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Abstract

Influence of galactic cosmic rays (GCRs) on cloud formation is suggested to be an impor-
tant part of the mechanism of solar activity influence on weather and climate. A high 
positive correlation between low cloud amount and GCR fluxes was observed in the 
1980s–1990s; however, in the early 2000s, it was violated. In this work, we consider a 
nature of long-term correlation links between cloud cover at middle latitudes and GCRs, 
as well as possible reasons for this correlation reversal. It was shown that the GCR-cloud 
links observed on the decadal time scale are indirect and caused by GCR effects on 
cyclonic activity which depend on epochs of the large-scale atmospheric circulation. The 
reversal of GCR-cloud correlation in the 2000s seems to be due to a sharp weakening of 
the Arctic and Antarctic stratospheric polar vortices, which results in the change of the 
troposphere-stratosphere coupling and, then, of GCR contribution to the development of 
extratropical cyclogenesis.

Keywords: solar-atmospheric links, space weather, galactic cosmic rays, low clouds, 
cyclonic activity, polar vortex

1. Introduction

Studying the influence of solar activity and related phenomena on the lower atmosphere 
state, weather and climate is one of most actual tasks of solar-terrestrial physics, which is due 
to an important part of climatic changes for different aspects of human activity. One of the 
possible mechanisms of this influence suggests an impact of galactic cosmic rays (GCRs) on 
the cloud cover allowing amplifying noticeably a weak signal of solar variability in the Earth’s 
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atmosphere. Indeed, cloudiness changes can strongly modulate fluxes of both incoming 
short-wave solar radiation and outgoing long-wave radiation of the Earth and the atmosphere 
and, thus, influence significantly the radiative-thermal balance of the atmosphere. High-level 
clouds contribute to the warming of the atmosphere, whereas low-level clouds contribute, as 
a rule, to its cooling. A net influx of radiation coming to the Earth’s surface under cloudy con-
ditions depends on latitude, season and underlying surface. According to the data obtained 
from spaceborne experiments [Nimbus 7 Earth Radiation Budget experiment (N7ERB) and 
Earth Radiation Budget Experiment (ERBE)], when averaged over the globe, cloudiness 
reduces the input of solar radiation by 44.5–54.3 W·m−2 (depending on the season) and the 
emission of long-wave radiation to space by 23.6–34.7 W·m−2 [1, 2]. As a result, cloudiness 
decreases the global radiative heating of the atmosphere by 17.3–26.8 W·m−2.

The hypothesis about GCR influence on the cloudiness state was first put forward in 1975 
by Dickinson [3]. He suggested that ionization changes due to GCR variations affect the 
formation of stratospheric aerosols, the main component being a water solution of sulfuric 
acid H2SO4. Such aerosol particles of ~100 nm in size are effective cloud condensation nuclei 
(CCN) due to a high solubility of sulfuric acid in water which greatly lowers the saturated 
vapor pressure over these particles compared with homogenous water nuclei. According to 
Dickinson’s suggestions, the formation of aerosol particles is more probable on positively 
charged water clusters H3O+(H2O)

n
 (n = 5–7), the concentration of such clusters depending on 

ionization in the atmosphere. So, changes in ionization may influence the rate of nucleation 
processes and, thus, contribute to the formation of high-level (cirrus) clouds.

At present, we can note two possible ways of GCR influence on cloud formation: the ion-medi-
ated (or induced) nucleation [3–7] and the mechanisms including changes in Global Electric 
Circuit (for example, see [8, 9]). Ion-mediated nucleation (IMN) is the nucleation of aerosol 
particles (which under certain conditions may later grow up to cloud condensation nuclei) 
taking place in the presence of ions. An important source of new aerosols in the atmosphere 
is molecular clusters forming from water and sulfuric acid. However, clusters of subcritical 
sizes (<1–2 nm) are unstable and easily destroyed by evaporation. When a cluster reaches a 
critical size of ~1–2 nm, surface tension forces start dominating and it gets stable. Such clusters 
represent aerosol nuclei which may grow due to condensation and coagulation up to ~100 nm 
which allows turning into a cloud condensation nucleus and take part in the formation of cloud 
particles (~10–20 μm). Charged molecular clusters forming around ions are more stable due to 
Coulomb attraction and can grow faster than neutral ones. Then, when ionization increases, a 
probability of the formation of charged, more stable clusters becomes higher and this results 
in the increase of the nucleation rate. According to model calculations by Yu and Turco [5], a 
25% increase of the ionization rate in the lower atmosphere could lead to an increase of the 
concentration of aerosol particles capable for the further growth, with the diameter being >3 
and >10 nm, by 16.5 and 9%, respectively, in several hours after the nucleation start.

Another way of GCR influence on clouds, which suggests changes in the Global Electric Circuit 
caused by variation of atmospheric conductivity and ionospheric potential, has been devel-
oped by Tinsley and colleagues [8–11]. It is suggested that changes of conductivity due to GCR 
variations, along with changes of ionospheric potential due to variations of interplanetary 
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magnetic fields influence a density J
z
 of downward ionosphere-Earth currents. In turn, these 

currents, when flowing through high gradients of conductivity at cloud boundaries, contrib-
ute to a separation of positive and negative ions which quickly attach to droplets and aerosol 
particles, including both cloud condensation nuclei and ice-forming nuclei. Electric charges on 
these particles influence microphysical processes in clouds, enhancing their collision rate and 
‘sticking’ due to Coulomb attraction. In particular, this may result in more intensive freezing of 
thermodynamically unstable super-cooled water droplets in high-level clouds (‘electrofreez-
ing’) [10]. An increase of charge on aerosol particles also enhances the rate of their scavenging 
by larger droplets due to the electric attraction between the charge on a particle and the image 
charge which it creates on a droplet (‘electroscavenging’) [11]. Thus, charging cloud particles 
associated with J

z
 variations results in a number of microphysical processes in clouds affecting 

particle concentration and their size distribution.

First experimental data providing evidence for a possible influence of GCRs on the cloudi-
ness formation were obtained by Pudovkin and Veretenenko [12]. They detected a decrease 
in cloud cover and an increase in the frequency of occurrence of clear-sky days at middle and 
high latitudes in the course of short-term decreases of GCR intensity (Forbush decreases), 
with the data at the network of actinometric stations of the U.S.S.R. being used. The decrease 
of cloud cover associated with Forbush decreases at the stations under study was also con-
firmed by an increase of the input of total radiation which includes both direct and scattered 
solar radiation [13]. Later a remarkable result showing cloud-GCR links on the decadal time 
scale was obtained by Svensmark and Friis-Christensen [14] basing on the satellite data ISCCP 
(International Satellite Cloud Climatology Project). The authors detected a variation of 3–4% 
in global cloud amount which was strongly correlated with GCR intensity (the correlation 
coefficient ~0.9) for the period 1984–1991. As a change of global cloud cover by 1% corresponds 
to a net radiation change by 0.5 W.m−2 according to the estimates by Rossow and Cairns [15], 
Svensmark [16] concluded that the radiative forcing of the detected decrease of global cloud 
cover by ~3% from 1987 to 1990 (i.e. from a minimum to a maximum of solar activity) may 
amount to ~1.5 W.m−2. He suggested that cloud forcing associated with long-term GCR varia-
tions might explain most part of the temperature changes in the period 1975–1989. The results 
gave rise to a lively discussion of GCR effects on the formation of clouds, as well as their role 
in the mechanism of solar-atmospheric links (for example, see [17–19]).

The further studies by Marsh and Svensmark [20, 21] revealed that only low-level cloud 
amount correlates significantly with GCR intensity. The correlation coefficients between 
globally averaged values of low cloud anomalies (LCA) according to the ISCCP-D2 satellite 
data and the counting rate of the Huancayo neutron monitor amount to 0.63 and 0.92 for 
unsmoothed values and 12-month running averages, respectively, for the period 1984–1994. 
However, in the second part of the 1990s the positive correlation LCA-GCR started weaken-
ing and broke down completely near 2000 [22, 23]. The observed violation of LCA-GCR cor-
relation caused doubts in a possible influence of cosmic rays on cloud formation, as well as 
their important role in the physical mechanism of solar-atmospheric links [22, 24, 25].

Thus, at the moment cloud-GCR relationship remains a rather controversial question. In 
different studies, we can find the data both confirming and rebutting a possibility of GCR 
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influence on cloud formation. Svensmark et al. [26] found a significant decrease of liquid 
water in low clouds, as well as in fine aerosol concentration associated with strong GCR 
Forbush decreases. A decrease of high-level clouds over the Antarctic in the course of 
Forbush decreases of GCR intensity was revealed by Todd and Kniveton [27, 28] as well 
as Laken and Kniveton [29] on the base of the ISCCP cloud data. Laken et al. [30] detected 
changes in cloud cover over middle latitudes (30–60°) of both hemispheres associated with 
short-term changes in GCR intensity, using also the ISCCP data. However, no responses of 
cloudiness to Forbush decreases were revealed by Čalogović et al. [31], Krissansen-Totton 
and Davies [32].

As to the decadal time scale, the problem of GCR-cloud relations is complicated because 
of a number of other solar activity phenomena affecting the atmosphere and conditions for 
cloudiness formation simultaneously with cosmic rays. Kristjánsson et al. [33, 34] concluded 
that low cloud cover correlates better with total solar irradiance (TSI) variations than with 
those of GCRs, the suggested mechanism involving variations in sea surface temperature and 
their impact on low clouds. In the works by Voiculescu and colleagues [35–37], variations of 
ultraviolet radiation and solar wind disturbances are considered as possible factors influenc-
ing cloudiness state. In particular, it was noted that the effects of GCR and UV variations 
on cloudiness state are characterized by regional and altitudinal dependencies [36]. In this 
work the areas of positive and negative correlations were revealed for low cloud amount and 
GCRs. For middle and high clouds the areas of statistically significant correlations with GCRs 
and UV radiation were also detected. The data in [37] provide evidence for a possible influ-
ence of interplanetary electric fields (IEE) modulated by solar wind speed and interplanetary 
magnetic fields on cloud formation. The detected cloud-IEE correlations seem to indicate an 
important part of downward atmospheric currents in the Global Electric Circuit for cloud 
particle formation, as described in [8–11].

For an experimental verification of a possible influence of cosmic rays on the rate of nucle-
ation and subsequent growth of clusters an experiment CLOUD (Cosmics Leaving OUtdoor 
Droplets) was carried out at CERN (the European Organization for Nuclear Research) [38]. 
In this experiment there were investigated processes of cluster formation on the base of sul-
furic acid, ammonia and water vapor, as well as ionization influence on these processes. The 
results of the experiment CLOUD confirmed that in the presence of ions the nucleation rate 
does really increase by a factor of ~10 under conditions typical for the middle troposphere 
(~5 km), the sulfuric acid and water being involved in nucleation. However, under conditions 
in the lower part of the atmosphere the rate of the formation of clusters with the diameter 
~1.4 nm was found to be less by a factor of 10–10,000 than in the real atmosphere [38]. To reach 
nucleation rates corresponding to those measured in the lower atmosphere, the content of 
ammonia had to be substantially increased and the temperature had to be lowered to ~250°C 
[38, 39]. Another way to enhance nucleation was to add biogenic amines (dimethylamine), as 
it was reported by Almeida et al. [40]. The results of this study carried out on the base of the 
CLOUD chamber at CERN showed that dimethylamine can influence significantly nucleation 
rates and account for the rates observed in the real atmosphere. These results indicate that 
in the lower atmosphere a ternary nucleation seems to take place, with sulfuric acid, water 
and bioorganic compounds being involved. However, the rate of the ternary nucleation was 
found to depend weakly on ionization [40]. On the other hand, the experiments by Svensmark 
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et al. [41] revealed a noticeable link between the formation of CCN particles ~50 nm and ion-
ization. Thus, the question of GCR influence on the intensity of nucleation and subsequent 
growth of clusters to CCN sizes remains open and further experiments are needed.

Concerning observations in the real atmosphere, one should stress that direct effects of GCRs 
and corresponding changes of ionization on microphysical processes in clouds seem to be 
detectable only on rather short time scales (about several hours or days). On longer time scales 
dynamic processes developing as a response to GCR variations (or to some other solar activity 
phenomena) should be taken into account. Indeed, cloud enhancement according to any sug-
gested mechanism (ion-mediated nucleation or mechanisms including atmosphere electricity 
changes) results in changing radiative-thermal balance in the lower atmosphere and, conse-
quently, in some changes in the structure of thermo-baric fields of the troposphere which, 
in turn, influence atmospheric circulation and the evolution of baric systems. If changes of 
the thermo-baric field contribute to the deepening of low-pressure systems (cyclones and 
troughs), cloud fields of these systems will be enhanced. Thus, monthly averaged cloud 
amount will include not only direct (microphysical) effects of GCR variations on cloud par-
ticle formation, but also indirect effects due to the circulation changes influencing cloudiness. 
So, when considering cloud data on longer time scales, we cannot distinguish between pri-
mary (microphysical) GCR effects on clouds and secondary ones, resulting from circulation 
changes associated with GCRs. Moreover, direct effects of GCRs on cloud characteristics seem 
to be weaker than those associated with long-term circulation disturbances. This point seems 
to be of importance to understand the nature of cloud-GCR correlation on longer time scales.

An important point to be understood concerns the violation of correlations between cloudi-
ness and GCR intensity occurred near 2000. As it was said above, this violation gave rise 
to doubt the role of GCRs in the mechanism of solar-atmospheric links. However, temporal 
variability of correlation links between the lower atmosphere characteristics and solar activity 
characteristics is a rather typical feature of these links. The observed correlations may enhance, 
weaken or even change the sign depending on time period. Veretenenko and Ogurtsov [42, 43]  
suggested that this variability may be due to changes of the epochs of the large-scale atmo-
spheric circulation associated, in turn, with changes in the strength of the stratospheric polar 
vortex. So, the question arises whether the observed violation of cloud-GCR links is a result of 
a change in the character of helio-geophysical effects on tropospheric circulation. The aim of 
this study is to consider the nature of correlation links detected between low clouds and GCRs 
on the decadal time scale, as well as possible reasons for the violation of these links near 2000.

2. CGR effects on atmosphere dynamics and cloud fields

It is well known that the main reason for cloud formation is a vertical transport of water vapor 
which results in its cooling and condensation (for example, see [44]). So, the formation of 
cloud fields in the troposphere is determined by upward air movements which, in turn, are 
closely related to atmospheric circulation.

At extratropical latitudes most large-scale upward movements, with the horizontal extent being 
from several hundred to several thousand kilometers, are associated with low-pressure systems, 
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cyclones and troughs. They result from a convergence of air flows near the Earth’s surface to the 
cyclone center or to the trough axis. Upward movements in the atmosphere are also associated 
with atmospheric fronts which are narrow transition zones between cold and warm air masses. 
A front is called ‘warm’, if a warm air mass moves toward a cold one shifting it. Warm fronts 
are characterized by regular ascending movements of air sliding slowly along a frontal surface. 
These movements produce strong systems of frontal stratiform clouds Ns-As-Cs (nimbostratus 
Ns, altostratus As and cirrostratus Cs) with continuous precipitation. Cold fronts arise when a 
cold air mass moves toward a warm one. Cloud systems of slowly moving cold fronts are simi-
lar to those of warm ones. If a cold front is fast moving, vertical velocity of air movements before 
this front is higher than before a warm one; this contributes to the development of convective 
clouds, such as cumulonimbus (Cb) with storm precipitation and lightening (for example, [44]). 
A merging of the cold and warm fronts (so-called ‘occlusion’) in the process of cyclone evolu-
tion results in the formation of an occluded front with the most complex cloud systems. A cloud 
field of an atmospheric front is seen from satellites as a long band, with the width being usually 
less than 1000 km and the length reaching several thousand kilometers.

An extratropical cyclone is usually a frontal one, all its evolution being closely related to fronts. 
First, a cyclone arises as a wave at cold front; then, it passes to the stage of a young cyclone 
characterized by an existence of a warm sector, i.e. the area of warm air between its cold and 
warm fronts. At the stage of the maximum development of a cyclone the occlusion starts and 
an occluded front is formed. At the final stage of cyclone evolution the occlusion continues, 
a cyclone gets cold and slow and starts filling. A well-developed cyclone can be seen from a 
satellite as a cloud vortex with a spiral structure, the cloud field dimensions being comparable 
with those of a cyclone (see Figure 1). Thus, frontal cloudiness develops at all the stages of 
cyclone evolution. This results in a close connection between cloud fields and baric fields of the 
atmosphere, with baric field changes being accompanied by the evolution of cloud systems.

Figure 1. Cloud system of an extratropical cyclone over Alaska gulf (NASA Earth Observatory, photo by Jessy Allen and 
Robert Simon [45]). The center of the vortex is marked by A.
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Let us consider variations of cloud cover at middle latitudes where the intensive cyclonic 
activity takes place and compare them with pressure variations. As experimental base for 
this study the cloud data from ISCCP (International Satellite Cloud Climatology Project) 
[46] available for the period from July 1983 to December 2009 were used. At present it is the 
most comprehensive and the longest archive of different cloud characteristics. According to 
ISCCP classification clouds are divided into three types depending on pressure at cloud top 
(CP): low (CP > 680 hPa), middle (440 hPa < CP < 680 hPa) and high (CP < 440 hPa) clouds. 
Cloud amount is defined as a fraction of the area covered by clouds of a definite type and is 
expressed as a percentage of the total area. Anomalies of cloud amount are determined as 
the difference between monthly values of cloud amount of the studied type and the climatic 
mean, i.e. cloud amount for a given month averaged over the whole period of observation.

In this study we consider monthly values of low cloud anomalies (LCA) from the ISCCP-D2 
archive based on infrared (11 μm) radiance measurements [47]. Low-level cloudiness involves 
stratus (St), nimbostratus (Ns) and stratocumulus (Sc), it may also involve convective cumu-
lus (Cu). The data were taken for the mid-latitudinal belts 30–60° of both hemispheres which 
are regions of intensive extratropical cyclogenesis. At these latitudes the ISCCP data are in a 
rather good agreement with other satellite data (MODIS, UW HIRS), unlike polar ones [48].

In Figure 2a and b, temporal variations of LCA for the Northern and Southern hemispheres 
are presented. One can see a gradual decrease of low cloudiness from the early 1980s to 2009, 

Figure 2. Left: Temporal variations of LCA (monthly values) at the latitudes 30–60° in the Northern (a) and Southern 
(b) hemispheres. Right: Temporal variations of detrended values of LCA in the Northern and Southern hemispheres 
(c) and detrended values of LCA in the Northern hemisphere versus those in the Southern one. Thick lines show 
linear (a, b) and polynomial (c) trends in LCA variations.
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a reason for this decrease being not quite clear. According to [49], the trends may be due to 
some changes in the satellite view angles. However, as it will be shown later, this decrease of 
cloudiness may be also associated with long-term weakening of cyclonic activity in the belts 
under study. In any case, for our analysis of cloud-GCR links, we detrend values of LCA and 
GCR intensity.

Removal of linear trend in LCA reveals (Figure 2c) that low cloud anomalies in the Northern 
and Southern hemispheres have a rather high similarity. The correlation coefficient between 
these values amounts to 0.62 (Figure 2d), the statistical significance being 0.95 according to 
the random-phase test [50]. LCA variations in both hemispheres seem to be also characterized 
by a roughly 20-year periodicity. This periodicity, which is close to the magnetic Hale cycle on 
the Sun, was detected in many climatic parameters (for example, see [51, 52]), including the 
intensity of extratropical cyclogenesis in the North Atlantic [53]. Thus, the ~20-year periodic-
ity indicates a link between cloudiness and the evolution of dynamic processes in the lower 
atmosphere.

Let us now compare temporal variations of LCA and GCR intensity. To characterize GCR 
intensity we used monthly values of charged particle fluxes FCR measured in the strato-
sphere at ~15–20 km (in the maximum of the transition curve) at the mid-latitudinal station 
Dolgoprudny (geomagnetic cutoff rigidity Rc = 2.35 GV) near Moscow [54]. Variations of LCA 
and FCR monthly values, the linear trends being subtracted, are presented in Figure 3. We can 
see that till ~2000 LCA and GCR intensity varied in a similar way, but then this similarity was 
violated. Indeed, the correlation coefficients between yearly values of LCA and GCR fluxes 
for sliding 11-year intervals (Figure 4) show that cloud-GCR links were the closest in both 
hemispheres from the middle 1980s to the middle 1990s, the correlation coefficients amount-
ing to ~0.6–0.8. The statistical significance levels (dotted lines in Figure 4) for the correlation 
coefficients were estimated on the base of Monte-Carlo simulations of sliding coefficients for 
surrogate time series obtained by a randomization of initial ones. In the indicated period 
the cloud-GCR correlations were most significant (the significance level 0.95–0.99), but since 
~2000 they started to decrease sharply and in the early 2000s correlation became negative in 
both hemispheres.

Figure 3. Temporal variations of detrended monthly values of LCA and GCR fluxes in the Northern (a) and Southern 
(b) hemispheres. Thick lines show 12-month running averages of LCA.
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Taking into account a close link between cloudiness and dynamic processes in the atmosphere, 
let us consider pressure variations at middle latitudes. As a characteristic of pressure we used 
geopotential heights of the pressure level 700 hPa (GPH700), taken from NCEP/NCAR reanal-
ysis archive [55]. The indicated level is related to the free atmosphere where effects of Earth’s 
surface friction on air motion are negligible, and its heights correlate well with surface pres-
sure. Temporal variations of 12-month running averages of GPH700 values area-averaged 
over the belts 30–60° in both hemispheres are shown in Figure 5 for the period 1948–2013. One 
can see that long-term variations of pressure differ noticeably in these belts, which implies that 
cyclonic processes at middle latitudes of the Northern and Southern hemispheres develop to 
a great extent independently. However, during the period of ISCCP observations (1983–2009) 
pressure in the studied belts was gradually increasing, i.e. cyclonic processes were weaken-
ing. As cloud fields are produced by upward air movements closely associated with large-
scale low-pressure areas, a weakening of cyclonic processes had to result in a decrease of 
cloud cover. Thus, LCA decrease during the period 1983–2009 is consistent with observed 
pressure changes.

In Figure 6a and b, pressure (GPH700) anomalies in the belts 30–60°N (S), calculated similarly 
to low cloud anomalies, are compared with GCR variations, with the data being averaged 
over a year and the linear trends being removed. From the early 1980s to ~2000 pressure at 
middle latitudes of the Northern hemisphere and GCR variations developed in the oppo-
site phases, i.e. GCR increases were accompanied by cyclone intensification and pressure 
decrease, which agrees well with the effects detected in [42]. However, this link was destroyed 
near 2000. A similar situation took place in the Southern hemisphere. However, unlike the 
Northern one, where GCR effects are pronounced in almost all the belt 30–60°, GCR effects on 
cyclone evolution in the Southern hemisphere are restricted by the areas of climatic lows near 

Figure 4. Correlation coefficients between yearly values of LCA and GCR fluxes for sliding 11-year intervals in the 
Northern (solid red line) and Southern (dashed blue line) hemispheres. Dotted lines show the significance levels of the 
correlation coefficients.
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Antarctic coasts in the South Atlantic and the Indian ocean, as well at climatic Polar fronts 
over the South Pacific [42]. So, GPH700 anomalies for the Southern hemisphere (Figure 6b) 
were calculated for these cyclonic areas.

Figure 5. Long-term variations of tropospheric pressure (12-month running averages of GPH700) in the belts 30–60° of 
the Northern (a) and Southern (b) hemispheres. Red lines show polynomial trends.

Figure 6. Left: Temporal variations of GPH700 anomalies in the belts 30–60° and GCR fluxes (detrended yearly values) 
in the Northern (a) and Southern (b) hemispheres. Right: Correlation coefficients for sliding 11-year intervals between 
LCA and GCR fluxes (dashed lines), GPH700 anomalies and GCR fluxes (solid lines) in the Northern (c) and Southern (d) 
hemispheres. In the Southern hemisphere, the correlation coefficients are shown for the whole belt 30–60°S (light green 
line) and for the cyclonic areas (dark green line). Dotted lines show the significance levels of the correlations coefficients 
between GPH700 and GCR fluxes.
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Thus, the data presented in Figure 6 (left) show that before ~2000 GCR increases in the 
solar minima contributed to extratropical cyclone intensification at middle latitudes of both 
hemispheres, but near 2000 the character of the pressure-GCR link was abruptly changed. 
This is confirmed by the temporal behavior of correlation coefficients for sliding 11-year 
intervals between detrended yearly values of GPH700 anomalies and GCR fluxes shown in 
Figure 6 (right). From the middle 1980s to the middle 1990s, the strongest negative correla-
tion, with R(GPH, FCR) reaching approximately −0.8 and statistically significant at the level 
0.98 according to Monte-Carlo estimates, was observed throughout the mid-latitudinal belt 
of the Northern hemisphere and in the cyclonic areas of the Southern one. In this period 
we can see the most pronounced positive correlation between low clouds and GCR fluxes 
which is consistent with GCR effects on cyclone development. Then, a negative correlation 
between pressure and GCR fluxes started weakening and its sign reversal took place in 
the early 2000s. Simultaneously with the weakening of the pressure-GCR correlation, we 
observe the corresponding weakening of a positive correlation between low clouds and 
GCR variations, as well as this correlation turning negative in the early 2000s. Thus, the 
obtained results suggest that cloud-GCR correlation links at middle latitudes observed on 
the decadal time scale are closely related to GCR effects on the development of cyclonic 
processes.

3. Polar vortex as a possible reason for the variability of GCR effects 
on the lower atmosphere

It is well known that temporal variability is a characteristic feature of solar-atmospheric links 
(see, for example, [56]). Correlation links observed between lower atmosphere characteris-
tics and phenomena related to solar activity may weaken, disappear and even change sign 
depending on time period. So, a violation of the cloud-GCR link in the 2000s is not an extraor-
dinary event. Herman and Goldberg [56] suggested that a reason for temporal variability of 
solar-atmospheric links may be long-term processes of the Sun which do not influence sunspot 
numbers and/or some changes of atmospheric conditions. Veretenenko and Ogurtsov [42, 43] 
showed that temporal behavior of correlation links between surface pressure at extratropical 
latitudes and sunspot numbers is characterized by a roughly 60-year periodicity caused by 
changes in the epochs of the large-scale atmospheric circulation. The reversals of the correla-
tion signs were found in the end of the nineteenth century, in the early 1920s, the 1950s and 
the early 1980s coinciding with climatic regime shifts at middle latitudes [57], as well as with 
the transitions between cold and warm epochs in the Arctic [58]. So, a violation of the cloud-
GCR link in the 2000s seems not to be unexpected and may be associated with the next change 
of the circulation epochs resulting in the change of GCR contribution to extratropical cyclonic 
activity and, then, to cloud field formation.

According to the suggestions in [58], the changes of the circulation epochs are closely related 
to the state of the polar vortex. The polar vortex is a cyclonic circulation forming in a cold 
air mass in the polar region of the Northern and Southern hemispheres and spreading from 
the middle troposphere to the upper stratosphere. A circular air motion in the vortex results 
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in a decrease of heat exchange between polar and middle latitudes and this contributes to 
a temperature drop inside the vortex and an increase of temperature gradients at its edges  
(see Figure 7). The vortex can also be seen as a region of enhanced velocity of zonal winds 
in the stratosphere during cold months for the given hemisphere, the highest values being 
observed at latitudes 50–80° at the pressure levels above 50 hPa.

The polar vortex is an important factor of the large-scale atmospheric circulation and climate 
variability. Gudkovich et al. [58] showed that the rotation of cold and warm epochs in the 
Arctic are caused by changes of the vortex intensity, warm and cold epochs being associ-
ated with a strong and weak vortex, respectively. Indeed, under strong vortex conditions 
cyclone tracks are shifted to the north [59] and more North-Atlantic cyclones arrive in the 
polar region bringing warm air. An important feature of the polar vortex is its influence on 
the troposphere-stratosphere coupling via planetary waves. Propagation of planetary waves 
upward depends on stratospheric circulation (for example, [60, 61]). If the vortex is strong 
and a velocity of western winds in the stratosphere exceeds some critical value, these waves 
are reflected back to the troposphere. If the vortex is weak, planetary waves propagate freely 
upward. So, the stratosphere may influence the troposphere under a strong vortex regime. 
Under a weak vortex, only the troposphere may influence the stratosphere. This point seems 
to be of importance to understand the observed temporal variability of solar activity/GCR 
effects on tropospheric circulation.

Let us consider variations of the polar vortex intensity and compare them with temporal 
behavior of GCR effects on cyclonic activity and clouds. To characterize the vortex strength, 
we used zonally averaged velocity of western winds (i.e. the U-component of wind velocity 
directed from west to east from [55]) at the level 50 hPa (~20 km). In Figure 8 (top panel) there 
are presented variations (detrended values) of mean zonal wind velocity in the belts 60–80° 
in both hemispheres averaged for six cold months (October-March in the Northern hemi-
sphere and April-September in the Southern one). The correlation coefficients R(GPH, FCR) 
and R(LCA,FCR) for sliding 11-year intervals are shown in Figure 8 (bottom panel).

Figure 7. Distribution of mean monthly temperature at the pressure level 20 hPa (a) and of magnitude of horizontal 
temperature gradients (b) in the Northern hemisphere in January 2005. White asterisk indicates a minimum of 
temperature in the vortex; thick black line connects the points of maximal values of the temperature gradient at given 
latitude.
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From the middle 1980s to the middle 1990s the polar vortices in both hemispheres were 
enhanced. The vortex enhancement was the most prominent in the Northern hemisphere, the 
wind velocity increasing up to 4–7 m.s−1 relative to the trend values. This agrees well with the 
data [62] showing no strong sudden stratospheric warming destroying the vortex in the indi-
cated period. The vortex in the Southern hemisphere is more stable than that in the Northern 
one; however, we can also see a noticeable increase in wind velocity. The data in Figure 8 
show that in the period of the vortex enhancement most statistically significant correlations 
between pressure (cyclonic intensity) and GCR fluxes, as well as between low clouds and 
GCR fluxes take place. In the late 1990s both the vortices and the correlations GPH–GCR and 
LCA–GCR in both hemispheres started weakening. A sharp decrease of the wind velocities 
resulting in the vortex transition to its weak state occurred near 2000 in both hemispheres. 
The reversal of correlation coefficients under study coincided well with the transition of the 
vortices to a weak state. Thus, the presented data allow suggesting that the violation of the 
correlation between low cloudiness and GCR intensity detected on the decadal scale is closely 
related to the change of the polar vortex strength.

The results of this study confirm that the changes of the atmosphere state, in particular, of 
the intensity of the stratospheric polar vortex, may be a real reason for the observed tempo-
ral variability of solar-atmospheric links. Indeed, sign reversals of correlation links between 

Figure 8. Top: Variations of mean zonal velocity of western winds (the U-component) at the stratospheric level 50 hPa in the 
belt 60–80° for cold months in the Northern (a) and Southern (c) hemispheres. Thick lines show 11-year running averages 
and polynomial fits. Bottom: Correlation coefficients for sliding 11-year intervals between LCA and GCR fluxes (dashed 
lines), GPH700 anomalies and GCR fluxes (solid lines) in the Northern (b) and Southern (d) hemispheres. Dotted lines show 
the significance levels of the correlation coefficients. The period of an enhanced vortex is marked by vertical dashed lines.
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troposphere pressure in the Northern hemisphere and sunspot numbers during the twentieth 
century coincided with the changes in the evolution of the large-scale circulation, which, in 
turn, were associated with the polar vortex transitions from one state to another [42, 43]. 
A roughly 60-year periodicity was revealed in the vortex strength, the phases of the Arctic 
Oscillation being used as a proxy of the vortex intensity [43], which is consistent with a similar 
periodicity found earlier in correlation links between pressure at extratropical latitudes and 
sunspot numbers [42]. Thus, the data presented in this study revealed the next change of the 
vortex state, which resulted in the reversal of correlation links between atmosphere character-
istics and phenomena associated with solar activity.

The detected modulation of long-term solar activity/GCR effects on troposphere dynamics 
by the polar vortex state seems to be due to its role in troposphere-stratosphere coupling via 
planetary waves. As it was said above, the stratosphere may influence the troposphere only 
under a strong vortex regime when planetary waves are reflected back to the troposphere. 
Hence, a strong vortex regime seems to be more favorable to transfer a signal produced in 
the polar stratosphere by GCRs (or other solar activity phenomena) to the troposphere, as 
changes in the vortex formation region may influence its intensity and, then, conditions for 
propagation of planetary waves. Indeed, we can see that GCR effects on cyclonic activity are 
most pronounced under a strong vortex (see Figures 6 and 8) that agrees well with the previ-
ous data [42]. Thus, the results of this study provide new evidence for an important part of the 
polar vortex in the mechanism of solar activity/GCR influence on the troposphere dynamics 
on the decadal and longer time scales.

Let us note a favorable location of the vortex for GCR effects on the lower atmosphere. The 
vortex is formed in the region of low geomagnetic cutoff rigidities (Rc < 2–3 GV) that allows 
particles with a broad energy range to precipitate, including low-energy GCR component 
which is strongly modulated by solar activity. Wind velocities in the vortex reach maximal 
values at the heights ~20–30 km where the maximum of the transition curve is observed 
[63]. This height range also involves the layer of stratospheric aerosols consisting mainly of 
water solution of sulfuric acid (the Junge layer) (for example, [64]). This creates conditions 
for influence of ionization changes on aerosol formation which, in turn, may influence the 
radiative-thermal balance and temperature in the stratosphere and, as a result, the vortex 
characteristics.

We should also stress that the data presented above do not imply a lack of GCR influence on 
microphysical processes in clouds. However, they suggest that the formation of cloud-GCR 
correlation links differs depending on the time scale. GCR variations may influence nucle-
ation rates and growth of particles in clouds according to IMN and/or electric mechanisms 
[3–11], but this influence may be detected only on rather short time scales (from hours to 
several days) until the response of atmosphere dynamics to radiative forcing of cloud changes 
enhances or weakens initial microphysical effects. On longer time scale direct effects of GCRs 
on cloud formation are masked by more powerful indirect effects through circulation changes 
associated with GCR variations, these indirect effects depending on the polar vortex state. 
Taking into account this suggestion, the violation of cloud-GCR correlation links detected 
near 2000 may be explained.
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4. Conclusion

The question of cloud-GCR links remains controversial and requires new studies, both experi-
mental and theoretical, to evaluate a real contribution of galactic cosmic rays to solar activity 
influence on the Earth’s climate. The data presented in this chapter show that possible links 
between clouds and GCR variations on the decadal and longer time scales could involve not only 
direct (microphysical) effects, but mostly indirect ones mediated by circulation changes. This 
should be taken into account when considering long-term GCR effects on the cloudiness state.

An important part in the formation of long-term GCR effects on cloud cover at extratropical lat-
itudes seems to be played by the stratospheric polar vortex. The state of the vortex controls the 
stratosphere-troposphere coupling creating more favorable conditions for GCR influence on 
extratropical cyclonic activity and, consequently, on cloud cover under a strong vortex regime. 
In this connection, a high positive correlation of low cloudiness and GCR variations in the 
1980s–1990s, which was the period of a strong vortex, may be explained by a pronounced inten-
sification of extratropical cyclones associated with GCR increases in the minima of the 11-year 
solar cycle. A sharp change of the vortex state near 2000 both in the Northern and Southern 
hemispheres altered the character of GCR effects on cyclone evolution and, thus, resulted in a 
violation of cloud-GCR correlation links observed earlier under strong vortex conditions.
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