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Abstract

We are developing methods of noninvasively delivering magnetic neuroparticles™ via 
intranasal administration followed by image-guided magnetic propulsion to selected 
locations in the brain. Once placed, the particles can activate neurons via vibrational 
motion or magnetoelectric stimulation. Similar particles might be used to read out neuro-
nal electrical pulses via spintronic or liquid-crystal magnetic interactions, for fast bidirec-
tional brain-machine interface. We have shown that particles containing liquid crystals 
can be read out with magnetic resonance imaging (MRI) using embedded magnetic 
nanoparticles and that the signal is visible even for voltages comparable to physiological 
characteristics. Such particles can be moved within the brain (e.g., across midline) with-
out causing changes to neurological firing.

Keywords: magnetic, particles, image-guided MRI, brain-machine interface
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1. Introduction

Brain-machine interfaces (BMIs) have made great progress as prostheses (e.g., for vision-

impaired individuals). Those patients were willing to undergo major surgery, expense, and 

to have centimeter-scale electrical devices implanted in their nervous systems. The scope of 

influence of BMI of the future is clearly large, potentially including cognitive enhancement 
and memory storage, and quite likely with ramifications beyond anybody’s present imagina-

tion [1, 2]. To fully exploit the power of BMI, some big steps need to be taken. For wide and 

long-term public use, the invasiveness of the implant procedure and toxicity of the implant 

materials need to be eliminated. The number of neuronal channels an implanted device must 

address needs to be increased by many orders of magnitude, and the entire nervous system 

must be accessible. The spatial resolution should be smaller or equal to the diameter of small 

groups of neurons (i.e., micron-sized), and the temporal resolution should be faster than or 

comparable to neurons in the native brain (i.e., sub-millisecond response time).

Most medical researchers attempt to translate therapeutic approaches from animal mod-

els to human use. Unfortunately, there are significant barriers to taking this approach to 
BMI. Optical dyes that are the mainstay of animal research do not work for animals larger 

than a few centimeters because of light scattering and the photon-stopping power of tissue. 
The multi-decade-long history of failure to bring optical mammography into clinical practice 

suggests that light scatter is not a problem that is easily solved [3]. Implanted tethered elec-

trodes and high-intensity-focused ultrasound can only address one section of the nervous 

system at a time. Genetic manipulation of brain circuitry (e.g., with optogenetic or sonoge-

netic techniques) has significantly increased our understanding of preclinical neurosciences, 
but would still require invasive focal delivery of gene vectors, optical fibers, or ultrasonic 
transducers that would limit wide use in humans [4, 5].

Oscillating magnetic fields do not interact much with tissue, especially below several giga-

hertz in frequency, and therefore penetrate the human head readily. Magnetic resonance 
imaging methods that examine blood oxygen-level dependency (BOLD) rely on vascular 

changes that have a poor spatial and temporal resolution. Magnetic resonance imaging (MRI) 

pulse sequences that read out electrical current (e.g., from Lorentz forces causing neuronal 
displacement) can detect micro-amp levels (far from the nanoampere currents generated from 

individual or small neuronal bundles) although technical improvements such as fast magnetic 

gradients may improve performance in the future [6]. Imaging of electrical currents (magne-

toencephalography) is limited to millimeter spatial resolution due to the variable impedance 

of the brain and the detector resolution [7].

In this chapter, we summarize contrast-enhancement approaches to BMI that could yield 

readout and writing of the entire brain with high spatial and temporal resolution. Contrast 

enhancement from radioactive and other materials has been used in radiology practices for 

the past century to explore and diagnose diseases of the nervous system. The contrast mate-

rials that appear the most promising are based on magnetic nanoparticles, which we attempt 
to describe more fully in this chapter.
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2. Brain access

To date, developers of the smart-dust [8] concept have constructed millimeter-sized particles 

using wafer-based lithographic methods typically employed for electronic circuitry (e.g., 

CMOS). Traditional electronic particles below a millimeter in size are difficult to power with-

out a tether to the outside world, because of poor electromagnetic coupling to small antennas. 

In order to implant or remove electronic particles of these sizes, practitioners need millimeter-

sized holes, requiring either surgery or interventional procedures to go through the vessels 

or subarachnoid spaces. Because of the potential for damage to eloquent nervous structures, 

such procedures carry risks and expensive and are therefore inappropriate for wide (e.g., 

consumer) applications.

As will be discussed below, we and others have formulated contrast solutions containing high 

concentrations of nano-sized particles with magnetic properties (e.g., spintronic, magnetoelec-

tric) that do not need to rely on traditional approaches to enter or interact with the brain. As 

in drug delivery, we have shown that nanoscale particles can be delivered intranasally, which 

is considered a noninvasive administration mode in the clinical literature [9, 10]. The cribri-

form plate separates the nasal from the cranial cavities, with foramina that decline slightly 

in size with age, with an overall area of 6 mm2 at age 25 and 4 mm2 at age 66 [11]. Our group 

and others have demonstrated that magnetic particles with diameters of up to 250 nm readily 

enter the cranium with the assistance of a 20-mT magnetic gradient, with no appreciable intra-

cranial entry in the absence of an imposed magnetic field (Figure 1). Minimally invasive routes 

other than intranasal are possible, for example, via lumbar puncture or via intravenous admin-

istration. However, both of these routes require overcoming countervailing current flows (of 
cerebrospinal fluid and blood, respectively) that make them less attractive.

Once in the intracranial cavity, magnetic particles can be manipulated using magnetic gradi-

ents for delivery to specific brain foci. The tracks that such particles make are micron-sized, 
unlike the millimeter scale holes made during conventional deep-brain stimulation surgery. 

Magnetic particle manipulation is difficult with a conventional MRI, since it is very hard 
to create magnetic gradients that can overcome the static MRI field strength. However, our 
group and others have constructed MRI systems where the static field can be temporarily 

Figure 1. Transport into brain. Rat olfactory bulb before (left) and after (right) intra-nasal administration of particles 

under magnetic gradient.
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eliminated in order to apply magnetic gradients without interference [12]. The MRI’s static 
magnetic field can then be reapplied to assist in real-time image-guided manipulation.

In the past, it was believed that it was impossible to propel magnetic particles deep within tis-

sues because of the particles’ tendency to realign and become attracted to the propelling mag-

nets and because particles tend to dissipate instead of aggregate when being pushed through 

tissue. With appropriate magnetic pulse sequences, it is possible to transiently polarize the 

particles in the direction opposite to the propelling magnets (“dynamic inversion”), so that the 

particles can be delivered deep into tissue [13]. With appropriate particle design choices, it is 

also possible to twist the particles during propulsion, which assists in penetrating tissues with-

out increasing the particle track diameter [14]. Particles transported interstitially through the 

brain do not rely on vascular transport and therefore effectively bypass the blood-brain barrier.

Once the particles have been delivered to the intended location in the brain, the average dis-

tance between particles and neurons is inversely related to the local particle concentration. The 

distance between particles and neurons is critical to reading out or writing to the brain, since 

the electrical field decreases rapidly from kilovolts/meter (across the neuronal membrane) to 
tens of volts per meter (10 μm from the neuron). It may be possible to decrease the effective 
particle-neuron distance by coating the particle with materials in configurations that promote 
penetration of the neural membrane, as has been done with experimental brain electrodes [15].

3. Particle toxicity

For magnetic particles to become widely used, the particles must have a negligible potential for 

toxicity [16]. This very high bar is reflected in the Food and Drug Administration’s (FDA) classi-
fication of devices for the brain as class III, requiring a premarket approval (PMA) application. In 
comparison, devices for the peripheral nervous system are often treated as class II devices. Note 

that particles are often treated by the FDA as drugs, although in Europe, they may be treated as 

devices. Studies of ex vivo vital rodent brain slices have shown that the presence of magnetic 

particles does not cause a measurable disruption of function [17]. In fact, it is not unusual for 

humans living in industrial cities to have magnetic particles in their brains, with no known 

related diseases [18]. It is also very common for humans over 50 years of age to have radio-dense 

“calcifications” in the basal ganglia, again with no definite disease association [19]. Small animal 

studies have examined the toxicity of magnetoelectric particles with no adverse effects [20].

4. Particle fabrication

Traditionally, implantable medical devices for neurostimulation have been built with CMOS 

processes (like other electronic devices). This approach is not scalable to nano-sized products 

that are needed for noninvasive access. Most of the magnetic particle literature was contributed 

in the field of bioassays, where particle uniformity is not critical. However, for medical applica-

tions (e.g., magnetic particle imaging), lack of particle uniformity is often a limiting factor [21].
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We have used template-guided methods to build shape-engineered highly uniform magne-

tizable particles with features important for transport and effectiveness [22] (Figure 2). For 

example, different sections of the particles can be built with aspect ratios that favor a particu-

lar magnetization direction. With appropriate use of precessing magnetic fields, the particles 
can be drilled through tissue [14]. The template-guided methods are also economical: it is 

possible to fabricate micromolar quantities of particles for less than $20 in raw materials. We 

have evaluated nanoscale spintronic devices for voltage sensing and stimulation, which have 

very tight tolerances. Transitioning these devices in their current morphologies to template-

guided manufacturing (with tolerances of a few nm) may be challenging and may require 

device redesign.

5. Neuronal readout

Although neurons affect each other over nanoscale distances through chemical means (e.g., 
neurotransmitters), longer neuronal transmissions are electrical in nature. Noninvasive 
neuronal sensing in humans has generally employed either electrical methods to detect 

electrical fields or magnetic methods to detect electrical currents. Noninvasive external 
measurements of electrical fields from deep in the brain (e.g., with electroencephalogra-

phy) yield centimeter-scale resolution because of the complicated impedance of the brain 

and surrounding tissues. Direct measurements of magnetic fields can be obtained with 
magnetoencephalography, but the resolution is limited to millimeter scales because of 

detector-size limitations.

Figure 2. Example of template-guided shape-engineered synthesis of magnetic particles. Particles are made via 

sequential processing of polycarbonate track etched (PCTE) membrane films. PCTE films have pores extending through 
the thickness of the film. Templates (A) are first partially sealed on one surface with a conductive layer (B), followed 
by deposition of a polymer (e.g. poly-lactic-co-glycolic acid) shell inside the pores of the PCTE (C). Selectively etching 

the partially sealing conductive layer (D) and replacing it with a completely sealing conductive layer (E) allows for 

deposition of a conformal gold layer (F), after which a payload (e.g. liquid-crystal-magnetic composite) can be deposited 

by vacuum impregnation into the sealed pores of the PCTE film (G). Deposition of a final sealing layer (H), followed by 
selective etching of the conductive sealing layer (I) and removal of PCTE film (J) results in free-floating particles.
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Our working hypothesis is that the magnetic readout of contrast materials with magnetic 

resonance imaging (or the related field of magnetic particle imaging) is the way to go. With 
fast high magnetic gradients, magnetic resonance imaging (MRI) can achieve 30 μm spatial 

resolution (Figure 3) and kHz temporal resolution. In the past, it was believed that such rapid 

changes of magnetic fields would induce unwanted neurological stimulation, but we have 
shown in a prospective human study that if the frequency is high enough, such effects do not 
occur [23]. Magnetic particle imaging should theoretically be able to detect a single particle; 

however, experimentally, this has been difficult to achieve because of prior limits on gradi-
ent strength and particle uniformity [21, 24]. We have found that with very fast MRI pulse 

sequences that directly measure the reduction in local proton signal decay time, it is possible 

to detect as few as 1000 particles.

5.1. Readout with magnetic particle/liquid-crystal composites

There are several ways that magnetic particles can report on local electrical fields. The most 
promising in terms of field sensitivity takes advantage of liquid crystals, whose orientation 
can be used to detect low local electrical fields, for example, at a few volts per meter [25]. For 

purposes of comparison, voltage-sensitive dyes report on changes on the orders of kilovolts 

per meters (e.g., tens of millivolts across a 5-nm membrane) [26]. The high spatial and electri-

cal field resolution of liquid crystals enables mapping of electronic layers with a sub-micron 
resolution [27]. Magnetic nanoparticles have been used to make the liquid crystals more sen-

sitive to electric fields (dielectric permittivity) [28]. The liquid crystals’ change in orientation 
(due to changes in local electric fields) can be transferred to magnetic particles, as validated 
with X-ray scattering methods (Figure 4) [29]. This orientation changes the local magnetic 

susceptibility, which can be detected with proton MRI (Figure 5) [30]. With MRI, we have 

detected electric fields as low as 20 V/m with this method.

5.2. Readout with piezoelectric magnetic particles

Particles have been built with magnetic cores and piezoelectric shells, where the magnetic 

moment of the core changes in response to an applied electric field. These magnetic moment 

Figure 3. Spatial resolution of low-field MRI with high magnetic gradient strength. Left: spin echo sequence of a water 
phantom with 7-μm pixels in 2D projection. Right: calculation of spatial resolution of 30 μm.
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changes can be read out with proton MRI (Figure 6). The same particles can be used to 

generate electric fields in response to an applied magnetic field (discussed subsequently in 
Section 6) [20, 31, 32].

5.3. Readout with spintronic particles

Spintronic devices act as nano-valves that convert electrical currents into radiofrequency (RF) 

waves. The devices are also sensitive to applied magnetic fields, which is important since the 
particles can thereby be localized by applying magnetic gradients (as in MRI). We have shown 

that a single nano-sized on-chip spintronic device can convert electrical currents in the micro-

amp range into radio waves that can be detected centimeters away [33]. Spintronic devices 

can be ganged synchronously to amplify signals [34]. The micro-amp range is probably too 

low to detect the state of single neurons, but might be appropriate for tracts. Work needs to be 

done (e.g., with template-guided synthesis) on freeing the spintronic devices from substrates 

Figure 4. X-ray diffraction experiments with liquid crystal/magnetic particle composites (LC-MNP). Top: LC-MNP films 
placed in X-ray beam. Bottom: X-ray scattering measurements reveal changes in liquid crystal layer-to-layer spacings 
based on applied voltage.

Figure 5. MRI of novel contrast agent. MRI results with no voltage applied (A) and with voltage applied (B). A 5% 

change in MRI signal is observed with electric fields of 20 V/m (comparable to the field within 10 μm of neurons).
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for deployment as a contrast agent. The spintronic particles can be used in a reverse mode for 

stimulation (with radio-frequency energy converted to low-frequency currents) again with 

the possibility of localization with applied magnetic gradients [35].

6. Writing to the brain

The brain can be stimulated electrically, chemically and even mechanically. Most brain-machine 

interface work has been performed with electrical stimulation from invasive focal electrodes, 

which have advantages of high speed and spatial precision, but can only access a small por-

tion of the brain. Noninvasive electrical stimulation has been performed with transcranial 

magnetic stimulation, where externally applied changing magnetic fields are used to induce 
electrical fields and currents in the brain. This technique yields relatively poor spatial resolu-

tion (e.g., centimeter scale) at the brain surface, with spatial resolution worsening appreciably 

in deeper parts of the brain. Externally applied electrical currents have even worse spatial local-

ization capability, since the impedance of various tissues in the head is highly nonuniform. 

Theoretically, radio-frequency energy could be focused in small regions with high-field MRI, 
but this technique has not been intentionally used for stimulation [36]. Externally Administered 

chemical brain modulation is an ancient technique, practiced in pubs daily by millions of peo-

ple. In a few rare cases, the focal concentration of receptors in certain sections of the brain 

allows chemical stimulants to target specific regions (e.g., substantia nigra by 1-methyl-4-phe-

nyl-1,2,3,6-tetrahydropyridin) [37]. Microinfusions of chemicals via brain-implanted catheters 

have been applied in animal studies for research. Catheters have been implanted in the neuro-

nal sections of human brains to deliver cancer treatment (i.e., convection-enhanced delivery). 

Externally applied high-intensity-focused ultrasound (HIFU) has been used experimentally to 

stimulate the brain, although the exact mechanism is not well understood [38]. We hypothesize 

that magnetic particles may be useful in focal brain stimulation, with focality realized either 

through noninvasive selective placement of particles (e.g., after magnetically-assisted intranasal 

Figure 6. Voltage-sensitive MRI signal from piezo-magnetic particle.
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administration) in desired locations or with diffusely delivered particles that can be addressed 
selectively. In the next sections, we list various candidate magnetic particles for brain stimula-

tion, some of which overlap the prior section for brain readout.

6.1. Mechanical stimulation with magnetic particles

Anecdotal surgical data from the placement of deep-brain stimulation leads have shown that 

mechanical vibration can stimulate neurons [39, 40]. Cultured neuron studies have demon-

strated mechanoreceptors that react by opening calcium channels [41]. Invertebrate experi-

ments suggest that externally applied magnetic gradients can wiggle magnetic particles 

enough to cause nerve stimulation (Figure 7) [42].

6.2. Composite piezoelectric/magnetic particles

With appropriately designed piezomagnetic particles, externally applied magnetic fields can 
be applied to the particles in order to generate powerful electric fields focally (e.g., strong 
enough to electroporate cells) [32]. Indirect evidence of global brain stimulation has been col-

lected through electroencephalography of animals [20].

6.3. Electret-based magnetic particles

Recent innovations in harvesting harvesting from mechanical motion have been driven 

because of the proliferation of wearable devices. Some of the principles of energy harvesting 

can be reversed in order to generate electrical currents and voltages. Electrets, which rely on 

changes in capacitance to generate power, are very efficient vibrational energy harvesters. 
Liquid crystals have been used as electrets for energy harvesting [43]. Typically, liquid crys-

tals require very high magnetic fields to change their capacitance, but the addition of magnetic 

Figure 7. Magnetic particle neurostim-ulation visualized with manganese-enhanced MRI (MEMRI). Particles were 

injected behind the left eye of crawfish and stimulated for 3 min using magnetic wiggling of particles. Increased MEMRI 
signal is seen in the left brain.
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dopants dramatically reduces the magnetic field strength required to alter capacitance [28]. 

Therefore, a composite of magnetic particles and liquid crystals (as discussed above) might be 

able to convert a changing externally applied magnetic field into local electrical stimulation.

6.4. Spintronic particles

As discussed above, spintronic particles have been used to convert low-frequency electrical 

currents into high-frequency radio-frequency emissions. Our group successfully reversed this 

process, to convert applied radio-frequency (RF) radiation into low-frequency electrical cur-

rents that were able to affect the firing frequency of a single neuron (Figure 8) [35]. An attractive 
potential application of this technology is that the efficiency of conversion of the RF radiation 
exhibits frequency dependence that is also a function of the ambient magnetic field. This mech-

anism would permit spintronic devices to be addressed with micron-level spatial resolution.

7. Conclusion

Magnetic neuroparticle solutions to brain-machine interface were predicted a long time ago 

and are under development today. As shown above, animal data show that nontoxic mag-

netic particles could be noninvasively directed to specific locations in the brain under real-
time imaging guidance. Particles could be placed with high spatial resolution in focal regions 

for specific clinical indications (addiction, Parkinson’s disease). Alternatively, the particles 
could be globally spread in the brain and selectively addressed for local stimulation and/

Figure 8. Spintronic particle writing to single neuron. Top: neuro-modulation in vital mouse brain slice (red) when 

spintronic nano-oscillator (STNO) particle is triggered by RF signal. Bottom: neuronal frequency changes in as a function 
of applied RF pulse.
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or readout with appropriate RF or magnetic tuning. Many of the particles listed above (e.g., 

magnetoelectric, electret-based particles) can both read and write electrically and therefore 

potentially fit the bill for high-speed bidirectionality. Building on the work of deep-brain 
stimulation, one might expect that the focal stimulation of specific brain nuclei would be 
the first clinical target for noninvasive or minimally invasive bidirectional BMI. The high 
temporal and spatial resolution of voltage-sensitive contrast media would likely shed addi-

tional light on large-scale brain processes (e.g., attractors [44]) that would be useful in build-

ing more eloquent BMIs. System architectures for reading from and writing to the brain 

would be similar to conventional MRI systems, preferably with the ability to rapidly turn 

off the static magnetic field in order to manipulate the magnetic particles with high flex-

ibility [12]. Once the particles were placed in the appropriate location, stimulation could be 

implemented with a wearable coil. Readout with voltage-sensitive contrast media could be 

performed with conventional MRI systems.
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