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Abstract

The North Appalachian Experimental Watershed (NAEW) in Ohio was established in
1935 to improve economical and physical sustainability in agriculture. The objectives were
to test management practices on small watersheds, investigate scaling of runoff and
erosion to larger areas, and research ways to extrapolate the results to ungauged areas.
The facility was equipped with a permanent infrastructure consisting of runoff stations
and rain gauges for watersheds ranging in size from 0.26 to 1854 ha, and 11 large (0.008 ha)
monolith lysimeters to investigate small-scale water balances, all in an area greater than
2000 ha. After about 1970, the NAEW was reduced in size to 425 ha consisting of mostly
small watersheds (“test beds”) ranging in size from 0.26 to 3.07 ha. The NAEW was in
operation for approximately 81 years generating a long record of runoff and other data for
various watersheds, and closed in 2015. A wide variety of experiments were conducted on
the NAEW with many high-impact accomplishments and addressing emerging issues
that founders never envisioned. Nearly, 500 publications came from investigations during
the history of the facility, and insights for establishing new experimental watersheds are
presented covering site selection, funding, site specificity, extrapolation of results, genera-
tion of runoff in different physiographic regions, collaboration, off-site investigations, and
instrumentation. The research on water quality was added to the research objectives in the
1970s, including nutrients (nitrogen and phosphorus) and pesticides in surface runoff and
subsurface flow.

Keywords: experimental watersheds, lysimeter, precipitation measurement, runoff
measurement, agriculture, hydrology, water quality
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1. Background

In the decades leading up to the mid-1930s in the United States (USA), agricultural enterprises

were increasingly physically and economically unsustainable due to soil erosion and flooding.

The United States Department of Agriculture (USDA) recognized that there was insufficient

underlying science supporting the management of agricultural lands that could be assembled

into practical land-management guidance for producers. As a result, a national effort

established large and small scale research projects that would test the effectiveness of land-

management practices under natural-weather conditions in different regions of the country to

minimize agricultural environmental problems nationwide.

Consequently, three large-scale experimental watersheds were established in the USA in the

mid-1930s [1]. In 1935, one of the large-scale areas established was the outdoor laboratory for

land and water management research at the North Appalachian Experimental Watershed

(NAEW, also known as the “Coshocton watersheds”) near Coshocton, Ohio, the focus of this

chapter. This chapter draws heavily from three prior publications that describe the NAEW.

Reference [1] describes the NAEW as part of the three original large-scale experimental water-

sheds, Ref. [2] concentrates on the NAEW history and capabilities, and Ref. [3] describes the

types of NAEWdata available.

The purposes of this chapter are to: (1) present the history and design of the NAEW, instru-

mentation, physical features, unique capabilities, data available, research portfolio, and exam-

ples of accomplishments, and (2) discuss challenges likely to be encountered when establishing

new experimental watersheds and suggest possible remedies. This chapter summarizes the

information given in the NAEW history, research portfolio, and capabilities found in [2]. It

differs from the other publications on the NAEW listed above in that it raises challenges and

provides guidance for establishing new experimental watersheds based on the research expe-

riences at the NAEW. Some of the information in [2] is reiterated here, and the reader is

referred to that publication for more detailed information. As noted in this chapter, the NAEW

was unique in data collected and physical features found nowhere else in the USA.

The founding document for the NAEW [4] listed three overall objectives:

1. “To determine the effect of land use and erosion control practices upon the conservation of

water for crops and water supply and upon the control of floods under conditions

prevailing at the North Appalachian Region [NAR] of the US”;

2. “To determine the effect under (1) for small and large areas and to trace variations in this

effect from the smallest plot and lysimeters through a series of intermediate watersheds to

the largest watershed on the project”; and

3. “To determine the rates and amounts of run-off for precipitation of different amounts and

intensities for watersheds typical of the NAR of different configuration, size, shape, topog-

raphy, cover, underground conditions, land use, and erosion control practices. To furnish

data needed for use in the design of erosion control structures and in the design and

operation of the Muskingum Watershed Conservancy District and other flood control

projects lying within the NAR.”
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The originators of the experimental watershed program were visionaries as the concepts above

are the needs required for ideally researching landscapes to minimize environmental damage

and maximize sustainability even today. The objectives above were to investigate, within a

region (hill lands of the North Appalachian Region, NAR), conservation practices at the small

field scale (areas manageable by the producer—objective 1), to investigate the watershed

response when the smaller nested areas (possibly not owned by the same producer) collec-

tively interact at increasingly larger areas (objective 2—scaling), and to generalize/extrapolate

the site-specific field results to ungauged areas (todays “modeling”—objective 3—recognizing

the site-specificity of monitored watersheds). The founders recognized the temporal and spa-

tial variability of weather and the landscape, the complex nonlinear areal behavior of runoff

and erosion processes, the need for measuring watershed responses, and the need for develop-

ing guidance for producers in the absence of field data for unmonitored fields and watersheds.

The NAEW was originally operated by the USDA—Soil Conservation Service, Division of

Research, and in 1954 became part of the newly created Agricultural Research Service (ARS).

NAEW has worked collaboratively throughout the 81-year history with The Ohio State Uni-

versity, especially through its agricultural research center located in Wooster, Ohio. Through-

out its history, NAEW scientists have collaborated with university scientists and students

worldwide, state and Federal agencies, and persons in the private sector. These collaborations

supplied scientific expertise required for specific project objectives and facilitated addition of

new capabilities for the NAEW.

Construction of administrative and shop buildings, and instrumentation infrastructure started at

theNAEW in about 1935 usingworkers from theWorks Progress Administration (WPA), Civilian

Conservation Corps (CCC), and the Civilian Public Service (CPS) program for construction and

data collection in the early years. The NAEW was closed in December, 2015, a duration of about

81 years since the construction began. The earliest data records began in about 1937 spanning

78 years of data collection on the NAEW (instrumentation and data to be presented later).

2. Physical setting

The NAEW was chosen for its “representativeness” in the NAR which included southeast

Ohio, eastern Pennsylvania, northern Kentucky, and northern West Virginia (Figure 1). Phys-

ical features considered for “representative” experimental watershed selection included soil

types, climate, and other factors. Determining representativeness using physical map overlays

at the time was comparable to the use of modern-day geographical information systems (GIS).

The selected site was one of 86 candidate sites [2, 4].

The NAEW consisted of agricultural lands in east-central Ohio (Ohio map inset in Figure 2)

with slopes typically ranging from 18 to 25% and elevations ranging from about 250 to 350 m.

About half of the area was in grassland with corn, soybeans, wheat, and forest comprising the

remaining area [2]. The latitude of the NAEW is about 40.4o N.

Originally, the NAEW comprised a 1854-ha watershed area with several nested gauged water-

sheds (Little Mill Creek [LMC] watershed, Figure 2, left). This watershed was chosen to address

Experimental Watersheds at Coshocton, Ohio, USA: Experiences and Establishing New Experimental Watersheds
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mainly objective 2—scaling issues. Additionally, part of the NAEW included 425-ha in the south-

east area of LMC (Figure 2, right). On this area were several small monitored watersheds of the

order of 0.4 ha to address mainly objective 1—evaluating impacts of specific practices on a small

(producer-managed) areas, where there were no confounding influences of other land-

management activities. In approximately 1970, monitoring in the LMC watershed ceased and the

NAEWwas reduced in size to 425-hawith the largest gaugedwatershed at 123 ha (Figure 2, right).

Figure 1. View of NAEW landscape and administrative buildings.

Figure 2. The North Appalachian Experimental Watershed (NAEW) comprises the 1854-ha Little Mill Creek (LMC) water-

shed (left) and the smaller 425-ha NAEWarea (right). Inset shows the location of the NAEW within the state of Ohio.

Hydrology of Artificial and Controlled Experiments4



The average annual air temperature is 10.4�C and the average annual precipitation is 959 mm.

Cool air from the northwest and moist air from the south often converges to form storms over

the NAEW [2]. Soil during winter often freezes for short periods causing precipitation to

immediately runoff. Snowmelt also is a source of runoff.

The geology of the NAEW consists of unglaciated sedimentary strata composed of mostly

sandstone and shale, with interbedded strata of coal, clay, and limestone. An underlying

anticline, local synclines, and strata slightly dipping to the southeast characterize the structure

of geological formations [5], (Figure 3).

Soils of the NAEW were developed in residua of weathered sandstone and shale. Three

dominant soil types include well-drained sandstone-derived soils (Inceptisols), soils with an

argillic horizon derived from shale (Alfisols & Ultisols), and soil between these extremes [2, 5].

Small watersheds were chosen from many swale areas on the landscape. They were character-

ized by ephemeral areas that shed water only during heavy rain storms and snowmelt, with no

incised channel. Larger watersheds have incised channels and drain areas with multiple land-

management areas.

3. Serendipitous physical features affecting hydrology and water quality

Using general factors such as geology, soils, weather, etc., to select a “representative” site for

the NAEW was necessary. Other hydrologically beneficial features of the NAEW location,

however, became apparent as experiments were conducted on the site. For examples:

1. The imperviousness of geological clay layers underlying coal seams supported perched water tables

[2]. These perched water bodies allowed an index measure of the ground-water impacts of

surface land-management treatments. Ground-water impacts were evaluated, where the

intersection of geological clay layers intersected the landscape surface forming springs that

were monitored beneath treated hilltops [5], (Figure 3). Ground water beneath areas as

Figure 3. Schematic drawing of perched water table due to geological clay layers in unglaciated sedimentary strata on the

NAEW in a hilltop, landscape incision of a stream channel intercepting these water sources, and elements of nonuniform

runoff generation.

Experimental Watersheds at Coshocton, Ohio, USA: Experiences and Establishing New Experimental Watersheds
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large as 15 ha have been monitored by using springs because of this favorable geological

structure. Impacts of land management on ground water became a significant area of

research on the NAEW.

2. Nonuniform runoff generation [2]. Due to springs at the ground surface and persistently high

soil-profile-water-content areas, runoff is generated nonuniformly on the surface and with

time during an event. NAEW measurements of natural-precipitation infiltration showed

that water simultaneously emerges from the soil (exfiltration) and infiltrates into it during

a runoff event at different locations. Watershed models today are deficient in modeling this

runoff-generating process. Superimposed on these physical processes are wide ranging

anthropogenic influences on the land surface as watershed areas increase that also help to

generate runoff nonuniformly over a landscape.

3. Interflow process [2]. Closely related to nonuniform runoff generation is the interflow

process in which water moves laterally within the soil profile. This process was apparent

on the NAEW and is also not well simulated in watershed models (Figure 3).

4. Natural lysimeter [2]. A lysimeter (discussed under “Instrumentation” section) is usually

considered an isolated block of soil that accounts for the sources and distribution of water

in a contained area. It was discovered that a thick clay layer underlying a coal seam

outcropped along the periphery of a hilltop enclosed an approximate area of 2.8 ha

(known as Urban’s Knob). The synclinal structure of the sedimentary bedrock within the

hilltop forced all water entering the hilltop to its center where it discharged to a surface

spring. Consequently, the source of all water within the hilltop was from precipitation as

no ground water flowed from adjacent areas as often occurs in ground-water studies,

forming a “natural” lysimeter. The area was instrumented with a network of wells and

piezometers, a spring, two watersheds, a rain gauge, and profiles of ceramic suction cup

lysimeters to investigate unsaturated flow of water and chemicals.

5. Macropore flow [2]. There is significant transport of chemicals and water in larger pores in

the soil (particularly holes caused by earthworms), a poorly simulated process in water-

shed models. This became a significant area of research at the NAEW as explained later.

4. Instrumentation

Instrumentation was planned to achieve the general objectives listed above under natural

precipitation and weather conditions—small scale evaluations of treatments, evaluations of

watershed responses at larger scales, and “modeling.” Generally, instrumentation for measur-

ing watershed responses to treatments was to be permanently available for experiments. This

allowed the immediate use of experimental watersheds with a long runoff record to be used in

comparisons when evaluating land treatments and reduced the cost of monitoring runoff.

Small watersheds, ranging in size from 0.26 to 3.07 ha, were installed on the smaller 425-ha

area (Figure 2 right) in natural-swale, ephemeral, overland-flow areas on the hillsides where

Hydrology of Artificial and Controlled Experiments6



runoff occurs during large intensity rains and snowmelt. These watersheds were used as “test

beds” to determine the effectiveness of different land-management treatments. The treatment

for an individual watershed was implemented over the entire area so that runoff-response data

were not confounded by runoff from other areas with different land managements. Runoff

from the smaller watersheds were measured using H flumes ([6], Figure 4). More recently, two

watersheds were monitored using drop-box weirs which provide better flow measurement in

sediment-laden runoff water [7], (Figure 5). Because of spatial variability of precipitation, each

watershed was instrumented with a weighing-bucket rain gauge. Runoff and precipitation

data were historically tabulated with depth and time resolutions of 0.25 mm and 1 min,

respectively, and when a change in flow depth or precipitation intensity was apparent. Larger

watersheds on the 425-ha area up to 123 ha were monitored using Parshall flumes initially and

later short-crested V-notch weirs replaced them [6], (Figure 6).

The LMC watershed was instrumented with a network of recording rain gauges and weirs

(Figure 2, left). Nested watersheds ranged in size from approximately 39 to 1854 ha. As

mentioned before, LMC was closed in about 1970 so there is approximately 30 years of runoff

and precipitation data available from most of these watersheds and rain gauges. These water-

sheds were useful for documenting the nonlinearity of runoff (“scaling,” Figure 7) at

Coshocton, and have potential for other investigations such as for regional model parameter-

ization and routing.

Figure 4. H flume and original Coshocton wheel rotating-slot sampler.

Experimental Watersheds at Coshocton, Ohio, USA: Experiences and Establishing New Experimental Watersheds
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Figure 7 shows how watersheds in different physiographic and climatological regions in the

USA respond to climate as watershed area increases. For the unglaciated watersheds in the

Coshocton area, the nonlinearity of watershed area vs. runoff relationship reflects the increase

in baseflow to a relatively constant value as more and larger stream channels intersect perched

water tables in this region of sedimentary strata (dashed line in Figure 3).

Figure 5. Turbulent flow in a NAEWdrop-box weir for flow measurement in sediment-laden runoff.

Figure 6. Short-crested V-notch weir replaced the Parshall flume upstream in the view on a larger NAEW watershed.

Hydrology of Artificial and Controlled Experiments8



While small watersheds provided data on runoff responses at a small watershed scale,

the originators of the experimental watershed program wanted to investigate on a very small

scale the water balance on isolated blocks of undisturbed soil (“monolith lysimeters,” Figures 8

and 9). Eleven lysimeters were installed in the three dominant soil types on the NAEW, four

each on two soil types and three on the third soil type. Each lysimeter had a horizontal surface

area of ~0.0008 ha (width ~1.8 m and length ~4.3 m), depth was ~2.4 m, and enclosed

an undisturbed monolith of the soil profile. The 2.4-m depth included undisturbed surface soil

and weather bedrock. Each lysimeter measured percolation (ground-water recharge) from

Figure 7. Watershed area versus annual runoff for different physiographic locations in the USA. Graph from [8, 9].

Figure 8. Construction and installation of three lysimeters at the NAEW.

Experimental Watersheds at Coshocton, Ohio, USA: Experiences and Establishing New Experimental Watersheds
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the bottom and runoff from the surface. Additionally, one lysimeter at each set of lysimeters

within a soil type was weighed to provide evapotranspiration and ground-level precipitation

data.

Recognizing the spatial variability of precipitation over small areas (especially during summer

months), precipitation data were monitored by using weighing-bucket rain gauges with ori-

fices placed approximately 1 m above the ground at most small watersheds. Gauges were

similarly placed at each of the three sets of lysimeters.

Weather data were measured at a single weather station on the NAEW and included wind

speed and direction, air temperature, humidity, solar radiation, evaporation pan, barometric

pressure, soil temperature, and precipitation. Since about 1985, data loggers were used to

monitor all NAEW data (except precipitation) with a radio-telemetry system. This system

allowed more frequently measured weather, runoff, and precipitation data to be recorded.

Prior to ~1985, runoff and other charts were hand tabulated. For the entire period, manual

measurements were made of some weather elements.

Soil loss from the small experimental watersheds was an original concern; however, no reliable

water sampler was available to measure sediment concentration during a runoff event. Conse-

quently, the “Coshocton Wheel” was invented in about 1945 to obtain a flow-weighted com-

posite measurement of the total sediment concentration during runoff events (Figure 4). The

sampler consisted of a water (runoff)-powered wheel with a rotating slot (no power require-

ments), and obtained a constant fraction of the total sediment load from the watershed (single

sample). The sampler has been used worldwide. When event concentration is multiplied by

total runoff, an estimate of event sediment load is obtained for the treatment on the small

watershed. Prior to the NAEW invention of the Coshocton Wheel, all runoff and sediment

were collected in concrete troughs that were dug out manually to obtain a measurement of

sediment yield (Figure 10). Note that the flume is full of sediment after the runoff event flowed

over the bare, steep soil. This photo demonstrates the need for an automatic water sampler and

Figure 9. Schematic profile of an underground weighing lysimeter with and undisturbed profile of weathered bedrock

near the bottom and soil at the top.
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the desirability of using a drop-box weir that will keep sediment moving through the flume

(Figure 5).

In the 1970s, water quality beyond sediment concentrations became important [3]. Pesticides,

major anions and cations, and nutrient losses, especially nitrogen, from the small watersheds

became a concern and various land management treatments were evaluated using these

measures as well as runoff volumes and sediment loads, and subsurface flow. The Coshocton

Wheel provided the sample needed for laboratory analyses of these constituents and loads

were similarly computed as for sediment concentrations.

Occasionally, new watershed and plots sites on and off the NAEW were required such as for

coal surface-mine (Figure 11), paper-mill byproduct, and manure studies. NAEW scientific

and technical personnel provided the needed expertise.

The small NAEW experimental watersheds were managed with a new treatment following an

old one on the same watershed. This allowed comparisons of current treatments with previous

ones. Occasionally, a paired watershed approach was used.

Figure 10. H flume and downstream sediment trough that catches all sediment from the bare, steep watershed after an

extreme event.

Figure 11. NAEW scientists investigated the effects of drastic land disturbances due to surface mining for coal before and

during mining, and after reclamation on ground and surface water hydrology and water quality.

Experimental Watersheds at Coshocton, Ohio, USA: Experiences and Establishing New Experimental Watersheds
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5. Data

The basic data types collected include runoff, precipitation, weather, and water-quality data.

Tables listing details of runoff, precipitation, lysimeter, weather, land-management, and other

data are listed in [3] through about 2009 and are not repeated here. Due to specific project,

financial, and personnel constraints during NAEW history, data for some watersheds such as

runoff, precipitation and other data were not obtained for the entire 79-year period of moni-

toring. ARS operation of the NAEW ceased in late 2011, however, data collection continued

from seven watersheds as part of a grant-funded project through Dec 2015 when all monitor-

ing operations were discontinued. Through 2015, approximately 2125 station years of runoff

data and 1126 station years of precipitation data were collected.

At the time of this writing, the NAEW data are being reviewed, corrected, and uniformly

formatted from variety of original formats. The location for the data on the internet is yet to be

determined. As part of the NAEWdata-review process, a GIS of the NAEW has been developed

documenting locations of runoff, precipitation, weather stations, etc. GIS will become part of the

NAEWdata base posted on the web site. The list of NAEW publications will also be posted.

Even though data collection has ceased, the database is valuable for further investigations of

hydrology and water quality. Watershed modeling, in particular, can be studied at large (LMC

—scaling, spatial parameterization of watershed models, and hydrology) and small scales

(small watersheds—watershed modeling, hydrology, and water quality). The long precipita-

tion and runoff records are valuable because they have experienced a wide array of weather

conditions, even during a period of trending climate. Other precipitation, infiltration, soil

moisture, ground water, and soil characterization data bases have not been analyzed and are

available in hard copy form in the NAEW files. These data would have to be converted from

hard copy to electronic form.

6. Examples of accomplishments of the NAEW

The outdoor laboratory of the NAEW has historically addressed the challenges of emerging

national issues and addressing stakeholder’s needs. Over 500 reports and peer-reviewed

publications originated from NAEW research. The NAEW was a world-class facility and

examples of accomplishments of the NAEW are [2]:

Crop rotations: The early record of runoff measurements (first ~28 years) documented the

benefits of rotating crops and planting on the contour to reduce erosion in agricultural fields

in the hill lands of Appalachia.

No-till/Conservation tillage: No-till farming reduces (and can essentially eliminate) soil losses

and runoff (Figure 12). The USDA funds a national farm program and recommends the no-till

practice for improving agricultural lands as a best practice. The NAEW was the first facility in

the world to evaluate the water quality benefits of no-till on a watershed basis with experi-

ments beginning in 1964 and continuing through 2011 [8]. The practice allows more frequent

Hydrology of Artificial and Controlled Experiments12



harvesting of high value crops, produces yields that are the same or greater than with conven-

tional tillage (especially during droughts), increases soil-carbon storage (resulting in larger soil

moisture for crops), and reduces energy needs. The environmental benefits of other types of

conservation tillage have also been investigated [9–12].

Grazing: The NAEWdeveloped environmental recommendations for pasture fertilizer applica-

tion rates based on nitrogen [13, 14], sources of nitrogen fertility for pastures [15], and over-

wintering practices on grazing lands [16].

Management-Intensive Grazing (MIG): The NAEWmanagement-intensive grazing (MIG) project

investigated the water-resource benefits of frequent rotation of livestock between small pad-

docks in a pasture for organic and non-organic production, and included impacts on surface

and subsurface water quality, animal health, and changes in plant species [17]. Potential

benefits of MIG to the producer include extended grazing season, less cost, and more leisure

time.

Nutrient movement in stormflow vs. baseflow: Major transport of nutrients can occur in both

baseflow and stormflow from mixed agricultural watersheds [18].

Preferential movement of water in soil: Fundamental knowledge from NAEW experiments on the

fate of infiltrated water and chemicals in the subsurface through preferred pathways (e.g.,

earthworm burrows and cracks) has been used by scientists worldwide and in the develop-

ment of a macropore component of a watershed model [19–21]. Additionally, guidance was

developed on manure application in tiled fields [22, 23].

Evaluation of best management practices: A method was published to estimate the variability of

chemical concentrations in runoff when there are few water samples and a history of runoff

using duration curves [24].

Pesticide transport: Research on herbicide concentrations for weed control on watersheds

showed that concentrations in runoff can reach levels of concern, particularly in the first few

events after application, and that by reducing application rates by replacing herbicides with

short half-life types, concentrations can be reduced [25–27].

Figure 12. Original no-till experiments on steeply sloping experimental watershed.

Experimental Watersheds at Coshocton, Ohio, USA: Experiences and Establishing New Experimental Watersheds
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Climate change: Climate was changing starting in about 1980 at the NAEW. Several studies of

precipitation showed that underlying runoff parameters in the “curve number” method of

estimating runoff were changing as extreme precipitation events were increasing in magni-

tude, and that air temperature was trending upward [28]. Watershed data were used for

modeling watersheds for climate change impacts [29].

Organic agriculture: The NAEW investigated the organic-agriculture component of a large

nationwide study on the effect of climate on corn production (data still being analyzed). Other

organic-related research included comparing impacts of continuous and MIG as they

underwent transition to organic agriculture.

Precipitation modeling: Several studies on modeling short-time increment precipitation data (of

the order of minutes) for modeling purposes have been completed. Studies on parameteriza-

tion, data quality, seasonal variation, times between storms, climate change, etc., support a

model that generates independent storms of any duration [30, 31].

Ground-water recharge: The Glugla method for estimating ground-water recharge was verified

by using the NAEW lysimeters [32]. This method is used nationwide in Germany.

Evapotranspiration (ET): Lysimeter data have been useful for investigating ET losses under

different management practices. The Glugla method also estimates long-term ET losses. The

lysimeters were used in modeling the ET component for verifying the engineering design

procedure for alternate and cheaper landfill covers [33].

Watershed modeling: Models of some small watersheds allowed the evaluation of climate

change and runoff, and the adequacy of a model-parameterization procedure [34]. NAEW

data are currently being used to nationally update a runoff-estimation procedure used world-

wide (“curve number” model).

Biofuel removal: It was documented that removal of large amounts of crop residue for ethanol

production can negate many soil and water-quality benefits of long-term no till [35, 36].

Urbanization: It was shown that a low level of imperviousness, either close to or far from a

stream channel, on a 3-ha watershed had no effect on runoff. It was also shown that minor

surface disturbances can increase runoff potential, but that the land surface can recover, using

grazing a surrogate for urban land surface disturbance [37].

Winter application of manure: Data from large runoff plots of various sizes and treatments, and

experimental watersheds were used to provide guidance for applying manure during the

winter [38].

Pathogens from manure applications: The winter-manure application project provided an oppor-

tunity to add another dimension to NAEW research—pathogens. The data were used to

provide pathogen guidance for winter application of manure.

Instrumentation: NAEW scientists developed and adapted many hydrological and water-

quality instruments required for specific research objectives and not commonly available

commercially. Examples are the Coshocton Wheel water sampler (invented in ~1945 and used

worldwide in remote areas), Coshocton Vane water sampler, large sediment particle runoff
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sampler, drip-flow meter and sampler, hydraulic studies of the drop-box weir, adaptation of

the Coshocton Wheel for the drop-box weir [39], natural-precipitation infiltrometer, worm-

burrow infiltrometer, and rainfall simulator for macropore studies.

Filter sock performance: Coshocton data showed that there were limits to use of on-field control

of pesticides on watersheds. Netting in the form of tubes filled with materials that can adsorb

pesticides and nutrients from surface runoff have been studied and published. The results are

useful for contractors that use filter socks in controlling chemical and sediment water quality

from construction sites and farm fields [40, 41].

Paper mill byproducts: In collaboration with the State of Ohio and the paper industry, NAEW

studies on use of paper-mill sludge (waste product) applied to surface mines showed that the

State’s upper limit of land application rate was environmentally acceptable [42]. This provided

paper mills a cheaper, more environmental beneficial, alternative to landfill disposal, and at

the same time provide a good source material for revegetating and controlling erosion when

reclaiming surface mines.

Carbon sequestration: The long-term nature of the management practices on the small watersheds

including continuous no-till corn with over 40 years of runoff records have enabled numerous

investigations into the impact of land management on carbon sequestration (Figure 13).

Sediment-bound carbon losses from various conservation tillage practices and organic carbon

losses in subsurface flow were also measured [43, 44].

Surface mining and reclamation: A landmark study on effects of coal mining and reclamation on

surface and ground water in three watersheds (~16 ha) showed the temporary and permanent

effects of this drastic land disturbance (Figure 11). Watersheds were monitored before, during,

and after mining and reclamation. Monitoring could not have been possible without the use of

the drop-box weir [7] due to the large sediment-laden flows from areas such as shown in

Figure 5. Runoff potential increased (large curve number) to a near constant after reclamation

regardless of original geology, and erosion can be controlled to near pre-mine levels with the

right reclamation practice [45–47]. The results have been used in court cases and in regulations.

Figure 13. Soil carbon increases in soil planted to continuous no-till corn (bottom right) compared with soil from

conventionally tilled soil (upper left).
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Landfills: Lysimeter data validated an engineering design model for a new type of landfill cover

that utilized the ET processes in the soil to minimize water percolating to ground water [33].

Other research: Other research conducted at the NAEW (not exhaustive list) were projects

related to water quality of spent foundry sand, dairy wastes, and nursery operations. Frozen

soil, rain gauges, soil moisture, soil characterization, etc., have also been topics.

Emerging issues: A significant advantage of the NAEW facility is its long-term data base and

the permanent monitoring infrastructure. It has been used for many investigations which were

never imagined at the outset. Examples are placement of impervious structures for urbaniza-

tion studies, evapotranspiration landfill caps, macropore investigations, advanced modeling,

organic agriculture, climate change, ground-water recharge studies, spent foundry sand, nurs-

ery operations, dairy wastes, filter socks, carbon sequestration, pathogens and estrogens in

runoff [48], biofuels, surface mining and reclamation, paper mill sludge, and long-term water-

quality response times in natural systems.

7. Insights from NAEWexperiences for establishing new experimental

watersheds

Many paths can be followed to establish new experimental watersheds to conduct watershed-

science research (“outdoor laboratories for water and land-management research”) such as the

NAEW. Watershed science involves expertise in the biological and physical sciences to solve

national problems. Occasionally required expertise can be acquired from university, govern-

ment, and private-sector partners and stakeholders. The 81-year experience of managing

experimental watersheds may be useful for establishing new experimental sites at the scale of

the NAEW, and some important considerations from the NAEW experience are listed below.

1. When establishing new experimental watersheds, “representativeness” is important, and

newer GIS technology should be used to identify potential sites. However, there will be

other research benefits discovered as a facility is managed. In the case of the NAEW, the

geological and soil characteristics became important for potentially providing new knowl-

edge on hydrological processes such as nonuniform runoff generation, interflow,

macropore flow, perched water tables, etc. Other potential site benefits should be consid-

ered in site selection.

2. For an ideal comprehensive watershed-science program, the three original NAEW objec-

tives are required. However, funding may become a problem and pursuit of the three

objectives can be spread at more than one location (e.g., one location can perform model-

ing and another field experimentation). However, having modelers conducting field

research is also of value to experience data characteristics and natural variability found in

landscapes to help formulate algorithms. It is important to have field data for validation of

watershed models.
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3. Monitoring a large experimental watershed requires sufficient funding to sustain scien-

tists, support staff, and experimental resources. The value of experimental watersheds is

that they can provide an uninterrupted record of runoff, water quality, etc., spanning

years, with dry years producing insufficient numbers of runoff events and longer periods

of runoff records may be required. Furthermore, watershed-science research can be considered

long-term and high risk because experiments are subject to weather extremes (e.g., droughts

and other project factors that are affected by the weather). It is expensive to maintain such

a record, and continuous funding must be maintained—temporary grants will interrupt

long-term records after the grant period is completed, and a sufficient record of runoff may

not be recorded.

4. It can be difficult to exploit characteristics unique to a site (e.g., at the NAEW—under-

standing and quantifying interflow, nonuniform runoff generation, etc.) because of

funding and a wide range of expertise needed. At the NAEW, some of these features were

not fully exploited.

5. Figure 7 shows the wide variety of watershed behaviors for three experimental watersheds

in different physiographic and climatological regions of the USA [49, 50] and generally

describes how runoff is generated on landscapes. It is apparent from Figure 7 that the

unglaciated NAEW area will follow a convex-upward curve where smaller overland flow

areas do not support baseflow (annual runoff is small). For larger areas, however, baseflow

is increasing as incising stream channels drain water from intersected water tables, and the

curve approaches an apparent constant. For arid areas (Tombstone, AZ), runoff decreases

with area in a log-log manner due to channel transmission losses and isolated storms. For

the location at Reisel, TX, the response is nearly flat due to its climate and soil conditions

leading to a more uniform generation of runoff. The reader is referred to [49] for more

particulars of Figure 7. If a network of experimental watersheds is developed, a plot of

data in a similar manner may lead to a general characterization of watershed sites under

consideration, and may help differentiate proposed sites.

6. Site specificity of experimental watersheds must be expected. Soil and geology are impor-

tant factors that can affect different responses of two similarly treated small adjacent

watersheds subjected to similar precipitation and weather drivers. This variability affects

project results, numbers of watersheds needed for experiments, and highlights the need for

watershed modeling to extrapolate field data to ungauged areas. Furthermore, the history

of an individual watershed is known and quantified with permanently monitored sites.

Some watersheds may still be responding to prior treatments when a new treatment is

initiated. In the case of new watersheds, the effects of prior treatments may be unknown,

yet they may affect interpretations of the data.

7. Seasonal air temperatures and percent of snow in a precipitation record are important for

seasonal runoff generation mechanisms that can affect water quality also. At the NAEW,

lower winter air temperatures did not always insure frozen soil, and sometimes frozen soil

occurred intermittently. Consequently, latitude and climate are important to consider.
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8. Instrumentation selection is important in managing experimental watersheds. Two impor-

tant measurements are runoff and precipitation. For runoff, it is known that large sediment

concentrations in runoff can affect the rating curve of H flumes [51], a commonly used

flow-measuring device. A weir that has been tested for a wide range of field conditions

under large sediment loads (including rocks) is the drop-box weir [7]. Drop-box weirs of

any size can be constructed from small runoff/erosion plots to large watersheds with

incised channels. It is important to house weirs from freezing weather to prevent damage

and maximize the opportunity for good winter runoff records.

9. Precipitation measurement is a persistent problem because the gauge shape and orifice

height affect the wind flow around the orifice, resulting in an under catch of precipita-

tion. This is because smaller diameter rain drops and light weight snowflakes are carried

with the wind away from the orifice. This error can be as high as a 20% under catch on

average during the winter and approximately 2% during the nonwinter months [52].

True ground-level precipitation measurements for individual events can be much higher

during events with high wind speeds. Furthermore, often-used tipping bucket rain

gauges do not measure snowfall, and under catch of precipitation is complicated by

using heaters to melt the snow because precipitation is evaporated [53], and snow

intensities will not be measured. In arid areas this may not be a problem. The effects of

under estimating precipitation are to under estimate runoff, erosion, and water quality in

watershed modeling [49] in a nonlinear manner. Suggestions for improved precipitation

measurement include shielded gauges such as the dual fence gauge of the Climate

Reference Network [54] that was evaluated by US Forest Service [55]. Their study

suggested that the CRN gauge is the best available. A set of dual gauges (one shielded

and one not shielded) were not tested in the Forest Service study, but is likely to be a

contender and should be investigated [56]. Furthermore, weighing buckets are preferred

measuring technology compared with tipping buckets. Advances in other emerging

technologies should also be explored.

10. Water quality sampling is important for evaluations of the performance of land treatments.

Two types of sampling are possible—composite and discrete sampling. For composite

sampling, the same fraction of the flow is sampled for each flow rate during the runoff

event and only one sample is obtained for the event. The Coshocton Wheel has been a

useful tool for composite sampling of small watersheds [6, 39]. Larger watersheds require

smaller fractions of flow sampling to manage the size of a composite sample and for a

range of runoff volumes. Commercial samplers and the Coshocton Vane sampler [57] are

available for this purpose. An instantaneous sample is pumped for discrete sampling a

preselected times or changes in runoff depth, and many samples are obtained for an

individual event. This type of sampling is more expensive and may not be as useful as

composite sampling unless there is a research objective for this sampling strategy. For

evaluations of water quality effects of land treatments, a composite sample is adequate

(and may be preferred). For either sampling type, a flow measurement record is required.

11. It is possible that experimental watershed investigations can be affected by a changing

climate. Climate was found to be changing at the NAEW.
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12. It should be recognized that some investigations will be affected by watersheds with low

runoff potential (e.g., some forested sites). It may take many years for such watersheds to

provide enough data for evaluations to experience larger infrequent rainfalls.

13. Knowledge of challenges in conducting watershed research in disturbed lands in particu-

lar is presented in [58] and is pertinent to selecting new watersheds.

14. It is highly likely that as an emerging issue arises, that an experimental watershed facility

would be a likely place for pertinent investigations. The permanent monitoring infrastruc-

ture allows for a relatively rapid implementation of a proposed land treatment and mon-

itoring. Funding for such issues is important.

15. Another opportunity for monitoring experimental watersheds is off site from the home

site. This was necessary for monitoring watersheds with three different coal seams in the

disturbed land (coal mining) project conducted at the NAEW [58], Figure 11.

16. It is important for all data to be checked and be made available on the internet as soon as

possible after collection.

8. Summary

The North Appalachian Experimental Watershed (NAEW), in east-central Ohio near

Coshocton, Ohio, was one of the three large watershed facilities established in 1935 to advance

watershed science of agricultural lands to improve their economical and physical sustainabil-

ity. It was an outdoor laboratory for land and water management research. The original

objectives were to test management practices on small watersheds (small swales in the hill-

tops), investigate scaling of runoff and erosion to larger areas, and provide a way to extrapo-

late the results to ungauged areas (modeling). The NAEW was in an unglaciated sedimentary

geological setting (strata nearly horizontal) and originally spanned an area of approximately

2000 ha. The facility was equipped with a permanent infrastructure consisting of runoff

stations and rain gauges for watersheds ranging in size from 0.26 to 1854 ha. After about

1970, the NAEW was reduced to a 425-ha area consisting of mostly small watersheds (“test

beds”) ranging in size from 0.26 to 3.07 ha but with a few up to 123 ha. The smaller watersheds

were equipped with the well-known Coshocton Wheel composite runoff samplers. The NAEW

was in operation for approximately 81 years with an approximate 79-year record of runoff and

other data for various watersheds, and was closed in 2015. Eleven large monolith lysimeters

were also constructed to investigate small scale water balances.

A wide variety of experiments were conducted on the NAEW with many high impact accom-

plishments (listed in the section titled, Examples of Accomplishments of the NAEW). Many

investigations used the facility for emerging national issues that the founders never envisioned

(e.g., surface mining impacts, landfill caps, organic agriculture, climate change, filter socks,

carbon sequestration, pathogens in runoff, biofuels). Nearly 500 publications were developed

from investigations during the 81-year history of the facility.
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Experiences in the operation of the facility during the 81 years provide insights for establishing

new experimental watersheds in the future. Watershed science involves the expertise in the

biological and physical sciences and engineering to solve national problems. Sixteen sugges-

tions for new facilities are presented covering site selection, funding, site specificity, extrapola-

tion of results, generation of runoff in different physiographic regions, collaboration, off-site

investigations, and instrumentation. Instrumentation suggestions are particularly important

for precipitation because it is a major driver of watershed responses and must be more

accurately gauged than commonly measured. Runoff measurements also can be affected by

large sediment concentrations using common flow-measuring devices. Watershed modeling

will be sensitive to precipitation inputs and validation of runoff amounts in modeling will be

affected by runoff measurements.
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