulating the ecology and behavior of vector mos-

quitoes. To our understanding, there is no other choice rather to use rigorous, science-driven 
strategies for controlling vector mosquito populations.
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