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Abstract

Lectins are an important group of proteins which are spread in all kingdoms of life. 
Their most lighted characteristic is associated to their specific carbohydrate binding, 
although function has been not even identified. According to their carbohydrate speci-
ficity, several biological activities have been assessed, finding that lectins can be used 
as mitogenic agents, biomarkers, and cytotoxic and insecticide proteins. Lectins have 
been classified according to several features such as structure, source, and carbohy-
drate recognition. The Protein Research Group (PRG) has worked on Colombian seeds 
from the family of Fabaceae and Lamiaceae plants, isolating and characterizing their 
lectins, and found more than one lectin in some plants, indicating that according to 
its specificity, different lectins can have different biological activities. In the case of 
legume domain lectins, they have shown the biggest potential as insecticide or insec-
tistatic agents due to the glycosylation pattern in insect midgut cells. This review 
attempts to identify the characteristics of plant legume lectin domains that determine 
their insecticidal and insectistatic activities.

Keywords: lectin, insecticide, insectistatic, legume

1. Introduction

Lectins are glycoproteins of nonimmune origin that recognize and bind carbohydrates. 
These proteins are found in a wide variety of species (viruses, bacteria, fungi, seaweed, ani-
mals, and plants). This review is mainly based on information of plant lectins that have been 
found as important new agents in biological control. Plant lectins have been widely studied, 
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and in this group, the legume lectins have been related to insecticidal and insectistatic activi-
ties. In addition, Phaseolus vulgaris (PHA), Glechoma hederacea (Gleheda), Canavalia ensiformis 

(ConA), Griffonia simplicifolia (GSII), and Pisum sativum (PSA) lectins and other legume and 
Lamiaceae lectins have been studied by the Protein Research Group (PRG) in Colombia. 
It was evidenced that plant legume lectin domains have structural features characterized 
by a high percentage of β-sheet structures associated with dimeric or tetrameric assembly, 
presenting several specific sugar recognition sites, including mannose. In addition to these 
features, these lectins can interact with the digestive system of insect pests and produce a 
decrease in intestinal absorption capacity.

2. Definition, classification, and general features of lectins

Lectins are proteins or glycoproteins of the nonimmune origin with specific binding affinity 
for the carbohydrate moiety of glycoconjugates [1]. Lectins comprise a structurally diverse 
class of proteins characterized by their ability to selectively bind carbohydrate moieties 
of the glycoproteins of the cell surface. Lectins may be obtained from plant, microbial, 
or animal sources and may be soluble or membrane bound [2]. In nature, lectins play a 
role in biological recognition phenomena involving cells and proteins and thereby protect 
plants against external pathogens such as fungi and other organisms. The ability to bind 
and agglutinate red blood cells is well known and used for blood typing; hence, the lectins 
are commonly called hemagglutinins [3].

The term lectin is derived from the Latin word legere meaning “to choose” or “select” 

and has been generalized to encompass all nonimmune carbohydrate-specific agglutinins 
regardless of blood type specificity or source. Lectins were initially found and described 
in plants, but in subsequent years, multiple lectins were isolated from microorganisms and 
also from animals [4]. Interestingly, plant and animal lectins show no primary structural 
homology, but they demonstrate similar preferential binding to carbohydrates [5]. This 

suggests that animal and plant lectin genes may have coevolved, thus highlighting the 
importance of lectin-carbohydrate interactions in living systems [6].

Based on the amino acid sequences of available lectins, it is deduced that the carbohydrate-
binding property of most lectins resides in a polypeptide sequence, which is termed as 
“carbohydrate-recognition domain” [7]. The binding with simple or complex carbohydrate 
conjugates is reversible and non-covalent. The specificity of lectins toward carbohydrates can 
be defined on the basis of “hapten inhibition test,” in which various sugars or saccharides 
are tested for their capacity to inhibit the property of hemagglutination of erythrocytes [8].

Lectins have been classified according to different features such as source (animal, vegetal, 
fungal, viral), carbohydrate affinity (mannose, glucose, galactose, fucose, sialic acid), num-

ber, and specificity of carbohydrate recognition domains (merolectins, hololectins, chimer-

olectins, and superlectins) [9]. However, current classification is based on 3D structure and 
is related to 48 families (Table 1) [10].

Insecticides - Agriculture and Toxicology18



Distribution

No. Family Fold Assembly Animal Plant Fungi Bacteria Virus

1 L-type Jelly roll Dimer x x x

L-type-like Jelly roll Monomer x x x

2 Galectin Jelly roll Monomer, dimer x x x

3 Pentaxim Jelly roll Pentamer x

4 I-type Ig-like β-sandwich Linked to 

different 
domains

x

5 C-type α/β-fold Linked to 

different 
domains

x

6 Hyaladherin α/β-fold Linked to 

different 
domains

x

7 Chitinase-like (β/α)
8
-Barrel Monomer x x x x x

8 M-type (α/α)
7
-Barrel Monomer x x x x

9 R-type β-Trefoil Linked to 

enzyme
x x x x

R-type-like β-Trefoil Linked to 

different 
domains

x x

10 ACA-like β-Trefoil Dimer x

11 Botulinum 

neurotoxin-like
β-Trefoil Linked to 

different 
domains

x

12 F-box Jelly roll Linked to 

different 
domains

x

13 F-type Jelly roll Linked to 

different 
domains

x x x x

14 PA-LL-like Jelly roll Dimer x

15 P-type α/β-fold Dimer x

16 Ficolins Fibrinogen-like Trimer x

17 Malectin Jelly roll Monomer x

18 Calnexin Jelly roll Monomer x

19 Tachylectin-2-like 5-Bladed 

β-propeller
Monomer x

20 Tachycitin-like β-sheet-cysteine 
fold

Monomer x

21 Hevein Cystine-knot motif Dimer x x

22 Jacalin-related β-Prism I Tetramer x x

23 SUEL-related α/β-fold Linked to 

different domains
x
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Distribution

No. Family Fold Assembly Animal Plant Fungi Bacteria Virus

24 H-type Six-stranded 
antiparallel 

β-sandwich

Hexamer x x

25 Cystine-knot Cystine-knot motif X

26 TgMIC4 α/β-fold Tandem repeat x

27 TgMIC1 Sialic acid binding 
protein

Linked to 

different 
domains

x

28 LysM βααβ-Motif Triple repeat x x x x

29 LNP-type α/β-fold Monomer x x x

30 Monocot β-Prism II Monomer, dimer, 
tetramer

x x

31 ABL-like α/β-sandwich Dimer, tetramer x x

32 CV-N Three-stranded 

β-sheet and 
β-hairpins

Monomer x x x

33 PVL-like Seven-bladed 
β-propeller

Monomer x

34 AAL-like Six-bladed 
β-propeller

Monomer x x

35 Flocculins β-Sandwich Monomer x x

36 PCL-like Jelly roll Tandem repeat x

37 BC2LCN Jellyroll Trimer x

38 Staphylococcal toxin β-Barrel Monomer x

39 AB5 toxin α/β-fold AB5 x

40 PA-IIL-like β-Sandwich Dimer x

41 MVL α/β-fold Dimer x

42 PapG β-Sandwich Linked to 

different 
domains

x

43 FimH β-Sandwich Linked to 

different 
domains

x

44 F17-G β-Sandwich Linked to 

different 
domains

x

45 Hemagglutinin Jelly roll Trimer x

46 RotavirusVP4 Jelly roll Virus capsid x

47 Viral proteins β-Sandwich Virus capsid x

48 Knob domain Jelly roll Virus capsid x

Folding, assembly, and source of each family is shown.

Table 1. Lectin families in nature.
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3. Structure and biological activities of plant lectins

Lectins are mainly present in seeds of plants [4, 8, 9], but they are also identified in vegeta-

tive tissues such as bulbs, tubers, rhizomes, roots, bark, stems, fruits, and leaves [11].

As previously mentioned, based on their number domains and their characteristics, plant 
lectins can be divided into four classes [9]:

• Merolectins are lectins that possess a single carbohydrate-binding domain. As a result, 
the merolectins do not present agglutinating activity.

• Hololectins contain two or multivalent carbohydrate-binding sites.

• Chimerolectins possess a carbohydrate-binding domain and an additional domain that 
confers other biological activities.

• Superlectins are lectins with two or multivalent carbohydrate domains that are able to 
recognize structurally unrelated sugars.

However, since 1998, five novel lectin domains have been identified in plants. At present, plant 
lectins are classified into 12 different families, with distinct carbohydrate-binding domains. 
The families are Agaricus bisporus agglutinin homologs, amaranthines, class V chitinase homo-

logs, Euonymus europaeus agglutinin family, Galanthus nivalis agglutinin family, proteins with 
hevein domains, jacalins, proteins with legume lectin domains, LysM domain proteins, the 
Nicotiana tabacum agglutinin family, and the ricin B family [12].

In general, the three-dimensional structure of lectins is composed of a high content of 
β-sheets with little contribution from α-helixes. The β-sheets are connected by loops form-

ing antiparallel chains. The stability of dimers and tetramers is conferred by hydrophobic 
interactions, hydrogen bonds, and salt links [13]. Three regions are formed in carbohy-

drate-binding site [12–14]:

• The central region is constituted by a conserved core in which residues interact with metal-
lic ions (Mg2+, Mn2+, and Ca2+), required for carbohydrate interactions. This core provides 
necessary binding energy, but it is not important to the lectin’s carbohydrate specificity.

• Some aromatic residues surround the core and occupy variable positions in a horseshoe 
shape. This region is fully involved in the lectin’s monosaccharide specificity.

• Finally, residues with higher variability are located in the outer zone and are involved in 
interactions with larger oligosaccharide ligands.

The structural features of plant lectins are shown in Figure 1, which is possible to see the 
high content of β-sheets (Figure 1A) and the structure of a typical carbohydrate recognition 
domain (Figure 1B).

However, the kind of expressed lectins can have some differences according to the spe-

cific tissue or the moment in which the plant is expressing it. A lot of plant lectins are 
constitutively expressed in high amounts in seeds and vegetative storage tissues where 
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they have been shown to play a role in plant defense [15]. But, plants also express minute 
amounts of specific lectins as particular responses toward environmental stresses and 
pathogen attack. In the absence of plant stress, the inducible lectins are not expressed 
at detectable levels [16]. According that, a central question which has often been asked 
but up to now not yet been answered definitively is that on the biological function(s) 
of plant lectins. Several functions have been mentioned, but there is not a final decision 
about that. However, because of its carbohydrate interactions, lectins have been tested 
for several biological functions, getting interesting results in some of them. Biological 
activities are related to immunomodulatory and antitumor [17–19], antifungal [20–23], 
antiparasitic [24–26], antiproliferative [27–30], healing process [31–33], drug delivery 
[34–36], as histochemical markers [37–39], biosensors [40, 41], insecticide [42–46], etc.

4. Fabaceae (legume) and Lamiaceae (mint) lectins

The specific carbohydrate recognition shown by lectins makes them important tools in gly-

cobiology, and, although their physiological role remains unknown, they appear to mediate 
protein-cell and cell-cell interactions. Lectins are widespread in nature, and most of them 
have been isolated and characterized from Fabaceae, Gramineae, and Lamiaceae families, 
among others [47, 48]. Those lectins have been related to insect defense mechanisms, storage 
proteins, carbohydrate transport, mechanisms of physiological regulation, and mitogenic 
stimulation processes [49–55]. The ability of the nitrogen-fixing bacteria rhizobia to form a 
symbiotic relationship with legumes, in which plant root lectins are involved, is well known. 
The plant-associated bacteria have important effects on plant health and productivity [56–59].  

Thus biofilm formation on plants is associated with symbiotic and pathogenic responses, 
and some root lectins promote this process [60]. The lectins could be a good biotechnological 
alternative in the control of bacterial biofilms for different purposes, for example, clinical 

Figure 1. Structural conformation of plant lectins. (A) Pterocarpus angolensis homodimer lectin (PDB code (2PHF)). The 
β-sheet conformation is the most usual in plant lectins (β-sandwich). (B) The carbohydrate recognition domain (CRD) is 
highly conserved in plant lectins, according to its specificity.
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applications [61]. In general, plant lectins have been widely used for studying carbohydrates 
on cell surface, for typing blood groups, isolating glycoconjugates, and detecting changes in 
normal oligosaccharide synthesis in tumoral disorders and other pathologies [62–66].

Lectins from Fabaceae have been extensively studied and have a broad specificity for any 
carbohydrate moieties regardless of having highly conserved amino acid sequences between 
different species. These proteins have been for a long time a paradigm in the research of 
interaction protein-carbohydrate and their relationship structure-function [67, 68]. Available 
sequences (RCSB PDB, UniProtKB/Swiss-Prot) show 20% similarity and 20% of identical 
amino acids, and conserved amino acids are in the “binding site” and coordinate metal ions [9].  

These proteins generally have two or four identical subunits with a molecular weight around 
25 kDa; each one contains a binding site for metal ions. A typical example of dimeric lectins 
belongs to the Viceae tribe. The tetrameric lectins are present in species of the tribe Diocleae, 
specific by glucose/mannose. In these tribes, many lectins have been isolated and character-

ized with some biochemical differences and molecular similarities [47]. Recently, subtribe 
Diocleinae in the Millettioid legumes have been taxonomically tangled together with the large 
heterogeneous tribe Phaseoleae; however, a comprehensive molecular phylogenetic analysis 
based on nuclear and chloroplast markers includes all genera ever referred to Diocleae except 
for the monospecific Philippine Luzonia, resolving several key generic relationships within the 
Millettioid legumes and considered classification of Diocleinae subtribe as a tribe with three 
main clades: Canavalia, Dioclea, and Galactia. Canavalia clade has species gender Canavalia; Dioclea 

clade includes Dioclea, Cymbosema, Cleobulia and Macropsychanthus; and Galactia clade gender 

has Galactia, Neorudolphia, Rhodopsis, Bionia, Cratylia, Lackeya, Camptosema, and Collaea [69].

This tribe is widely distributed throughout the neotropics, and several species from the 
genus Dioclea have been shown to possess a lectin closely related to ConA (lectin type 
I). The better characterized lectins have been those from D. grandiflora [70, 71], D. lehm-

anni Diels [72], and D. sericea Kunth [73], among others, all of them belong to the Man/Glc 
group; their physicochemical properties and structural features are very similar [74].

Studies carried out in the PRG have allowed us to find other lectins having distinct structural and 
functional properties (named lectin type II) from Diocleae lehmanni (DLL), Dioclea sericea (DSL), 
Dioclea grandiflora (DGL), Canavalia ensiformis (CEL), and Galactia lindenii (GLL) [73, 75–77]. These 

lectins are localized in the same cellular compartment as happens in D. lehmanni seeds [78] and 

have different physicochemical properties; this allow us to question about the physiological 
role of these proteins. Lectin type II has high affinity toward H type 2 blood group (α-L-Fuc 
(1–2)-β-D-Gal (1–4)-β-D-GlcNAc-O-R), and the N-terminal region presents a unique sequence 
hitherto found in some Diocleinae lectins and suggests a functional similarity among this type 
of lectin which possesses distinctive characteristics differentiating them from “classical” man-

nose/glucose (Man/Glc) lectins. Taking subunit MW into account, it has been demonstrated that 
tetrameric forms prevailed in type I lectins, being in fast equilibrium with dimers and mono-

mers whose amount depended upon pH or solution ionic strength [79], while some lectins from 
type II prevalence dimeric forms (Table 2). Despite their high similarity, these ConA-like (type 
II) lectins could induce different responses in biological assays; for example, when tested for 
stimulation of human lymphocyte proliferation in vitro, ConBr had a higher proliferation index 
than ConA, possibly due to minor changes in binding specificities [80].
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Type Species Specificity Monosaccharide inhibitor Erythroagglutination Native 
(kDa)

Subunits (kDa) pI References

I D. 

grandiflora
Man/Glc Man, Glc, Fru Rabbit 100 α:25–α:26; β:13–β:14; 

γ:8–γ:9
8.6–9 [70, 71]

D. lehmanni Man, Glc, Fru, L-sorbose, Me-α-D-Man, Me-α-D-
Glc, trehalose

Rabbit, A+, O+, B+ α:25.3; β:14; γ:N.D 8.0–

8.4

[72]

D. sericea Man, Glc A+, O+, B+ 57.7 α:29.9; β:16.5; γ: 13.4 6.6–

6.9

[73]

D. altisima Man, Glc, Fru Rabbit 100 α:26.3; β:14; γ: 9 8.6–

9.0

[131]

D. violaceae Man, Glc, Fru, maltose Rabbit α:29.5; β:15.8; γ: 11.7 [132]

D. rostrata Man, Glc, Fru Rabbit, O+ and B+ α:30.9; β:15.8; γ: 11.7 [67]

D. 

lasiophylla
Man, Me-α-D-Man, ovalbumin, fetuin Rabbit α:25,569; β:12,998; γ: 

12,588
[133]

D. 

sclerocarpa
Glc; Gal Rabbit 102 α: 25,606; β:12,832; 

γ:12,752
[134]

C. ensiformis Man, Me-α-fructofuranoside Rabbit 96 α:25.5; β:14; γ:12.5 7.1 [67]

C. mollis Glc, Me-α-D-Man Rabbit > A+, O+, B+ α:30; β:16; γ: 14 8.5–

8.6

[135]

C. roseum Man Rabbit α:30; β:18; γ: 12 [136]

G. lindenii p-Nitrophenyl-β-D-mannopyranoside, Man A+, O+ 100 29; 60 6,5 [77]
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Type Species Specificity Monosaccharide inhibitor Erythroagglutination Native 
(kDa)

Subunits (kDa) pI References

II C. ensiformis H-Type II Sucrose, melezitose, lactose A+, O+, B+ 57.5 29–30 5.2–

5.4

[76]

D. 

grandiflora
Sucrose, melezitose, lactose A+, O+, B+ 58.9 29–30 5.1–

5.4

[76]

D. lehmanni Sucrose, melezitose, lactose A+, O+, B+ > rabbit 58.4 29–30 6.5–

6.6

[75]

D. sericea Lactose, sucrose, melibiose A+, O+, B+ 57.27 26.58–30 5.3–

5.7

[73]

G. lindenii GalNAc, Me-β-Gal, Lactose B+, O+ > A+ 104,256 26,064 8.3 [137]

C. roseum GalNAc and N-acetyl-α-D-lactosamine Rabbit 65 29 — [138]

Captosemin N-acetyl-α-D-galactosamine A+, O+, B+ 104 26 — [139]

Abbreviations: kDa, kilodalton; pI, isoelectric point; H-type II, antigen (α-L-Fuc(1–2)-β-D-Gal(1–4)-β-D-GlcNAc-O-R); Man, mannose; Glc, glucose; Me, methyl; Gal, 
galactose; Fru, fructose; GalNAc, N-acetyl-α-D-galactosamine.

Table 2. Physicochemical properties of lectins of Diocleae tribe.
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Lamiaceae lectins have been little studied despite preliminary reports on their ability 
to recognize the Tn/T antigens [81], normally a cryptic structure in the peptide core of 
O-glycoproteins and which is widely expressed in several tumors and other disorders such 
as Tn syndrome and IgA nephropathy [82–85]. The importance of Thomsen-Friedenreich 
antigen (TF or T, galactose (Gal) β1,3 GalNAcα-O-serine (Ser)/threonine (Thr)) as well as 
to its precursor, the Tn antigen, and its sialylated forms (sTn) has been reviewed recently 
[86–91]; according to the above, it is important to have alternatives to study these structures 
such as the lectins and antibodies. However, a word of caution should be given as accumu-

lating evidence, which has shown that mAbs and lectins do not interact with Tn-containing 
structures in an identical manner. The observed differences have been ascribed to different 
Tn-density requirements for the interaction to occur [92].

Detailed studies have been carried out on a very few Lamiaceae species from the Northern 
hemisphere’s temperate zone until now [93–97], and the lectin from Salvia sclarea L. seeds 

(SSL) was the first to be isolated and partially characterized [94]. By contrast, species 
from the Neotropical Salvia subgenus Calosphace Benth have been little explored despite 
their great diversity. A systematic survey has been conducted on species belonging to the 
Neotropical Calosphace Benth subgenus [98], and certain species naturalized in the New 
World have also been investigated [99], some having commercial value. Given the abun-

dance of Lamiaceae species in Colombia and the potential biotechnological applications, 
our group undertook a systematic search for the identification, isolation, and characteriza-

tion of lectins from selected species with the determination of their biological activities. The 
lectins from S. palifolia Kunth and Hyptis mutabilis (Rich.) Briq. [100] have been partially 
characterized, and a detailed work has been done with S. bogotensis Benth and Lepechinia 
bullata (Kunth) Epling [101, 102].

The importance of these proteins as tools in a variety of biological studies and detection, 
isolation, structural, and functional properties has been studied, and more recently, T/
Tn-specific lectins have been found in the families Amaranthaceae, Fabaceae, Moraceae, 
and Orchidaceae, among others. The lectins themselves belong to five families of structur-

ally and evolutionarily related proteins (amaranthines, legume lectins, jacalin-related lec-

tins, type 2 ribosome-inactivating proteins, and GNA-related lectins) [103].

Interestingly, a lectin type I was found in S. bogotensis Benth. (SBoL-I) and Lepechinia bullata 

(Kunth) Epling (LBL-I) (such as those found in the tribe Diocleae type I), which recognizes 
mannose/glucose residues; this fact, together with the molecular properties and highly sim-

ilar N-terminal regions, led us to propose that lectins type I and type II are two good differ-

entiated groups with structural features proper of legume lectins family, particularly from 
Diocleae tribe, Salvia, and Lepechinia genders (Table 3) [104]. For these lectins, SDS-PAGE 
profile was similar to other mannose lectins, a band around 30 kDa with an isoelectric point 
near to 6.5, and they were able to agglutinate human RBCs from A, B, and O donors. This 
means that specificity by mannose/glucose moieties or mannose-rich glycan is not a unique 
feature of any family; conversely, species such as Galanthus nivalis (tribe Galantheae) [105] 

and Centrolobium microchaete (tribe Dalbergieae) [106], among others, even species from 
other families such as Moraceae have mannose/glucose lectins [107].
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Molecular 
properties

GLL-
I1

DLL-I2 CRL-I3 CEL-I4 SBoL-I5 LBL-I6

M
r
 subunit (kDa)7 29 25, 14 ND 26.5 30–33 30–34

M
r
 protein (kDa)8 100 ND ND 106 ND ND

SDS-page (kDa) 29, 60 25, 14 30, 18, 12 26, 14, 12.5 30, 60 30, 60

Glycosylation Si ND ND No Si Si

Neutral Sugars (%) ND 1.7–1.9 ND ND ND ND

Isoelectric point (PI) 6.15 8.0; 8.13

8.3; 8.42

ND 7.1 6.5 6.5

Mannose

inhibition

(mM)

150 50 19.5 ND ND ND

Sequence

N-terminal

ND ADTIVAVELD 
SYPNTDIGDPSYPH

ADTIVAVELD 
SYPNTDIGDPSYPH

ADTIVAVELD 
TYPNTDIGDPSYPH

ADTIVAVELD ADTIVAVELD

1Galactia lindenii lectin type -I (GLL-I) [77].

2Dioclea lehmanni lectin type I (DLL-I) [72].

3Cymbosema roseum lectin type I (CRL-I) [136].

4Canavalia ensiformis concanavalin A (CEL-I) [67].

5Salvia bogotensis lectin type I (SBoL-I) [104].

6Lepechinia bullata lectin type I (LBL-I) [104].

7Reduced conditions.

8Non-reduced conditions without heat.

ND, non-determined.

Table 3. Molecular properties of lectins type I from Fabaceae and Lamiaceae families.
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5. Insecticide and insectistatic activity of plant lectins

There are several evidences for the defensive role of vegetal lectins in protecting plants against 
insect pests [108–110], and lectins are currently receiving a significant interest as insecticidal 
agents against sap-sucking insects including aphids and leaf and plant hoppers, with no effect 
on human metabolism [111, 112]. Lectins act on insects by binding to glycoproteins present in 
insect gut epithelium, eventually causing death of insect by inhibiting absorption of nutrients. 
It was believed that N-linked glycans in insects were exclusively of the high mannose type; 
therefore, there are great interests, especially in mannose-specific plant lectins, as possible 
insecticidal or insect-deterring molecules for the new pest management strategies [113, 114]. 

Nevertheless, the lectins possess different sugar specificities and, considering the variety of 
glycan structures in the bodies of insects, have many different possible targets. Advances 
have been made in the knowledge related to glycan diversity and function(s) of protein gly-

cosylation in insects, N-glycosylation, and O-glycosylation, and it postulated that the interfer-

ence in insect glycosylation appears to be a promising strategy for pest insect control [115]. 

Therefore, it is difficult to predict the exact mode of action of each lectin and even more dif-
ficult to understand the variability in insect toxicity upon exposure to different plant lectins. 
The use of initial bioassays employing artificial diets has led to the most recent advances, 
such as plant breeding and the construction of fusion proteins, using lectins for targeting the 
delivery of toxins and to potentiate expected insecticide effects [116–118].

The first lectin known for insecticidal activity was Galanthus nivalis agglutinin, which 
belongs to a superfamily of alpha-D-mannose-specific plant bulb lectins [105, 119]. The 

mannose-binding lectins have shown strong insecticidal activity against chewing and 
sap-sucking insects and particularly in controlling aphids [120–124]. Lectin isolated from 

bulbs of Phycella australis presented a strong insecticidal activity against the pea aphid and 
green peach aphid, affecting the survival, feeding behavior, and fecundity of aphids, where 
Acyrthosiphon pisum proved to be particularly sensitive [125].

No considerable mortality effect of ASA lectins (native or recombinant lectins) was shown on 
larvae of potato moths (Tecia solanivora); however, recombinant ASAII lectin had an effect on the 
pupa mortality, which was bigger than the native lectin effect. The effect of lectins on the weight 
and fertility of adults showed that both lectins had a big effect on fertility when the lectin is used 
in a low concentration (lower than 0.003 mg/mL), and, in some cases, lectins produced malfor-

mations in female adults [126]. Fitches et al. found toxic effects on Acyrthosiphon pisum using 

both recombinant lectins; however, ASA II was more toxic than ASA I, at the same dose [127].

Lectins from legume family have shown insectistastic and insecticidal activity [52] (Table 4).  

The lectins from seeds of Canavalia brasiliensis, Dioclea grandiflora, Dioclea rostrata, Cratylia flo-

ribunda, and Phaseolus vulgaris have shown to protect seeds against the beetle Callosobruchus 

maculatus. In general, the plant lectins are the most potent agents against insect pests of a 
variety of crops including wheat, rice, tobacco, and potatoes [128]. Canavalia lectins exhibited 
a range of different toxicities toward Artemia nauplii and bound to a similar area in the diges-

tive tract; differences in spatial arrangement and volume of CRD (carbohydrate recognition 
domain) may explain the variation of the toxicity showed by each lectin despite the high 
structural similarity [129]. The sensitivity of different insect species to the insecticidal effects 
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of lectin ingestion is variable, and the binding of a lectin to the gut does not necessarily imply 
toxicity. Other studies signal that lectins affect various insect hydrolytic enzymes such as 
glucosidases, phosphatases, and proteases which are involved in digestion, development, 
growth, and detoxification. To date a great number of studies have shown lectin toxicity in 
insects belonging to different orders, including Lepidoptera, Coleoptera, and Hemiptera. 
However, the exact mode of action of lectins in providing resistance against insects remains 
unclear. The most relevant property of lectin’s anti-insect activity can be related to its inter-
actions with different glycoproteins or glycan structures in insects, which may interfere with 
a number of physiological processes in these organisms. Lectins possess at least one carbo-
hydrate-binding domain and different sugar specificities, possible targets for lectin binding 
are numerous, and several mechanisms can be associated (Figure 2).

Preliminary evidence of Gleheda’s insecticidal activity against Colorado potato beetle lar-
vae (Leptinotarsa decemlineata) has been obtained using a single dose of lectin [130]; it would 
have been very interesting to carry out dose-response experiments and to assay several 
insect pests to elucidate whether the lectin was insect specific. Nevertheless, Gleheda’s 
insecticidal activity stresses the importance of this unusual lectin, begging the question 
of whether such activity is shared by other Lamiaceae lectins. To date Lamiaceae lectin is 
unique with known insecticidal activity. The importance of lectins due to their insecticidal 
properties, isolation of native lectins, and lectin genes could be agronomically important 
tools for crop plants for developing resistance against insect pests mainly for sap-sucking 

Lectin Insect pests Activity References

PSA Meligethes aeneus Insecticidal, insectistatic [140]

ConA Tarophagous proserpina Insectistatic [141]

Gleheda Leptinotarsa decemlineata Insectistatic [130]

ConA Callosobruchus maculatus Insectistatic [142]

ConA Helicoverpa armigera Insectistastic [143]

GS-II Callosobruchus maculatus Insectistastic [144]

PHA Callosobruchus maculatus Insecticidal [145]

PHA-E Empoasca fabae Insecticidal [146]

Bmoll Anagasta kuehniella

Zabrotes subfasciatus

Callosobruchus maculatus

Callosobruchus maculatus

Insecticidal [147]

DGL C. maculatus [108]

DRL

CFL

Pisum sativum (PSA), Canavalia ensiformis (concanavalin A (ConA)), Glechoma hederacea (Gleheda), GS-II: Griffonia 
simplicifolia aglutinina, Phaseolus vulgaris (PHA), Bauhinia monandra leaf lectin (bmoll), Dioclea grandiflora (DGL), D. 

rostrata (DRL), Cratylia floribunda (CFL). Taking from Calvacante et al. [60] and modified.

Table 4. Legume lectins domain with insectistatic and insecticidal activity.
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insect. These proteins are very interesting, and its molecular properties have been well 
described; however, there is still a long way to study and learn about the mechanisms of 
these molecules at a physiological and molecular level.
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