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Abstract

Multivariate adaptive regression splines (MARSP) is a nonparametric regression method. 
It is an adaptive procedure which does not have any predetermined regression model. 
With that said, the model structure of MARSP is constructed dynamically and adaptively 
according to the information derived from the data. Because of its ability to capture essen-
tial nonlinearities and interactions, MARSP is considered as a great fit for high-dimension 
problems. This chapter gives an application of MARSP in semiconductor field, more spe-
cifically, in standard cell characterization. The objective of standard cell characterization 
is to create a set of high-quality models of a standard cell library that accurately and 
efficiently capture cell behaviors. In this chapter, the MARSP method is employed to 
characterize the gate delay as a function of many parameters including process-voltage-
temperature parameters. Due to its ability of capturing essential nonlinearities and inter-
actions, MARSP method helps to achieve significant accuracy improvement.

Keywords: multivariate adaptive regression splines (MARSP), semiconductor 
microelectronics, standard cell characterization, very large scale integration (VLSI), 
variation-aware gate-delay modeling, statistical timing analysis

1. Introduction

Multivariate adaptive regression splines (MARSP) was first proposed by Friedman [1] for solv-

ing regression-type problems. MARSP is widely used to predict the values of an outcome 

variable from a set of predictor variables. There are many methods for model fitting, and 
MARSP is one of them. Other modeling techniques include linear regression (e.g., general 

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
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 linear model), nonlinear regression (e.g., generalized linear/nonlinear models), and regression 
trees (e.g., classification and regression trees), and so on. It is also worth noting that a neural 
network, which is very popular nowadays in an era of artificial intelligence and machine learn-

ing, is also a modeling technique.

MARSP is a nonparametric regression procedure that makes no assumptions about the 

underlying functional relationships between dependent and independent variables. The form 

of MARSP and its coefficients are entirely derived from the regression data. The modeling 
strategy is called “divide and conquer,” by which the input space is partitioned into a num-

ber of regions, with each region having its own regression equation. This makes MARSP 

particularly efficient for high-dimension problems, where other techniques most likely have 
accuracy issues.

As the name suggests, MARSP uses splines as its main component. Splines are piecewise 

curves from polynomial functions. When different splines are smoothly connected, it can 
result in a flexible model which can handle both linear and nonlinear situations. The connec-

tion points between different pieces are called knots, which connect the end of one region of 
data and the beginning of another.

The MARSP technique has been particularly popular in data mining because it does not require 

or assume any particular type or any class of relationship (e.g., logistic, linear, etc.) between the 

outcome variable of interest and the predictor variables. Instead, MARSP derives useful models 

(i.e., models that yield accurate predictions) even in situations where the relationship between 

the predictor variable and the predictor variables is difficult to approximate with parametric 
models. If you are interested in more information about MARSP and how it compares to other 

methods for nonlinear regression (or regression trees), please refer to Chapter 9 of [2].

2. Standard cell characterization in very large scale integration 

(VLSI) design

In semiconductor design, standard cell methodology is a method that is widely used for very 

large scale integration (VLSI) design, especially for digital logic circuits. It is a design abstrac-

tion, where the low-level circuit layout can be encapsulated into many abstract logic represen-

tations (e.g., NOR2, NAND2 cells). As a cell-based methodology, it can enable one designer 

to focus on the high-level aspect (logical function) of a design, while another designer can 

work on the implementation aspect (physical layout). As semiconductor fabrication technol-

ogy progressed to sub-10 nm regime, standard cell methodology was the enabler to allow 

designers to scale application-specific integrated circuits (ASICs) from simple chips of several 
thousand cells, to complex chips with hundreds of millions of cells.

A standard cell provides a Boolean logic function (e.g., AND, OR) or a storage function (latch or 

flip-flop). A standard cell can be as simple as an inverter which consists of only two transistors. 
It can also be as complex as adders or multiplexers which have tens of transistors. As a standard 
cell is a logic gate, “cell” and “gate” are often interchangeable. Standard cell library is a collection 

of predefined cells which are usually fully customized to a specific technology and optimized 
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for best delay, power, area, and so on. The standard cell library provides a way for designers to 

place cells in rows, and it enables the automated layout generations for digital ASICs.

The objective of standard cell characterization is to create a set of high-quality models of a 
standard cell library that could accurately and efficiently model cell behavior. Cell behavior 
may come from a variety of parameters in different aspects like capacitance, power, timing, 
current, waveform, and so on. Among them, one of the most important models in standard 

cell characterization is timing delay models. In this chapter, for simplicity, we focus on the 
characterization of the pin-to-pin propagation delay of standard cells. Propagation delay is 
the time required for the input to be propagated to the output. In other words, it is defined as 
the time it takes for the effect change in input to be visible at the output. Propagation delay is 
important because it has a direct effect on the speed at which a digital device, such as a com-

puter, can operate. This is true of memory chips as well as microprocessors. As mentioned 

earlier that a gate and a cell are often interchangeable in this chapter, cell delay and gate delay 

are interchangeable as well.

Cell propagation delays change with many factors, including the following:

1. The transition time of the input causing transition at the output.

2. The output load being felt by the logic cell/gate.

3. The process parameters (threshold voltages, channel lengths) of the transistors that the cell 

is consisted of.

4. The power supply voltage (VDD).

5. The temperature (Although temperature is not a factor with significant impact, it is still an 
impacting factor).

Among the different factors above, the process parameters are included because of the emerg-

ingly pronounced effect called process variations, which is introduced in details in Section 
2.1.1. In the later sections, we use process-voltage-temperature (PVT) parameters to denote 
process parameters, VDD, and temperature.

2.1. Introduction (problem formation)

As mentioned above, one of the most important tasks in standard cell characterization is to 
find a model which can accurately capture the relationship between the cell propagation delay 
and the parameters that have impact on cell delay (as shown in the paragraph above). Here, 

the cell propagation delay is the response variable, and the impacting parameters (input tran-

sition time, output loads, VDD, and the process parameters) are the explanatory parameters.

We have not talked about the number of explanatory parameters yet. But as mentioned in 
Section 1, MARSP is suitable for the high-dimension problem while capturing essential non-

linearities and interactions. In the following subsections, we introduce the high-dimension 

parameter space when characterizing the delay models of standard cells, especially when the 
process variations and aging effect are included [3–7].
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2.2. Parameter space

2.2.1. Process variations

When integrated circuits are fabricated, the parameters of individual transistors vary. The 

observed random distribution of identically drawn devices is caused by the fabrication pro-

cess like impurity concentration densities, oxide thicknesses, and diffusion depths, and so 
on. These physical variations cause changes in the electrical characteristics of the transistors 

which eventually lead to the variability in the circuit performance. This is called process 

variation. Process variation is the naturally occurring variation in the attributes of transistors 
(length, widths, oxide thickness) during the chip fabrication. The scaling down of the VLSI 
process technologies has increased the process variations, especially in sub-45 nm era.

Process variations can be generally categorized into two classes: inter-die and intra-die varia-

tions. Inter-die variations occur from one die (chip) to another, meaning that the same transis-

tor in the design can get different features (channel lengths, threshold voltages, etc.) among 
different dies (chips). Intra-die variations are variations in transistor features within a chip, 
meaning that transistors at different locations on the same die can get different features. 
Spatial correlations are often seen for intra-die variations, meaning adjacent transistors have 
a higher probability of having similar features than transistors that are far apart. In this work, 

we consider not only inter-die and intra-die variations, but also the intra-gate variations. 

Intra-gate variations are part of intra-die variations, in some sense. It is the variations within 

a gate (cell), meaning that the transistors within the same gate can have different features. 
While most of the literature works ignored the intra-gate variations, our work has included 

it. As VLSI technology continues to scale down to sub-10 nm process, intra-die variations 
(including intra-gate variations) are becoming more and more dominant.

The overall objective of standard cell characterization is to characterize a cell-delay model 
which is general and able to include inter-die, intra-die, and intra-gate variations with any 

kind of distribution and any correlation profile between different parameters. In this work, 
only process variations of standard cells are considered, meaning the variations in intercon-

nect geometries are not considered.

2.2.2. Loading effect modeling (pi-model)

As technology scales down, the impact of interconnect on circuit timing cannot be neglected. 

In this work, we model interconnect as a resistive-capacitive (RC) network where all the 

capacitances are grounded.

A small patch of a gate-level circuit is illustrated in Figure 1(a), where a driving Buffer gate 
has two loading gates, a NOR2 gate and an inverter gate. Figure 1(b) replaces the two loading 

gates with corresponding input capacitances. The input capacitances of loading cells, together 

with the interconnect network, form the load of the previous driving cell. With loading gates 

modeled as corresponding input capacitances, circuit timing can be analyzed in the way that 
each stage contains a standard cell and its connecting load as Figure 1(b) shows. If the readers 

are interested in the input-capacitance modeling of the standard cells, they can refer to [8, 9] 

for more details.
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Reduced-order models are routinely used to replace the original large-order models. The 

Pi-model is the most popular reduced-order model to estimate the input admittance of RC 
interconnects. Figure 2 gives the structure of the Pi-model, where Y(s) denotes the input 

admittance of the original network and Y′(s) denotes the input admittance of the Pi-model. 
The values of   C  

1
   ,  R , and   C  

2
    are obtained by equating the first, second, and third moments of the 

Pi-model to corresponding moments of the original network.

In Pi-model, we use three parameters to represent the loading effect of the whole RC intercon-

nect. These three parameters C
1
, R, and C

2
, as well as the PVT parameters and input transition 

time, construct the parameter space for standard cell characterization which is introduced 
later in Section 3.

The shift in channel length (from the nominal value) is denoted as  ∆ L , and threshold voltage 

shift (from the nominal value) is denoted as  ∆ Vth . The supply voltage and temperature of a 

gate are denoted as  ∆ VDD  and  ∆ T , respectively, assuming that all the transistors within the 

same gate share the same voltage and temperature. The Pi-model which represents the load of 

a gate includes three parameters, namely   R  
pi
  ,  C  

pi1
  ,  C  

pi2
   . The input slew time (Slope) is also included 

for each timing arc. Note that in this work the effect of Multiple Input Switching (MIS) was 
not considered.

Figure 1. Input capacitances of the loading standard cells and the interconnect network formed the load of the previous 

driving gate. (a) A driving buffer and two loading cells (NOR2 and Inverter); (b) The driving buffer, with the input 
capacitances of the two loading cells incorporated into its load.

Figure 2. Y′(s) in Pi-model as an approximation of original input admittance function Y(s). (a) original interconnect 
(b) Pi-model.
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For a cell which has N transistors, there are 2*N device parameters (i.e.,  ∆ L, ∆ Vth  for each tran-

sistor within the cell), and six global parameters ( ∆ VDD ,  ∆ T ,   R  
pi
  ,  C  

pi1
  ,  C  

pi2
  , Slope ). This results in a 

total of (2*N + 6) parameters for a cell with N transistors. In our experiments with a commer-

cial standard cell library, the highest value of N is 32, making the highest (2*N + 6) as 70, which 

results in a quite high-dimension parameter space for cell characterization.

At this point, we have not introduced the aging effect into the parameter space. If the char-

acterized delay models need to be aging-aware, the aging parameters should be included in 
the parameter space. With aging parameters included, the dimension of the parameter space 

would be even higher. We discuss it in the following subsection.

2.2.3. High-dimensional parameter space in aging-aware standard cell characterization

For timing analysis, transistor aging is another source of variability besides PVT variations 
[10, 11]. Our work has considered the following wear-out mechanisms: bias temperature insta-

bility (BTI), hot carrier injection (HCI), and time-dependent dielectric breakdown (TDDB). 
The impact of BTI and HCI is similar as they both cause the threshold voltage of aged transis-

tors to increase, which further decreases the driving strength and ultimately increases gate 

delay over time. TDDB degrades the drain current of the stressed devices which also results in 

increased gate delay. Overall, BTI, HCI, and TDDB ultimately cause the cell delay to increase 

over time. When the increased circuit delay exceeds the clock period, the degraded circuit 
will fail to work. Therefore, the aging effect needs to be taken into account in circuit timing 
simulations, especially for those high-reliability applications like aviation, space, automotive 

[12], medical [13–17], data center [18], and so on.

The variation of channel length and the variation of threshold voltage are denoted as  ∆ L  and  

∆ Vth , respectively. For channel length, the variation ( ∆ L ) comes from only process variation, 

while for transistor threshold voltage, the variation ( ∆ Vth ) comes from both process variation 

and aging effect (BTI and HCI).

  ∆ Vth = ∆  Vth  process   + ∆  Vth  
BTI

   + ∆  Vth  
HCI

    (1)

For the effect of TDDB, we need to include two additional parameters for each transistor within 
a gate, namely,   R  

G2S
    (gate-to-source resistance), and   R  

G2D
    (gate-to-drain resistance), because the 

gate-oxide breakdown paths can happen from gate-to-drain or from gate-to-source [19–22]. In 

summary, each transistor contributes four parameters ( ∆ Vth, ∆ L,  R  
G2D

  ,  R  
G2S

   ) as input parameters. 

Thus, for a cell with N transistors, there are 4*N parameters for  ∆ L, ∆ Vth,  R  
G2S

    and   R  
G2D

   , plus six 
global parameters ( ∆ VDD ,  ∆ T ,   R  

pi
  ,  C  

pi1
  ,  C  

pi2
  , Slope ), resulting in a total of (4*N + 6) parameters for 

each cell.

As the value of N is as high as 32 in our experiments with a commercial library, the value of 
(4*N + 6) can be as high as 134. Compared to 70, which is the value of (2*N + 6) for cell char-

acterization without aging effect, the dimension of parameter space in the aging-aware cell 
characterization has nearly doubled.
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2.2.4. Training data

We have obtained our training data from simulation program with integrated circuit emphasis 

(SPICE) simulations. A mixture of central composite design and random samples are used for the 
design of experiments. Table 1 shows the corners which are used for central composite design.

2.3. Why is multivariate adaptive regression splines (MARSP) better

Why is MARSP better than other methods in our application of standard cell characterization? 
Traditional methods like response surface methodology (RSM) use the same model to cover 

the entire parameter space. In our application where intra-gate variability is considered, the 

dimension of the parameter space is particularly high. When the number of input parameters 

is high, the parameter space is very high dimension. Using one single regression model to 

estimate gate delay (or slew time) over the whole parameter space is not sufficiently accurate, 
especially for a complex cell containing over 40 transistors. References [23, 24] proposed a 

clustering method which categorized transistors into switching/non-switching devices and 
on-transition/off-transition/non-transition devices. This method requires manual interven-

tion to ‘filter out’ the negligible devices for each of the switching scenarios, which is quite 
cumbersome. Using MARSP, it can reduce the manual work and automatically capture the 

essential parameters in its intelligent process.

3. MARSP for standard cell characterization

This chapter employs MARSP to characterize a fitted function between response variables 
(gate delay or slew time) and the explanatory parameters (process-voltage-temperature 
parameters, aging parameters, and RC loads). MARSP uses piecewise polynomial segments 

to capture essential nonlinearities and interactions, and it is particularly suitable for high-

dimension problems. This piecewise nature allows MARSP models to split the whole param-

eter space into multiple subspaces, and each subspace can have a unique regression model. 

By using hinge functions, MARSP then inherently integrates the regression models of all the 

subspaces into a single general form.

Var. Corners Var. Corners

ΔL
p

[−30%, 30%] ΔL
n

[−30%, 30%]

ΔVth
p

[−30%, 30%] ΔVth
n

[−30%, 30%]

ΔVdd [−10%, 10%] ΔT (°C) [−50,50]

Slope [10 ps, 3 ns]   C  pi2    (pF) [1100]

  R  pi    (Ohm) [1, 1000]   C  pi1    (pF) [0.1,10]

Table 1. Variations and corners of considered parameters.
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A hinge function has the form of    
+
   (x − t)    or    

+
   (t − x)    which are shown in Figure 3. They are defined 

as:

   
  (x − t)   

+
   =  { 

x − t, ifx > t,
  

0, otherwise,
   
   

 

    (2)

   
  (t − x)   

+
   =  { 

t − x, ifx < t,
  

0, otherwise,
   
   

 

    (3)

where t is a constant called the knot. MARSP forms a collection of hinge-function pairs for 

each explanatory parameter X
j
 with knots at   x  

j1
  ,  x  

j2
  , … ,  x  

jM
  ,  where M is the number of experiments.

MARSP models have the following form:

  f ( X 
→
  )  =  β  

0
   +  ∑ 

t=1
  T     β  

t
    h  

t
   ( X 

→
  )   (4)

where   h  
t
   ( X 

→
  )   is a basis function. There are two phases in the process of constructing a MARSP 

model: the forward stepwise addition and the backward stepwise deletion.

The first phase is the forward stepwise addition, where MARSP starts with a model consist-
ing of an intercept term. It then repeatedly adds basis functions in pairs to the model step by 

step. At each step, MARSP finds the pair of basis functions which maximized the reduction in 
the residue sum-of-squares error. The two basis functions in the pair are identical except that 
the hinge functions used for each basis function are mirrored. The newly added basis func-

tion is constructed by a term that is already in the model (a constant 1 is also considered as 

an existing term) multiplied by a new hinge function. The process of forward addition phase 
continues until the residual error difference in two adjacent steps is smaller than a predefined 
threshold or until the number of terms in the model reaches the maximum.

The model from the forward addition phase usually overfits the data. If a model overfits, it 
means the model fits well to the training data that are used to build the model, but usually 
it does not fit to new test data. The second phase of MARSP, namely the backward stepwise 
deletion, is to build models that can generalize better to new data. Backward deletion phase 

Figure 3. The solid line denotes the form of the hinge function (x − t) + while the dashed line denotes the hinge function 
(t − x) + .

Topics in Splines and Applications54



prunes the model obtained from the previous forward addition phase. In this phase, the tech-

nique called generalized cross validation (GCV) is used to trade off goodness-of-fit against 
model complexity. The stepwise backward deletion phase repeatedly deletes the least impor-

tant term (according GCV) at each step until the model again has only the intercept term left. 
At the end of the backward deletion phase, from among the “best” models of each size at each 
step, the model with the lowest GCV value is selected, and it is outputted as the final model.

MARSP is a nonparametric regression method, so there are no predetermined forms of the 

model. Instead, the model is constructed adaptively according to the information extracted 
from the training data. It intelligently removes those negligible parameters that have limited 

impact on the to-be-modeled gate delays or output slew without manual intervention. Using 

MARSP for cell characterization can eliminate the need of clustering transistors into the cat-
egories of switching/non-switching devices and on-transition/off-transition/non-transition 
devices, as proposed in [23, 24].

The MARSP model is piecewise in nature, so MARSP can split the whole parameter space 

(which is high-dimension in our application) into multiple subspaces, with each subspace 

getting its own model. Then the regression models of all the subspaces are integrated into 
one general expression using piecewise hinge functions. In this way, MARSP can characterize 
standard cells only once over the whole PVT space, without the need of splitting parameter 
space and characterizing every subspace.

Figure 4 shows an example where the values of  h ( X  
1
  ,  X  

2
  )   change only when   X  

1
    is large and   X  

2
    is 

low. The nonlinear relationship can be easily handled by the following MARSP model:

  h ( X  
1
  ,  X  

2
  )  = 15 + 0.015 ∗   (20 − x)   

+
   ∗   (y − 20)   +    (5)

Figure 5 shows the quadratic regression model which has poor accuracy in this example.

Figure 4. A nonlinear function  h ( X  1  ,  X  2  )   which changes only when X1 is high and X2 is low. The MARSP model in (4) 

perfectly matches the original relationship.
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4. Experimental results

The characterization variables are delay and transition time. Cell delay is the delay from the 
50%-point at the cell input to the 50%-point at the cell output. Cell transition time is also 
called the output slew time, and it is the time between the 20%-point and the 80%-point at cell 
output (20–80% for rising transition and 80–20% for falling transition). The goal is to find a 
model that best fits the relationship between the gate delay (output slew) and the explanatory 
parameters.

In our work, MARSP is implemented using a Matlab toolbox called ARESLab [25]. Some key 

settings for ARESLab are as follows: the maximum degree of interactions between explana-

tory parameters is 3; the maximum number of basis functions is 30; the threshold for the stop-

ping criteria is set to 10−4. Please note that all the training data have been normalized.

A commercial library consisting of 247 standard cells was used, and every timing arc for every 

cell was characterized. The characterization results for some representative cells are shown 
in Table 2. The “4*N + 6” column in the table means the number of parameters in the MARSP 

model, and the “Time(s)” column means characterization time. The “Error” column (“Mean” 
and “S.D.”) means the average value and standard deviation of the errors between MARSP 

and golden reference (SPICE), respectively.

The interconnect characterization is similar to the gate although there are only five considered 
parameters in our work. The details of reduced-order model of interconnect transfer func-

tion is not covered in this chapter (Please refer to [8, 9] for more details). The interconnect 

results are also shown in the last row of Table 2. Interconnect variability (spacing, width) is 

not included in our experiments. It is also worth noting that our methodology can support a 
higher-order H′(s)-model which matches more moments of the original H(s) at the expense of 
adding more parameters to the MARSP models.

Figure 5. A quadratic model is regressed from  h ( X  1  ,  X  2  )   and it has poor accuracy compared to MARSP model.

Topics in Splines and Applications56



4.1. Validation using test paths

Our framework was implemented with C++ and Perl, and the experiments were run on a 
Linux platform with a 2.27 GHz CPU and 1GB memory without using multi-threading.

Our experiments are based on ISCAS85 benchmark circuits where temperature and supply 
voltage are considered as global parameters, meaning that all the transistors across the circuit 

have the same values of temperature and voltage. However, it is worth noting that our meth-

odology can support a temperature profile from a thermal simulator and a voltage profile 
from an IR-drop simulator. For process variation, as mentioned earlier, we have considered 
inter-die, intra-die, and intra-gate variations. For channel lengths, we have considered inter-
die and intra-die variation, and for threshold voltage, intra-gate variation is considered. This 

is because channel length is mostly impacted by lithography and etching which exhibit strong 
spatial correlations, while threshold voltage is strongly affected by random dopant fluctua-

tions. Again, please note that our methodology can work with any inter- and intra-die varia-

tion model and with any distributions and any correlation profiles.

We have shown our MARSP models are perfectly accurate individually. Here we construct 

a framework to integrate our models and then verify its accuracy using test paths. We refer 

to our framework as GTSSTA hereafter. Two thousand Monte Carlo samples were run for 10 
randomly selected test paths from ISCAS85 benchmark. As shown in the framework above, 

path delay is calculated for each sample. This obtained delay value is compared to the delay 

value from hSpice [26], using Eq. (6).

   Error  
 each  

_sample  
   =   

 DELAY  
GTSSTA

   −  DELAY  
SPICE

  
  ____________________  

 DELAY  
SPICE

  
   × 100%  (6)

A quadratic delay model was also implemented and tested to give a comparison. The qua-

dratic first generates a quadratic regression model as follows:

  D =  d  
0
   + ∑  a  

i
    X  
i
   + ∑  b  

i
    X  
i
  2  +  ∑  

i≠k    b  i,k    X  
i
    X  
k
  .  (7)

D denotes gate delay, X
i
 denotes the explanatory parameters, d

0
 denotes the constant term, 

and a
i
 and b

i
 denote coefficients of first-order and second-order terms, respectively.

Cell (4*N + 6) Time(s) Error

Mean (%) S.D. (%)

INVX1 14 861 0.41 2.54

NOR2X1 22 1281 0.23 2.67

CLKBUF3 134 6577 0.17 2.86

XOR2X1 54 3112 0.20 2.32

Interconnect 5 22 0.01 0.12

Table 2. MARSP characterization results on representative standard cells.
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Table 3 presents the results for our framework in comparison to hSpice using these 10 test paths. 

Figure 6 gives the histogram comparison of one of the paths between hSpice and GTSSTA. Results 
in Table 3 also show that quadratic model has limited accuracy for the 10 test paths.

4.2. Runtime analysis

Experimental results show our framework consumes only ~2% more runtime than quadratic 
delay model but achieves much better accuracy.

The quadratic delay model in Eq. (7) has a fixed number of operations, that is, 120 multiplica-

tions and 66 additions for a one-input gate and 224 multiplications and 120 additions for a 

two-input gate. The number of operations using MARSP models is not fixed, and it depends 
on which subspace the data sample falls into. Basically, calculating a MARSP model will have 

comparisons first and based on the comparison results, different equations (linear, quadratic 
etc.) are used for calculations. In average, the number of operations for the MARSP model is 

close to that of the quadratic delay model.

Path Circuit 

name

Primary 

input to 

primary 

output

Num. 

of 

stages

Num. of 

samples

Running Time (s) Path-delay 

error per 

sample 

(OurSSTA)

Path-delay error per 

sample (quadratic)

SPICE Our Quad. Mean 

(%)

SD 

(%)

Mean (%) SD (%)

1 c432 N102 to 

N421

60 2000 4211 198 192 3.21 1.21 −10.99 24.9

2 c499 N85 to 

N724

43 2000 2417 140 138 0.25 0.54 −13.95 26.6

3 c880 N1 to N878 57 2000 4148 189 185 −0.31 0.53 −14.10 25.4

4 c1355 G11 to 
G1352

42 2000 2412 143 144 3.54 1.49 −10.68 26.7

5 c1908 N19 to 

N2890

72 2000 5878 258 250 4.12 1.92 −10.76 26.9

6 c2670 N227 to 

N3851

54 2000 4001 184 180 2.90 1.16 −15.81 25.1

7 c3540 N33 to 

N5360

77 2000 6719 276 270 2.75 1.10 −5.94 27.5

8 c5315 N335 to 

N8128

71 2000 6454 255 251 2.53 1.55 −11.72 26.3

9 c6288 N290 to 

N6287

221 2000 19,898 704 698 4.29 1.50 −14.43 23.1

10 c7552 N18 to 

N11334

116 2000 9948 380 378 3.87 1.48 −10.23 25.8

avg. — — 81 2000 6608 273 268 2.72 1.25 −11.86 25.8

Table 3. Experimental results on 10 test paths for MARSP models and quadratic models (errors compared to golden 
SPICE results).
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5. Conclusion

This chapter talks about the technique called multivariate adaptive regression splines 

(MARSP). MARSP is a nonparametric regression without taking any pre-assumed form. 

Instead, it adaptively constructs the model according to the provided data. MARSP has been 

widely used in high-dimension problems and particularly popular in data mining.

This chapter also gives an application of MARSP in semiconductor field, more specifically, 
in standard cell characterization. The objective of standard cell characterization is to create a 
set of high-quality models of a standard cell library that accurately and efficiently model cell 
behavior. In this work, the MARSP method is employed to characterize the gate delay as a 
function of many parameters including process-voltage-temperature parameters. Due to its 

ability of capturing essential nonlinearities and interactions, MARSP method helps to achieve 

significant accuracy improvement.

Some future work that is worth investigating includes extending the aging-aware MARSP-
based timing analyzer to 3D integrated circuits (IC) to study the reliability of 3D ICs which 
tend to have reliability challenges due to the stronger heat issues. 3D ICs requires more 

sophisticated thermal models [27–29] and more complicated power-grid analysis [30]. As 

mentioned earlier, the methodology in this chapter is general to support other thermal and 

IR-drop models
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Figure 6. Monte Carlo histogram comparison between GTSSTA and SPICE for test path (N85 to N724) in circuit c499 
(2000 samples are run).
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