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Abstract

The cost to extract one new biomarker within genomic sequences is very huge. This
chapter adopts a scalable approach, developed previously and based on MapReduce
programming model, to extract maximal repeats from a huge amount of tagged whole
genomic sequences and meanwhile computing the similarities of sequences within the
same class and the differences among the other classes, where the types of classes are
derived from those tags. The work can be extended to any kind of genomic sequential
data if one can have the organisms into several disjoint classes according to one specific
phenotype, and then collect the whole genomes of those organisms. Those patterns, for
example, biomarkers, if exist in only one class, with distinctive class frequency distribu-
tion can provide hints to biologists to dig out the relationship between that phenotype and
those genomic patterns. It is expected that this approach may provide a novel direction in
the research of biomarker extraction via whole genomic sequence comparison in the era of
post genomics.

Keywords: biomarker, comparative genomics, class frequency distribution, maximal
repeat, MapReduce programming

1. Introduction

It is very attractive and challenging to discover markers [1] from genomic sequences and then

to use these markers for genetic tests [2] to diagnose diseases and for personalized medicine to

adverse drug responses [3, 4]. Nowadays, genome-wide association studies (GWASs) [5] have

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



already examined single-nucleotide polymorphisms (SNPs) across human genomes to identify

specific SNPs related to some diseases, for example, diabetes, heart abnormalities, Parkinson

disease, and Crohn disease [6]. Furthermore, GWAS is also used to predict cancer [7] and to

influence human intelligence [8].

Most of GWASs are achieved with SNP arrays [9]. The “Illumina” [10] uses the “whole-

genome genotyping” to interrogate SNPs across the entire genome to obtain the most compre-

hensive view of genomic variation; the Affymetrix Genome-Wide Human SNP Array 6.0

features 1.8 million genetic markers which includes more than 906,600 single-nucleotide poly-

morphisms (SNPs) [11]. The majority of these SNPs are designed to investigate the coding

regions of genes in genomic sequences. However, some of the non-coding regions, once being

mistaken as “junk DNA,” are believed to contain functions to regulate gene transcription and

to account for the genetic differences between individuals [12]. Although, on the one hand, the

number of SNPs on one chip may be several hundreds of thousands, on the other hand, its

coverage is still not enough [13] to figure out the relationship between genotypes and pheno-

types in humans as given in the database of “dbGaP” [14].

As the era of post genomics with Next-Generation Sequencing (NGS) is coming, it is expected

that the cost of genomic sequencing is decreasing and the availability of complete whole

genomes of individual creatures is becoming popular. After using NGS for DNA sequencing

[15], as shown on the right side in Figure 1, for example, one creature, for example, a virus, is

supposed to contain three chromosomes with eight genotypes. On the other side of Figure 1,

there are three phenotypes, for example, “Drug Resistance” “Envelope,” and “Contents,”

inspected and detected by three domain experts, respectively. Under the assumption that these

three phenotypes are totally dominated by those eight genotypes, represented as different

icons, without considering the epigenetics [16], as shown in Figure 2, it is difficult for biologists

in wet laboratory to analyze aimlessly the relationships among these phenotypes and those

Figure 1. An example of one creature with three phenotypes and eight genotypes.
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genotypes without further bioinformatics information or techniques such as comparative

genomics [17].

With more and more complete whole genomes of distinctive creatures being available and

popular in the coming days, it is very interesting and desired to extract common significant

subsequences as candidate genomic markers as genotypes via comparing these creatures’

whole DNA sequences according to the classes (or types) of their phenotypes observed and

specified by domain experts. Figure 3 shows the conceptual diagram of the corresponding

classes for each of these three phenotypes given in Figure 1. With precise observations or

experiments (phenotypes), biologists or experts can divide these creatures with complete

whole genomes into disjoint classes if possible. Then, it is highly expected for biologists that

some distinctive patterns (genotypes) hidden within their DNA sequences can be extracted as

the candidates of class markers (phenotypes) if the frequency distributions of these patterns

among classes are extremely biased, or some patterns are just in one class solely and appear in

all instances belonging to that class ideally. To achieve the earlier-mentioned goal, one needs to

extract repeats and to compute class frequency distributions of these repeats from a huge

amount of tagged genomic sequences, where the types of classes are derived from the tags.

Due to the availability of genomic sequences in National Center for Biotechnology Information

(NCBI) [18], The Cancer Genome Altas (TCGA) [19], it is interesting to have class frequency

distribution of maximal repeats from these tagged genomic sequences for mining the bio-

marker or specific patterns. As the age of Next-Generation Sequencing (NGS) is going to be

introduced for the project “Cancer Moonshot” in the National Cancer Institute [20], it is very

Figure 2. Example: how to identify the relationships among genotypes and phenotypes as described in Figure 1.
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attractive to identify specific biomarkers from these genomic sequences with tags, such as

cancer types or distinctive genotypes. Figure 4 gives the conceptual diagram of how to reduce

the gap between phenotypes and genotypes by using the phenotypes as classes to identify

those subsequences that appear in unique class only as biomarkers.

Figure 4. The conceptual diagram of reducing the gap between phenotypes and genotypes.

Figure 3. Mining the relationship of phenotypes and genotypes via classes comparison.
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The remainder of this chapter is organized as follows. Section 2 gives the review of potential

applications with class frequency distributions of maximal repeats. Section 3 shows the scal-

able approach to extract maximal repeat from tagged sequential data. Section 4 describes the

most recent work [21] that compute co-occurrences of DNA maximal repeat patterns

appearing in both humans and viruses. Section 5 concludes and discusses on future works.

2. Potential applications with class frequency distribution of maximal

repeats extracted from tagged sequential data

The previous work in [22] was a scalable approach based on Hadoop MapReduce program-

ming model to overcome the computational bottleneck of using single computer with external

memory [23, 24]. Furthermore, it had been applied for a USA patent (US-2017-0255634-A1) [25]

whose publication data is as “Sep. 7, 2017” [25]. Recently, in these 2 years, many novel and

potential applications, derived from that work, were launched in diverse fields successfully,

due to its scalability being able to handle a huge amount of sequential data. There were many

experiments in diverse applications with a huge amount of tagged sequential data, such as

textual data for trend analysis [26–28], genomic sequences for biomarker identification [21, 29,

30], time-stamped gantry sequences for significant travel time intervals [31] and, most recently,

the sequences of product traceability for quality control [32].

3. Methods

The scalable approach of maximal repeat extraction adopted in this chapter is based on

Hadoop MapReduce programming model, and the details can be found in [22]. To illustrate

the concept of the earlier approach clearly, as shown in Figure 5, there are 20 creatures

generated manually. Each of them is with three phenotypes, “Drug Resistance,” “Envelope,”

and “Contents,” as given in Figure 3, and all of its chromosomes are concatenated into one line

which may contain genotypes including motifs, domains, or unknown DNA segments that are

represented as icons for simplicity. Even though with the conceptual diagram as shown in

Figure 5, it is still very difficult for users to catch the hidden connection (or relationship)

among these three phenotypes and those icons (genotypes) at first glance, let alone each of

these icons (genotypes) presents one continuous subsequence whose length is not fixed and its

location is unknown within chromosomes.

To reveal the possible mapping of phenotype “Drug Resistance,” for example, to genotypes

on purpose, Figure 6 presents the rearrangement in the order of these 20 chromosomes

which may contain icons as hidden or unknown DNA segments. The mapping of different

types of phenotype “Drug Resistance” to the corresponding genotypes (icons) can be

observed. Similarly, one can have the mapping of different types of phenotype “Envelope”

A Novel Approach to Mine for Genetic Markers via Comparing Class Frequency Distributions of Maximal Repeats…
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and “Contents” to the corresponding genotypes (icons). Due to the page limitation, the

corresponding mapping of figures for “Envelope” and “Contents” are given in the supple-

ments. Focusing on the repeats whose class frequency distributions are biased, as shown in

Figure 5. Each of 20 creatures is with three kinds of phenotypes as given in Figure 3 and all of its chromosomes are

concatenated as one line containing several icons as motif, domain, or unknown patterns.
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Figure 7, one can estimate these repeats as candidate class markers which can be the clues for

further experiments of analyzing the mapping of phenotypes and genotypes derived from 20

creatures in Figure 5.

Figure 6. The mapping of different types of phenotype “Drug Resistance” to the corresponding genotypes (icons).
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4. Case study: mining for the co-occurrences of DNA maximal repeat

patterns in both human and viruses

There were three studies with a huge amount of genomic sequences [21, 29, 30] based on the

scalable approach of maximal repeat extraction with class frequency distribution mentioned in

this chapter. This chapter only describes the most recent work [21] that the co-occurrences of

DNA maximal repeat patterns appearing in both humans and viruses are extracted via a

scalable approach that is based on Hadoop distributed computing [22]; that work aimed to

mine for specific DNA patterns within human genomes via observing class frequency distri-

bution of DNAmaximal repeats extracted from the whole genomic DNA sequences of humans

and 559 virus genuses. The detail in [21] is described for reference in the following.

4.1. Genome resources

In [21], Wang et al. extracted significant DNA sequences appearing in both the genomes of

humans and viruses. In this study, the taxonomic level of viruses is “genus” and is selected as

Figure 7. The mapping of phenotypes and genotypes derived from 20 creatures in Figure 5.
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the classes (tags) for further experiments. Experimental resources included the complete whole

genomes of humans (GRCh38.p7 Primary Assembly) downloaded from the NCBI FTP [33]

and that of 559 virus genuses, including 2712 viruses that had genus name and were selected

from the total of 4388 viruses download from in NCBI FTP [34] on January 14, 2017. Table 1

shows the partial statistics of 560 classes, including 559 virus genuses and the humans as

“C248.” Note that each of the 24 human chromosomes is estimated as one individual ins-

tance for observing the frequency distribution among human chromosomes. This chapter, for

Class ID Human and virus genuses No of Instances

C1 Alfamovirus 1

C2 Allexivirus 6

C3 Allolevivirus 3

C4 Alpha3microvirus 2

C5 Alphabaculovirus 40

C6 Alphacarmotetravirus 1

C7 Alphabaculovirus 7

… … …

C247 Human mastadenovirus E 1

C248 HumanGenomes_23_Assembled 24

C249 Hunnivirus 1

C250 Hypovirus 4

C478 Sobemovirus 15

C479 Solendovirus 1

C480 Soymovirus 4

… … …

C553 Xipapillomavirus 1

C554 Xp10virus 5

C555 Yatapoxvirus 2

C556 Yatapoxvirus 3

C557 Zeavirus 1

C558 Zetapapillomavirus 1

C559 Zetatorqueviurs 1

C560 primate papillomaviruses 1

“Reproduced with permission from International Conference on BioInformatics and BioEngineering (BIBE); published by

IEEE, 2017.” [21].

Table 1. The partial statistics of 559 virus genuses and human genomes (C248).
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simplicity, only takes the positive-strand DNA sequences of humans and viruses for further

experiments.

4.2. Computational time and environment

To show the scalability of this approach from a practical view of point, as shown in Figure 8,

the computational platform was the Hadoop cluster with eight computing nodes, two name

(master) nodes, and six data (slave) nodes; Table 2 showed the specifications of hardware and

software of one computing node; the computational time was about 37.5 h when the maximum

length of maximal repeat patterns was limited to 500 bp (base pair).

Figure 8. The conceptual diagram of a Hadoop cluster with two name (master) nodes, and six data (worker) nodes;

“Reproduced with permission from International Conference on BioInformatics and BioEngineering (BIBE); published by

IEEE, 2017” [41].

Hardware CPU Intel® Xeon® Processor E5-2630 v3 (8 cores)

RAM 128 GB (16GB*8, ECC/REG DDR4 2133)

Hard Disk 6 TB (SATA3 2 TB*3, 7200 rpm 3.5 inch)

Network Card Intel Ethernet X540 10GBASE-T RJ45 DualPort *4

Software OS CentOS 6.7

Hadoop Hadoop 2.6 (“Cloudera Express 5.4.5”)

“Reproduced with permission from International Conference on BioInformatics and BioEngineering (BIBE); published by

IEEE, 2017.” [21].

Table 2. The hardware and software of one computing node in Hadoop cluster.
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Length Virus (only) Human (only) Human and virus

5 426 127 1341

6 245 102 4234

7 84 48 16,454

8 29 26 65,556

9 5 11 262,154

10 1 9 1,048,579

11 956 4093 4,189,216

12 95,386 1,198,404 15,310,125

13 547,437 23,069,913 34,360,563

14 788,030 110,159,534 42,567,207

15 547,766 273,869,697 36,497,761

16 305,641 322,333,237 22,317,495

17 206,969 209,993,387 10,170,128

18 86,585 103,569,439 3,920,359

19 47,417 48,474,700 1,407,005

20 66,719 25,284,157 493,326

21 25,068 15,882,880 175,934

22 18,507 11,902,168 67,700

23 39,947 9,921,624 29,793

24 14,802 8,649,670 14,795

25 12,227 7,794,361 8749

… … … …

98 165 107,159 15

99 710 102,830 15

100 707 99,579 13

101 1607 96,326 13

102 608 93,630 12

103 638 92,129 11

… … … …

460 19 1933 1

461 27 2000 1

462 22 1812 1

463 26 1936 1

464 23 1993

465 19 1817

… … … …
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4.3. The length distribution of DNA maximal repeats in both the genomes of human and

559 virus genuses

Comparing the maximal repeats that appear only in virus (Virus only), only in humans

(Human only) or in both human and virus (Human and virus), Table 3 shows the partial

frequency distribution of maximal repeats whose lengths are from 5 to 500 bp. It is

observed that the majority of those maximal repeats whose length range from 7 to 11

almost belong to the “Human and Virus.” Note that there may exist extra nucleic acid

codes, for example, “N,” within these DNA sequences such that the number of maximal

repeat (length = 5) appearing in both humans and viruses in Table 3 is 1; 341 and that is

great than 45 (= 1024).

4.4. The longest DNA maximal repeat (length = 463 bp) appearing in both the genomes of

human and 559 virus genuses

Table 3 shows the length of the longest maximal repeat extracted in both the genomes of humans

and selected viruses of 559 virus genuses is 463 bp. In [21], the result of blasting two sequences,

“Homo sapiens chromosome 5” (NC_000005.10) and “Human herpesvirus 6B” (NC_000898.1), as

shown in Table 4, that longest repeat appears 109 times within human chromosome 5 and two

times within virus “Human herpesvirus 6B.” To further inspect the longest maximal repeat, as

show in Figure 9, one can find that the longest one is a tandem repeat (TAACCC) and appears

within virus “Human herpesvirus 6B” at two intervals, the front (8249–8711 bp) and tail (161570–

162,032 bp), that are located within the regions of direct repeats (DR) [35]. Figure 10 gives one of

two longest patterns aligned within “Human herpesvirus 6B” (8249–8711 bp) in Figure 9.

4.5. The statistics of DNA maximal repeat patterns (length = 100 bp) appearing in both

human and 559 virus genuses

Table 5, for example, shows the statistics of 13 DNAmaximal repeat patterns (length = 100 bp)

appearing in both human and 559 virus genuses. It is observed that the three repeats as the

Length Virus (only) Human (only) Human and virus

495 7 1542

496 16 1564

497 27 1408

498 14 1451

499 16 1494

500 22 1542

“Reproduced with permission from International Conference on BioInformatics and BioEngineering (BIBE); published by

IEEE, 2017.” [21].

Table 3. The partial of frequency distribution of DNA maximal repeats (length 5–500 bp).
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Maximal repeat patterns DF TF Length Class frequency

distribution

(ClassID#DF#TF)

Regular

expression

Human

chromosome

(GRCh38.p7

Primary assembly)

Viruses

ctaaccctaaccctaaccctaaccctaac 2 111 463 (C248#1#109)

(C442#1#2)

(TAACCC)n 5 Human

herpesvirus

6B
cctaaccctaaccctaaccctaaccctaa

ccctaaccctaaccctaaccctaacccta

accctaaccctaaccctaaccctaaccct

aaccctaaccctaaccctaaccctaaccc

taaccctaaccctaaccctaaccctaacc

ctaaccctaaccctaaccctaaccctaac

cctaaccctaaccctaaccctaaccctaa

ccctaaccctaaccctaaccctaacccta

accctaaccctaaccctaaccctaaccct

aaccctaaccctaaccctaaccctaaccc

taaccctaaccctaaccctaaccctaacc

Ctaaccctaaccctaaccctaaccctaac

Cctaaccctaaccctaaccctaaccctaa

Ccctaaccctaaccctaaccctaacccta

Accctaaccctaaccctaaccctaaccc

“Reproduced with permission from International Conference on BioInformatics and BioEngineering (BIBE); published by

IEEE, 2017.” [21].

Table 4. The longest DNA maximal repeat patterns (Length = 463 bp) appearing in both humans and viruses.

Figure 9. BLAST: “Homo sapiens chromosome 5” versus “human herpesvirus 6B”; “Reproduced with permission from

International Conference on BioInformatics and BioEngineering (BIBE); published by IEEE, 2017” [21].
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1st, the 6th, and the11th, for example, have the similar regular expression as “(AACCCT)n”,

“(CTAACC)n,” and “(TAACCC)n”, respectively, and all of them appear in human chromo-

somes “1,” “5,” “10” and “12”; all of these three repeats appear in these viruses, “Cyprinid

herpesvirus 1,” “Falconid herpesvirus 1,” “Gallid herpesvirus 2,” “Human herpesvirus

6A,” “Human herpesvirus 6B,” and “Equid herpesvirus 3.” It is very interesting to investi-

gate the relationship between these human chromosomes and those viruses for further

research. On the other hand, from the biological viewpoint, furthermore, (AACCCT)n,

(CCCTAA)n, and (CTAACC)n may comprise the same maximal repeat pattern with differ-

ent repeat frame; (GGGTTA)n, and (AGGGTT)n can also comprise the same maximal repeat

pattern in complementary sequence. Moreover, the (GGGTTA)n is expected to be targeted

by cisplatin [36].

4.6. Phenotypes: “Group I(dsDNS)” in Baltimore virus classification

It is observed that all of these viruses in Table 5 belong to the “Group I(dsDNS)” of Baltimore

classification [37], as shown in Table 6, and most of them are from the family “Herpesviridae”

and order “Herpesvirales.” Indeed, it is very interesting and attractive to have all the viruses

compared with human whole genome and to inspect these co-occurrences of repeats for virus

prevention from the genomic point of view in the future.

Figure 10. One of two aligned patterns (8249–8711 bp) in Figure 9 “Reproduced with permission from International

Conference on BioInformatics and BioEngineering (BIBE); published by IEEE, 2017” [41].
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Total Length Class frequency

distribution

(ClassID#DF#TF)

Regular

expression

Human

chromosome

(GRCh38.p7

primary

assembly)

Viruses

Maximal Repeat Patterns DF TF C248 C5,C14,C149,C284,C305,C357,

C442C541

1 aaccctaaccctaaccctaaccctaaccctaaccctaaccctaaccctaac

cctaaccctaaccctaaccctaaccctaaccctaaccctaaccctaacc

10 591 100 (Cl 49# 1 # 18)

(C248#4#299)

(C305#2#41)

(C442#2#208)

(C541#l#25)

(AACCCT)n 1, 5, 10, 12 Cyprinid herpesvirus 1, Falconid

herpesvirus 1, Gallid herpesvirus

2, Human herpesvirus 6A,

Human herpesvirus 6B, Equid

herpesvirus 3

2 aatagaatagaatagaatagaatagaatagaatagaatagaatagaataga

atagaatagaatagaatagaatagaatagaatagaatagaatagaatag

3 42 100 (C248#1#18)

(C284#1#11)

(C357#1#13)

(AATAG)n X Rabbit fibroma virus, Taterapox

virus,

3 agggttagggttagggttagggttagggttagggttagggttagggttagg

gttagggttagggttagggttagggttagggttagggttagggttaggg

9 188 100 (C248#7#152)

(C305#2#36)

(AGGGTT)n 2,12,13,18,22, X,

Y

Falconid herpesvirus 1, Gallid

herpesvirus 2

4 atatatatatatatatatatatatatatatatatatatatatatatatatatatatata

tatatatatatatatatatatatatatatatatatatatat

6 533 100 (C14#1#34)

(C248#5#499)

(AT)n 2, 3, 7, 19, X Gryllus bimaculatus nudivirus

5 ccctaaccctaaccctaaccctaaccctaaccctaaccctaaccctaaccct

aaccctaaccctaaccctaaccctaaccctaaccctaaccctaacccc

3 4 100 (C248#1#1)

(C305#1#2)

(C541#1#1)

(CCCTAA)n 5 Meleleagrid herpesvirus 1, Equid

herpesvirus 3

6 ctaaccctaaccctaaccctaaccctaaccctaaccctaaccctaaccctaa

ccctaaccctaaccctaaccctaaccctaaccctaaccctaaccctaa

ccctaaccctaaccctaaccctaaccctaaccctaaccctaaccctaa

11 591 100 (C149#1#18)

(C248#4#298)

(C305#2#41)

(C442#3#210)

(C541#l#24)

(CCCTAA)n 1, 5,10,12 Cyprinid herpesvirus 1, Falconid

herpesvirus 1, Gallid herpesvirus

2, Human herpesvirus 6A,

Human herpesvirus 6B, Human

herpesvirus 7, Equid herpesvirus

3

7 gagagagagagagagagagagagagagagagagagagagagagag

agagagagagagagagagagagagagagagagagagagagagaga

gagagagaga

3 55 100 (C149#1#32)

(C248#2#23)

(GA)n 6, 11 Cyprinid herpesvirus 3

8 ggggttagggttagggttagggttagggttagggttagggttagggttagg

gttagggttagggttagggttagggtagggttagggttagggttaggg

3 3 100 (C248#2#2)

(C305#1#1)

G(GGGTTA)n 13, 18 Meleleagrid herpesvirus 1

9 gggttagggttagggttagggttagggttagggttagggttagggttaggg

ttagggttagggttagggttagggttagggttagggttagggttagggt

9 188 100 (C248#7#152)

(C305#2#36)

(GGGTTA)n 2, 12,13,18,22,

X, Y

Falconid herpesvirus 1, Gallid

herpesvirus 2
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Total Length Class frequency

distribution

(ClassID#DF#TF)

Regular

expression

Human

chromosome

(GRCh38.p7

primary

assembly)

Viruses

10 gtgtgtgtgtgtgtgtgtgtgtgtgtgtgtgtgtgtgtgtgtgtgtgtgtgtgtg

tgtgtgtgtgtgtgtgtgtgtgtgtgtgtgtgtgtgtgtgtgtg

5 78 100 (C248#4#38)

(C5#1#40)

(GT)n 2,10, 16, 19 Orgyia pseudotsugata MNPV

11 taaccctaaccctaaccctaaccctaaccctaaccctaaccctaaccctaac

cctaaccctaaccctaaccctaaccctaaccctaaccctaaccctaac

cctaaccctaaccctaaccctaaccctaaccctaaccctaaccctaac

10 588 100 (C149#1#16)

(C248#4#298)

(C305#2#41)

(C442#2#208)

(C541#1#25)

(TAACCC)n 1, 5,10,12 Cyprinid herpesvirus 1, Gallid

herpesvirus 2, Falconid

herpesvirus 1 Human herpesvirus

6A, Human herpesvirus 6B, Rquid

herpesvirus 3

12 tgtgtgtgtgtgtgtgtgtgtgtgtgtgtgtgtgtgtgtgtgtgtgtgtgtgtgt

gtgtgtgtgtgtgtgtgtgtgtgtgtgtgtgtgtgtgtgtgtgt

5 76 100 (C248#4#35)

(C5#1#41)

(GT)n 2,10, 16, 19 Orgyia pseudotsugata MNPV

13 ttagggttagggttagggttagggttagggttagggttagggttagggttag

ggttagggttagggttagggttagggttagggttagggttagggttag

9 186 100 (C248#7#150)

(C305#2#36)

(AGGGTT)n 2,12,13,18,22, X,

Y

Falconid herpesvirus 1, Gallid

herpesvirus 2

Table 5. The statistics of 13 DNA maximal repeat patterns (length = 100 bp) appearing in both humans and viruses.
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5. Conclusions and future works

Except considering the phenotypes that result from the epigenetics [38], it is believed that

some of the phenotypes of creatures (or organisms) are determined by their genotypes

as they are born in the beginning. This chapter proposes a novel approach to mine for genetic

markers via comparing class frequency distributions of maximal repeats extracted from

tagged genomic sequences of creatures, where the classes are derived from the tags given

by domain experts. Once domain experts can divide the creatures into disjoint classes

as precisely as possible according to their features (phenotypes), then they can adopt the

scalable approach developed in [22] to extract the maximal repeats and compute class

frequency distributions of these repeats via comparing the whole genomic sequences of

these creatures. The repeats or the combination of some repeats that are with extremely

biased class frequency distribution can be seen as class markers (genotypes) and can provide

clues to biologists to analyze the relationship among these class markers (genotypes) and

their corresponding features (phenotypes).

Due to the availability of cloud computing with flexible infrastructure, nowadays, it becomes

possible to compute class frequency distributions of maximal repeats from a huge amount of

tagged whole genomic sequences of many creatures across species via the scalable maximal

repeat extraction approach [22] with Hadoop MapReduce programming model. The function

mentioned in this chapter is somewhat like “Archimedes’ Law of the Lever,” as shown in

Viruses Class ID The International Committee on Taxonomy of Viruses

(ICTV)

Baltimore

classification

Genus Family Order

Orgvia pseudotsugata MNPV C5 Alphabaculovirus Baculoviridae N Group I(dsDNA)

Gryllus bimaculatus nudiviras C14 Alphanudivirus Nudiviridae N Group I(dsDNA)

Cyprinid herpesvirus 1 C149 Cyprinivirus Alloherpesviridae Herpesvirales Group I (dsDNA)

Rabbit fibroma virys C284 Leporipoxvirus Poxviridae N Group I (dsDNA)

Falconid herpesvirus 1 C305 Mardivirus Herpesviridae Herpesvirales Group I(dsDNA)

Gallid herpesvirus 2 C305 Mardivirus Herpesviridae Herpesvirales Group I(dsDNA)

Meleagrid herpesvirus 1 C305 Mardivirus Herpesviridae Herpesvirales Group I(dsDNA)

Taterapox virus C357 Orthopoxvirus Poxviridae N Group I(dsDNA)

Human herpesvirus 6A C442 Roseolovirus Herpesviridae Herpesvirales Group I(dsDNA)

Human herpesvirus 6B C442 Roseolovirus Herpesviridae Herpesvirales Group I(dsDNA)

Human herpesvirus 7 C442 Roseolovirus Herpesviridae Herpesvirales Group I(dsDNA)

Equid herpesvirus 3 C541 Varicellovirus Herpesviridae Herpesvirales Group I(dsDNA)

“Reproduced with permission from International Conference on BioInformatics and BioEngineering (BIBE); published by

IEEE, 2017.” [21].

Table 6. The taxonomy of 12 viruses selected in Table 5.
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Figure 11, the Archimedes, an outstanding ancient Greek scientist, said that “Give me a place

to stand on, and I will move the Earth.” With scalable computing power and enough tagged

genomic sequences, in other words, a domain expert can figure out the relationship among

phenotypes and genotypes if the classes are properly and precisely defined. It is desired to

have further cooperation with domain experts, especially who have collected the whole

genomes of diverse organisms and desire to find or identify the relationship between genomic

signatures and the features they concern in the future.

From a practical point of view, it is inconvenient for general users to have experiments of

maximal repeat extraction by themselves in the beginning because there are a lot of

preprocessing works and need considerable hardware infrastructure to support such a big-

data computing. Furthermore, it might be a bottleneck or nightmare for general users, for

example, biologists, to implement Hadoop MapReduce programming as described in [22].

Therefore, it is highly desired if maximal repeat extraction can be provided in public cloud

services, such as Amazon Elastic Container Service (AWS ECS) [39], Google Cloud Platform

[40], and Azure Container Service (AKS) [41]. It is highly expected that one will develop novel

comparative genome with tagged genomic sequences and bring users with novel cloud ser-

vices of computing class frequency distribution of maximal repeats in the future.
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