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Abstract

Recently, thermally activated delayed fluorescence (TADF) organic light-emitting diodes 
(OLEDs) have attracted both academic and industrial interest due to their extraordinary 
characteristics, such as high efficiency, low driving voltage, bright luminance, lower 
power consumption, and potentially long lifetime. In this chapter, various approaches to 
realize white OLEDs (WOLEDs) with TADF emitters have been introduced. The recent 
development of WOLEDs based on all TADF emitters, WOLEDs based on TADF and 
conventional fluorescence emitters, and WOLEDs based on TADF and phosphorescence 
emitters is highlighted. Particularly, the device structures, design strategies, working 
mechanisms, and electroluminescent processes of the representative high-performance 
WOLEDs with TADF emitters are reviewed. Moreover, challenges and opportunities for 
further enhancement of the performance of WOLEDs with TADF emitters are presented.

Keywords: white, organic light-emitting diodes, thermally activated delayed 
fluorescence, lighting, display

1. Introduction

In 1987, Tang and his coworker reported the first organic light-emitting diodes (OLED) [1]. 
Since then, OLEDs have been the object of intense research because of the superior proper-
ties, including bright luminance, excellent efficiency, fast response, good stability as well as 
the flexible characteristic [2–5]. Currently, there are a large number of available commercial 
applications in our life, such as televisions, lamps as well as cell phones. In addition, after the 
invention of OLED, other kinds of LEDs (e.g., polymer LED, quantum-dot LED, nanoplatelet 
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LED, and perovskite LED) were also reported [6–10]. By dint of the strategies used in OLEDs, 
the performance of these LEDs can be greatly enhanced. Besides, with the increasing under-
standing of the insight of OLEDs, the concepts utilized in OLEDs can also be applied to other 
optoelectrical devices, which is beneficial to the development of related fields [11–13].

To satisfy the requirements of energy-saving lighting and high-quality displays, white OLED 
(WOLED) has been considered to be one of the most promising candidates. Since the pioneer 
WOLEDs made by Kido and his coworkers, the WOLED technology is greatly improved [14, 

15]. During the last 24 years, the power efficiency (PE) was enhanced from less than 1 lm/W 
to more than 100 lm/W [16–18], indicating that WOLEDs are promising for the lighting and 
displays filed. In terms of lighting application, WOLEDs require a standard fluorescent tube 
efficiency (40–70 lm/W) and ≥10,000 h of lifetime at the luminance of ≥1000 cd/m2 [19–21]. 
Besides, the color rendering index (CRI) above 80 is required for the indoor lighting, and 
the Commission International de L’Eclairage (CIE) chromaticity coordinates of WOLEDs 
should be located near white light equal-energy point (0.33, 0.33) [22–25]. Moreover, for the 
high-quality lighting, other characterization parameters (e.g., correlated color temperature 
(CCT), color stability, and driving voltage) of WOLEDs are also required to be taken into 
account [26–30].

In 2012, Adachi et al. made a breakthrough on the thermally activated delayed fluorescence 
(TADF) material, which has been considered as the third-generation OLED emitter [31–33]. 
Different from the conventional fluorescent emitters in which only the singlet excitons (25%) 
can emit light since the radiative decay of triplet excitons (75%) is spin forbidden, TADF 
emitters could harness both singlet and triplet excitons since triplet excitons can be harvested 
as delayed fluorescence through their upconversion from a lowest triplet state to a lowest 
singlet state by inducing an efficient reverse intersystem crossing (RISC) [34–38]. Therefore, 
similar to phosphorescence emitters, a maximum internal quantum efficiency (IQE) of 100% 
can be realized [39–42]. Due to the outstanding properties (e.g., free noble metal, high effi-
ciency, low driving voltage, bright luminance, lower power consumption, and potentially 
long lifetime), TADF emitters have been actively investigated to develop WOLEDs [43–45]. 
Although efficient TADF emitters were only demonstrated 6 years ago and WOLEDs with 
TADF emitters were just reported 4 years ago, the performance of WOLEDs with TADF 
emitters has been improved step by step [46]. For example, WOLEDs with TADF emitters 
can exhibit nearly 20% external quantum efficiency (EQE) [47], which is comparable to state-
of-the-art phosphorescence WOLEDs and fluorescence/phosphorescence hybrid WOLEDs 
[29, 30, 48–54]. Thus, WOLEDs with all TADF emitters have great potential to the lighting 
and display field.

Herein, we first introduced the basic concepts of TADF emitters, which are beneficial to com-
prehend WOLEDs with TADF emitters. Then, we summarize the main approaches to real-
ize WOLEDs with TADF emitters in recent years. More specifically, we highlight the recent 
development of WOLEDs based on all TADF emitters, WOLEDs based on TADF and conven-
tional fluorescence emitters, and WOLEDs based on TADF and phosphorescence emitters. 
Particularly, the device structures, design strategies, working mechanisms, and electrolumi-
nescent processes of the representative high-performance WOLEDs with TADF emitters are 
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reviewed. Finally, challenges and opportunities for further enhancement of the performance 
of WOLEDs with TADF emitters are presented.

2. Fundamental concepts of TADF emitters

Due to the effect of spin statistics, when holes injected from the anode meet electrons injected 
from the cathode, singlet and triplet excitons will be formed with a ratio of 1:3 [55]. In the case 
of the first-generation OLED emitters (i.e., conventional fluorescence emitters), only the sin-
glet excitons (25%) can emit light since the radiative decay of triplet excitons (75%) is spin for-
bidden, as shown in Figure 1. Therefore, the EQE of fluorescence WOLEDs is usually below 
5%, considering that the outcoupling factor is ~20%. For the second-generation OLED emitters 
(i.e., phosphorescence emitters), they can not only harvest triplet excitons via the triplet-trip-
let energy transfer but also harvest singlet excitons via the singlet-triplet intersystem crossing 
process (ISC) due to the heavy-atom effect [56]. Thus, the EQE of phosphorescence WOLEDs 
can be as high as 20%.

In terms of the third-generation OLED emitters (i.e., TADF emitters), a small energy gap 
(△EST) between singlet (S1) and triplet (T1) excited states is required and can be attained by 
carefully designing organic molecules [31]. Generally, the S1 level was considerably higher in 
energy than the T1 level by 0.5–1.0 eV, because of the electron exchange energy between these 

Figure 1. An energy diagram of a conventional organic molecule. H is hole and e is electron. Reproduced from Ref. [31].
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levels. However, to enhance thermal upconversion (i.e., T1 → S1 RISC), the molecular design 
of TADF materials requires small △EST, typically less than 0.2 eV, to overcome competitive 
non-radiative decay pathways, leading to highly luminescent TADF materials [57]. In addi-
tion, to enhance the photoluminescence efficiency of TADF materials, the geometrical change 
in molecular conformation between its ground state (S0) and S1 states should be restrained to 
suppress non-radiative decay. As a result, the maximum theoretical IQE of TADF emitters 
can be 100%.

3. Approaches to realize WOLEDs with TADF emitters

3.1. Basic aspects of WOLEDs with TADF emitters

Similar to phosphorescence emitters, the use of TADF emitters is very promising to achieve 
WOLEDs. This is because TADF emitters can (1) harness triplet excitons, (2) exhibit excellent 
efficiency, and (3) show usually broad emission spectra with rather large full width at half 
maximum of about 100 nm, which is wider than that of conventional fluorescent materials 
because of their charge-transfer nature [31–47].

To attain the high performance, the device structures, design strategies, working mechanisms, 
and electroluminescent processes of the WOLEDs with TADF emitters should be well manip-
ulated. For example, unlike conventional fluorescence emitters, the T1 of TADF emitters is 
necessary to be considered when designing a WOLED architecture, since hosts or nearby lay-
ers with low T1 would quench the triplet excitons, which leads to the low efficiency. Besides, 
the location of TADF emitters is needed to be investigated, since the energy transfer would 
occur between the contacted different emitters (e.g., energy can transfer from high-energy 
TADF emitters to low-energy emitters). To date, various approaches have been reported to 
develop WOLEDs with TADF emitters, such as the exploitation of all TADF emitters, the 
combination of TADF and conventional fluorescence emitters, and the mixture of TADF and 
phosphorescence emitters.

3.2. WOLEDs with all TADF emitters

The most directed approach to develop WOLEDs with TADF emitters is the exploitation of 
all TADF emitters. That is to say, all blue, green, and red emitters are TADF materials. By 
selecting high-T1 hosts and charge transport materials, high-performance WOLEDs can be 
attained. More specifically, the conventional fluorescent host should possess high T1, which 
should be particularly higher than the blue TADF materials. Otherwise, the triplet excitons 
of emitters would be quenched by the host, resulting in low performance. Moreover, high-T1 

charge transport materials should be selected, which is used to confine the triplet excitons in 
the EML, leading to the excitons being well consumed.

Adachi and his coworkers for the first time adopted such an approach to develop highly efficient 
WOLEDs with all TADF emitters [46]. Figure 2 depicts the device structure: ITO/1,4,5,8,9,11-
hexaazatriphenylene hexacarbonitrile (HAT-CN, 10 nm)/9,9′,9″-triphenyl-9H,9’H,9”H-3,3′:6′,3″-
tercarbazole (Tris-PCz, 35 nm)/10 wt% 1,2,3,4-tetrakis(carbazol-9-yl)-5,6-dicyanobenzene 
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(4CzPN): 3,3-Di(9H-carbazol-9-yl)biphenyl (mCBP, green EML) (x nm)/6 wt% 4CzPN: 2 wt% 
41,4-dicyano-2,3,5,6-tetrakis (3,6-diphenylcarbazol-9-yl)benzene (CzTPN-Ph): mCBP (red EML) 
(y nm)/10 wt% 9-(3-(9H-carbazol-9-yl)-9-(4-(4,6-diphenyl-1,3,5-triazin-2-yl)phenyl)-9H-carba-
zol-6-yl)-9H-carbazole (3CzTRZ): 2,8-bis(diphenylphosphoryl) dibenzo-[b,d] thiophene (PPT, 
blue EML) (z nm)/PPT (50 nm)/LiF/Al. In this device, the T1 level of mCBP host is 2.9 eV, which 
is much higher than that of blue, green, and red TADF emitters, ensuring the high efficiency. 
Besides, PPT has a high T1 of 3.1 eV, suggesting a good confinement of the triplet excitons. By 
optimizing the charge generation zone via the adjustment of different EML thickness (the total 
thickness is set to be x + y + z = 15 nm), the WOLED achieved a maximum EQE of over 17%, a 
peak PE of 34.1 lm/W with CIE coordinates of (0.30, 0.38).

3.3. WOLEDs with TADF and conventional fluorescence emitters

Considering that triplets could be harnessed by TADF emitters, it is promising to realize the 
unity IQE by combining traditional fluorescent materials with TADF emitters [61]. For such 
an approach, the TADF molecules would act as the triplet harvester, which is used to harness 
the triplets for the conventional other-color fluorescence materials. As a result, highly efficient 
white light can be produced [42–44].

In 2016, Li et al. reported high-efficiency and high CRI WOLEDs with the chromaticity-
adjustable yellow TADF emitter 2-(4-phenoxazinephenyl)thianthrene-9,9′,10,10′-tetraoxide 

Figure 2. The WOLED structures and energy level diagram. Reproduced from Ref. [46].
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(PXZDSO2) [47]. By combining the conventional deep-blue fluorescence emitter NI-1-
PhTPA and PXZDSO2, the two-color WOLED showed a maximum EQE of 15.8% (device 
W3). Then, since the chromaticity of the EML containing PXZDSO2 could be tuned to 
yellowish green, they introduced a deep-red fluorescence emitter DBP (dibenzo{[f,f′]-4, 
4′,7,7′-tetraphenyl}diindeno[1,2,3-cd:1′,2′,3′-lm]perylene) subtly to fabricate three-color 
WOLED, achieving the most efficient ever EQE of 19.2% with a CRI of 68 (device W4) 
and the highest ever CRI of 95 with an EQE of 15.6% (device W6). The configurations 
are ITO/HATCN/TAPC/EMLs/TmPyPB/LiF/Al, in which device W3 has the EML of CBP: 
8 wt% NI-1-PhTPA (10 nm)/CBP (3 nm)/CBP: 6 wt% PXZDSO2 (15 nm)/CBP (3 nm)/CBP: 
8 wt% NI-1-PhTPA (10 nm), device W4 has the EML of CBP: 7 wt% NI-1-PhTPA (10 nm)/
CBP (3 nm)/CBP: 3 wt% PXZDSO2 (5 nm)/CBP: 5 wt% PXZDSO2: 0.3 wt% DBP (5 nm)/
CBP:3 wt% PXZDSO2 (5 nm)/CBP (3 nm)/CBP: 7 wt% NI-1-PhTPA (10 nm), device W6 
has the EML of CBP: 10 wt% NI-1-PhTPA (10 nm)/CBP (3 nm)/CBP: 5 wt%PXZDSO2: 
0.35 wt% DBP (15 nm)/CBP (3 nm)/CBP: 10 wt% NI-1-PhTPA (10 nm). The device work-
ing mechanisms can be described as follows. For device W3, (1) since NI-1-PhTPA is a 
deep-blue fluorescence emitter and CBP: 6 wt% PXZDSO2 emits a yellow light with broad 
spectrum, high-performance two-color WOLEDs were realized; (2) given the almost equal 
T1 level of NI-1-PhTPA and PXZDSO2, the efficiency roll-off occurs if they are directly in 
contact due to the triplet exciton quenching by NI-1-PhTPA; (3) the efficiency roll-off can 
be further induced as the formed triplet excitons of NI-1-PhTPA cannot be utilized by 
PXZDSO2; (4) to stabilize the recombination zone which occurs in whole EMLs since NI-1-
PhTPA/CBP are bipolar and avoid triplet exciton quenching by NI-1-PhTPA, two 3-nm 
CBPs were inserted between the blue and yellow EMLs, restraining the inevitable Förster 

Figure 3. Function mechanisms of the use of singlets/triplets. (a) Device W3 and (b) devices W4 and W6. H, B, Y, and R 
represent CBP, NI-1-PhTPA, PXZDSO2, and DBP, respectively. Reproduced from Ref. [47].
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energy transfer from NI-1-PhTPA to PXZDSO2; (5) to reduce the triplet exciton energy 
loss via nonradiative transition process, blue-fluorescence emitter was dispersed in CBP 
for blue emission, leading to most excitons being generated at CBP; and (6) triplet energy 
transferred from CBP gives most of triplet excitons of PXZDSO2 since triplet excitons typi-
cally have long diffusion lengths (≈100 nm), as shown in Figure 3a. Hence, an EQE of 
15.8% was achieved for device W3. For device W4, (1) a deep-red fluorescence emitter DBP 
was conceived to be used; (2) PXZDSO2 was an assistant host for DBP to realize a red-
light emission due to an efficient energy transfer from the S1 of PXZDSO2; (3) the doping 
concentration of PXZDSO2 was decreased to reduce intermolecular aggregation and thus 
blue-shifted emission (20 nm), achieving green emission, complementary to emissions of 
NI-1-PhTPA and DBP; (4) a red EML of CBP: 5 wt% PXZDSO2: 0.3 wt% DBP was inserted 
between two green EMLs of CBP: 3 wt% PXZDSO2 to receive singlet exciton energy trans-
ferred from the PXZDSO2 molecules in both sides to give both green and red emissions; (5) 
the two doped blue EMLs and CBP interlayers located at both sides of the green EMLs to 
give a blue emission and to confine the PXZDSO2 triplet excitons, respectively, as shown 
in Figure 3b. Thus, an EQE of 19.2% was achieved for device W4. Furthermore, an EML 
consisting of improved DBP doping concentration was utilized instead of the green and 
red EMLs for candle-style warm WOLEDs (device W6), achieving a high CRI of 95.

3.4. WOLEDs with TADF and phosphorescence emitters

Since both TADF and phosphorescence emitters can harvest singlet and triplet excitons, 
the mixture of TADF and phosphorescence emitters is a significant approach to construct 
WOLEDs. By virtue of their respective advantages, high efficiency and long lifetime can be 
realized simultaneously [44, 58]. In particular, there is tremendous interest in mixing blue 
TADF emitters with green/red or complementary color phosphorescence emitters. This is 
because blue TADF materials (1) are naturally advantageous to achieve high triplet energies 
due to their reduced singlet-triplet splits, (2) can possess high efficiency, and (3) can harvest 
the triplets [59–61]. For this kind of WOLED (i.e., mixing blue TADF and other-color phospho-
rescence emitters), it is generally called hybrid WOLEDs [21].

In 2014, Zhang and coworkers demonstrated hybrid WOLEDs via the use of blue TADF 
emitter, obtaining the peak efficiency as high as 47.6 lm/W [59]. The device structure is ITO/
HATCN (5 nm)/NPB (40 nm)/TCTA (10 nm)/mCP: 4,5-bis(carbazol-9-yl)-1,2-dicyanobenzene 
(2CzPN, 11 nm, blue EML)/TAZ: 4 wt% (acetylacetonato)bis[2-(thieno[3,2-c]pyridin-4-yl)phe-
nyl]iridium(III) (PO-01, 4 nm, orange EML)/TAZ (40 nm)/LiF (0.5 nm)/Al (150 nm), as shown 
in Figure 4. The factors for the high performance are as follows: (1) mCP is chosen to be the 
host for 2CzPN due to the wide energy gap and high T1 of 3.0 eV, since the host of the TADF 
material plays an important role in determining the efficiency; (2) 2CzPN is placed nearest 
to the main recombination zone, ensuring that excitons can diffuse throughout the emissive 
region to produce a desired color-balanced output; (3) triplets formed on 2CzPN can be har-
vested by either energy transfer to the low-lying triplet states of the phosphor PO-01 (2.2 eV) 
or thermal upconversion to the emissive singlet states, eliminating the energy loss; and (4) 
the recombination zone is fixed as the voltage increases by 2CzPN due to its charge-trapping 
ability, achieving a stable white emission.
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Although high-performance hybrid WOLEDs based on TADF materials have been dem-
onstrated, there are still some problems, even for these state-of-the-art devices [59–61]. For 
example, (1) the driving voltages are somewhat high (e.g., 3.2 V at 1 cd m−2 [61]); (2) the lumi-
nances are very low (e.g., only ~10,000 cd m−2 [61]); (3) the efficiency at high luminance is not 
high (e.g., <6 lm W−1 at 10,000 cd m−2 [61]); (4) the CRI is not high enough; and (5) negligible 
attention has been paid to the lifetime of TADF-based hybrid WOLED.

To solve the issues, Luo et al. recently reported high-performance two-color and three-color 
hybrid WOLEDs [62]. The two-color WOLED exhibits (1) low voltage (i.e., 2.9 V at 1 cd m−2); 
(2) high luminance (103,756 cd m−2); (3) maximum EQE and PE of 23.5% and 70.92 lm W−1, 

respectively; and (4) 21.59 lm W−1 at 10,000 cd m−2. The three-color WOLED exhibits (1) 
low voltage and high luminance (51,514 cd m−2); (2) superior CRI of 94; and (3) EQE and 
PE of 17.3% and 46.09 lm W−1, respectively. The configuration of the two-color WOLEDs is 
ITO/HAT-CN (100 nm)/TAPC (20 nm)/mCP: 9,9′,9″,9′′′-((6-phenyl-1,3,5-triazine-2,4-diyl)
bis(benzene-5,3,1-triyl))tetrakis(9H-carbazole) (DDCzTrz, 10 nm, 20%)/interlayers (3 nm)/
bis[2-(2-hydroxyphenyl)-pyridine] beryllium (Bepp

2
): bis(2-phenyl-4,5-dimethylpyridinato)

[2-(biphenyl-3-yl)pyridinato] iridium(III) (Ir(dmppy)
2
(dpp), 15 nm, 1:2%)/Bepp

2
 (35 nm)/

Figure 4 Schematic diagrams of the working mechanisms. The gray-filled rectangle represents the main exciton 
generation zone. PF is the prompt fluorescence while DF is the delayed fluorescence. RISC indicates the reverse ISC 
and ET denotes the energy transfer. Reproduced from Ref. [59] with permission from the Royal Society of Chemistry.

Light-Emitting Diode - An Outlook On the Empirical Features and Its Recent Technological Advancements44



LiF (1 nm)/Al (160 nm), where interlayers are none, mCP and 2,6-bis(3-(carbazol-9-yl)phe-
nyl)pyridine (26DCzPPy) for devices W11, W12, and W13, respectively. The configuration 
of the two-color WOLED is ITO/HAT-CN (100 nm)/TAPC (20 nm)/mCP: DDCzTrz (10 nm, 
20%)/26DCzPPy (interlayer, 3 nm)/Bepp

2
: Ir(dmppy)

2
(dpp): Ir(piq)3 (15 nm, 1: 2%: 1.3%)/Bepp

2
 

(35 nm)/LiF (1 nm)/Al (160 nm). Unlike previous TADF-based hybrid WOLEDs, the bipolar 
interlayer is demonstrated to enhance the performance. Particularly, it is demonstrated that 
the use of interlayer can enhance the lifetime (2.3 times). The working mechanism of the two-
color WOLED can be described as follows, which is beneficial to comprehend the reason 
why the bipolar interlayer can enhance the performance. For W11, since mCP and Bepp

2
 are 

p-type and n-type materials, respectively, holes and electrons are easily accumulated at the 
mCP/Bepp

2
 interface, forming singlet and triplet excitons, as shown in Figure 5a. The trip-

lets on blue EML can (1) convert into singlets via the RISC procedure and then generate the 
blue emission, and (2) transfer to the low energy of yellow phosphor Ir(dmppy)

2
(dpp) via 

the Dexter process and then generate part of yellow emission (the other part of yellow emis-
sion is originated from excitons on the yellow EML). However, the main exciton generation 

Figure 5 A schematic illustration of the working mechanism of (a) W11, (b) W12, and (c) W13. The gray-filled rectangles 
are the main exciton generation zones. The Dexter energy transfer can occur in W11, while it is prohibited in both W12 
and W13. Reproduced from Ref. [62].
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zone of W11 is narrow, unfavorable to the performance. Similarly, the main exciton genera-
tion zone of W12 is located at the mCP interlayer/Bepp

2
 interface, as shown in Figure 5b. As 

a result, excitons are more easily harvested by Ir(dmppy)
2
(dpp) instead of DDCzTrz since 

Ir(dmppy)
2
(dpp) is close to the main exciton generation zone. However, a part of electrons 

can pass through the thin interlayer via the tunneling process and then meet holes, which can 
generate excitons to guarantee the blue emission. For W13, by way of the bipolar interlayer 
and the suitable energy levels of 26DCzPPy, both holes and electrons can be easily passed 
through 26DCzPPy, as shown in Figure 5c. As a result, excitons can be formed at both the 
mCP/26DCzPPy and 26DCzPPy/Bepp

2
 interfaces, leading to a broad exciton generation zone, 

which ensure the high performance of W23. Besides, since the Dexter energy transfer from 
DDCzTrz to Ir(dmppy)

2
(dpp) is also prevented due to the 3 nm 26DCzPPy, the yellow emis-

sion mainly results from excitons on the yellow EML.

Another effective approach to develop WOLEDs with TADF and phosphorescence emitters is 
the mixture of green TADF and other-color phosphorescence emitters. In this case, the TADF 
emitters are adopted as the emitters for WOLEDs because they may be compatible with phos-
phorescence emitters and not quench triplet excitons of the phosphorescence emitters, other-
wise triplet excitons will be wasted.

Kim et al. reported this approach by combining a green TADF with red/blue phosphores-
cence materials to organize high-efficiency hybrid-type WOLEDs [45]. In their WOLED, 
energy transfer between a blue phosphorescent material and a green TADF emitter was 
efficient and could be managed by controlling the doping concentration of emitters. A 
maximum EQE of 20.2% was achieved by optimizing the device structure of the hybrid-
type WOLEDs. The device structure is ITO (50 nm)/poly(3,4-ethylenedioxythiophene): 
poly(styrenesulfonate) (PEDOT:PSS, 60 nm)/TAPC (20 nm)/mCP (10 nm)/mCP: iridium(III) 
bis[(4,6-difluorophenyl)-pyridinato-N,C2]picolinate (FIrpic): (4 s,6 s)-2,4,5,6-tetra(9H-
carbazol-9-yl)isophthalonitrile (4CzIPN) (12.5 nm)/TPBI: Ir(pq)

2
acac (12.5 nm, 3%)/diphe-

nylphosphine oxide-4-(triphenylsilyl)phenyl (TSPO1, 35 nm)/LiF (1 nm)/Al (200 nm), where 
4CzIPN is the green TADF emitter, and FIrpic and Ir(pq)

2
acac are blue and red phosphores-

cence emitter, respectively, as shown in Figure 6. To explore the possibility of this type of 
WOLEDs, hybrid OLEDs with blue-emitting FIrpic and green-emitting 4CzIPN were first 
fabricated. By optimizing the concentration of FIrpic and 4CzIPN, a maximum EQE of the 
hybrid OLEDs was 19.2% at 5% FIrpic and 0.5% 4CzIPN. Given that the EQE of mCP: FIrpic 
OLED is <20%, such superior EQE of hybrid OLED suggests that 4CzIPN would not quench 
FIrpic triplet emission. In fact, T1 of FIrpic can be transferred to 4CzIPN and then make a con-
tribution to the 4CzIPN TADF emission. For this hybrid OLED, there are three main energy 
transfer processes, that is, energy transfer processes from mCP to FIrpic, mCP to 4CzIPN, 
and FIrpic to 4CzIPN dominate the blue and green emissions of the hybrid OLEDs. After 
the successful exploration of hybrid OLED, Kim et al. combined this system and red phos-
phorescence emitting layers, attaining high-efficiency WOLEDs. The factors for the high-
performance of WOLEDs can be summarized as follows: (1) the hybrid OLEDs doped with 
FIrpic and 4CzIPN showed a high quantum efficiency, which ensure the high efficiency of 
blue-green-emitting layer. In this emitting layer, energy transfer from FIrpic to 4CzIPN is 
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efficient, leading to no non-radiative triplet exciton quenching of FIrpic by 4CzIPN. (2) The 
energy transfer from mCP to dopant materials in the FIrpic and 4CzIPN co-doped emitting 
layer is very efficient. (3) FIrpic activates the delayed emission of 4CzIPN through an efficient 
energy transfer, which resulted in the high quantum efficiency of the hybrid-emitting layer. 
(4) The balanced charge density in the emitting layer contributed to the high quantum effi-
ciency. The TPBI: Ir(pq)

2
acac-emitting layer efficiently injects electrons due to electron trans-

port properties of TPBI, which improved charge balance in the emitting layer in combination 
with hole transport-type mCP: FIrpic: 4CzIPN-emitting layer.

4. Summary and outlook

As a novel kind of OLED emitter, TADF materials show many unique characteristics, which 
have been demonstrated to develop high-performance WOLEDs. Thanks to the hard endeav-
ors of researchers, the performance of WOLEDs is now comparable to state-of-the-art phos-
phorescence WOLEDs and fluorescence/phosphorescence hybrid WOLEDs. In this chapter, 
the focus is the development of WOLEDs by manipulating TADF emitters. Specifically, we 
highlight the recent development of WOLEDs based on all TADF emitters, WOLEDs based 
on TADF and conventional fluorescence emitters, and WOLEDs based on TADF and phos-
phorescence emitters. Particularly, the device structures, design strategies, working mecha-
nisms, and electroluminescent processes of the representative high-performance WOLEDs 
with TADF emitters are reviewed.

Figure 6. The energy level diagram and device architecture of the WOLED. Reproduced from Ref. [45].
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Although the performance of WOLEDs with TADF emitters has been enhanced over the past few 
years, there are still many challenges before they can be large-scale commercialized production, 
such as the efficiency, lifetime, and cost. However, it is deserved to point out that these issues are 
also hindrances for other kinds of WOLEDs. For example, there is still much room for the effi-
ciency of WOLEDs to the theoretical limit of 248 lm/W (standard light source (D65) from 400 to 
700 nm wavelength) [63]. Therefore, the photoluminescence quantum efficiency of the emissive 
materials (TADF or other-type emitters), the charge balance, and outcoupling efficiency of the 
devices should be further enhanced.

Besides, despite the efficiency of WOLEDs with TADF emitters that can be high enough, 
there are some other parameters that are needed to be enhanced. Particularly, the stabil-
ity and efficiency roll-off of WOLEDs with TADF emitters still lags behind other kinds 
of WOLEDs. For example, fluorescence WOLEDs can show an extremely long lifetime of 
150,000 h at an initial luminance of 1000 cd/m2 [64], while hybrid WOLEDs based on con-
ventional blue fluorescence emitters can possess a long lifetime of >30,000 h at 1000 cd/
m2 [65]. However, it is still difficult for WOLEDs with TADF emitters to achieve long life-
time, which may be attributed to the instability of TADF emitters. For example, Wang et al. 
recently reported the first WOLED with TADF emitters realizing long lifetime (2025 h 
at 1000 cd/m2) [66]. However, it is noted that the lifetime still cannot meet the require-
ment of large-scale commercialized productions. Hence, to solve this issue, stable TADF 
emitters are urgently explored [57]. In addition, fluorescence WOLEDs, hybrid WOLEDs 
based on conventional blue fluorescence emitters or even phosphorescence WOLEDs with 
extreme color stability (△CIE = (0.00, 0.00)) in the whole luminance/driving voltage have 
been reported [28, 67–70]. However, the color stability of WOLEDs with TADF emitters 
is usually unstable, indicating that more efforts are required to manage this difficulty. 
Furthermore, the efficiency roll-off in WOLEDs with TADF emitters is not ideal, particu-
larly for the PE roll-off [71]. As a consequence, only low efficiency can be attained at high 
luminances, which is not beneficial to the practical applications. To loosen this bottleneck, 
the charge balance, energy barriers between nearby layers, and materials selection should 
be well manipulated [72–76]. With the endeavor of academic and industrial researchers to 
enhance the materials design and device engineering, we believe that WOLEDs with TADF 
emitters can play a significant role in the marketplace in the near future, which is beneficial 
to our human society.
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