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1. Spermatozoa morphology and physiology: an introduction

Sperm cells (SPZ) are derived from spermatogenesis, a highly regulated developmental 

process starting from diploid precursors—spermatogonial stem cells—that undergo strictly 

orchestrated mitotic and meiotic divisions to form round spermatids. Extensive morphologi-

cal and biochemical transformations in post-meiotic phase are required to differentiate round 
spermatids into highly specialized SPZ [1–3]. Thus, during spermiogenesis, the round sper-

matids transform into specialized and polarized cells that exhibit: at proximal end, the head 

containing an elongated and transcriptionally inactive nucleus which is apically surrounded 

by the Golgi-derived acrosome, and at the distal end, a tail surrounded at its proximal mid-

pieces by mitochondrial sheet. A part from acrosome biogenesis, the spermiogenesis accounts 

for a radical chromatin remodeling that causes genome silencing [4] through histone replace-

ment with transition proteins, firstly, and protamines later, to obtain a tightly packaged 
chromatin [5]. In parallel, a global reorganization of cytoplasmatic/cytoskeleton architecture 
drives elongation step with the development of a flagellum and the formation of cytoplasmic 
droplets which contain the excess cytoplasm.

In mammals, two post-testicular maturational events are required so that SPZ may reach their 

fertilization ability: the former occurring in the epididymis, the latter in female reproductive 
tract. The epididymis is a long convoluted tubule characterized by three main morphologi-

cally and functionally distinct regions (proximal caput, elongated corpus, and distal cauda) 

[6]. It represents the extracellular microenvironment in which a fine crosstalk between SPZ 
and epididymis epithelial cells takes place, generally through vesicles known as epididy-

mosomes [7]. During their journey along the epididymis, SPZ remodel the lipid content of 

plasma membrane, especially cholesterol, receive a rich and complex repertoire of protein 

and non-coding RNAs (ncRNAs), especially microRNAs (miRNAs), long non-coding RNA 
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(lncRNA), and tRNA fragments (tRFs) [8], and lastly they acquire progressive motility. After 

epididymal maturation, SPZ are still incapable to fertilize eggs; they have to spend some 

time in the female reproductive tract before they acquire this competence (fertilizing ability) 

through the capacitation process [9]. During this phase, SPZ undergo other important bio-

chemical modifications in terms of steroid removal or protein modifications [10]; after that, 

they interact with cumulus-cell oocyte complex to penetrate the matrix of the cumulus oopho-

rus [11]. Capacitated SPZ are subjected to acrosome reaction, a prerequisite event for sperm-

egg fusion [12], then they penetrate the zona pellucida, to meet and fuse with the egg plasma 

membrane [13]. After this fusion, finely controlled by a large body of proteins, SPZ deliver to 
the oocyte their haploid genome. Figure 1 summarizes the main features of spermatogenesis 

and SPZ maturation.

2. The control of spermatogenesis and sperm quality

Intricate neuronal circuitries, mainly governed by hypothalamic kisspeptin and gonadotropin 
releasing hormone (GnRH) reciprocal communications, centrally orchestrate reproduction [1] 

and lead to pituitary gonadotropin discharge and sex steroid biosynthesis in order to sus-

tain spermatogenesis and sperm release. In addition to hormonal milieu, a complex network 
of intratesticular cell-to-cell communications regulates germ cell progression, coordinating 

mitosis, meiosis, differentiation, and maturation [2, 3]. Thus, SPZ morphological feature is 

critical to ensure proper physiological activity.

Figure 1. Schematic view of the main events characterizing spermatogenesis in testis, followed by spermatozoa 

(SPZ) maturation in male reproductive tracts and capacitation/fertilizing ability in female reproductive tracts. SPG: 

spermatogonia; ISPC: primary spermatocytes; IISPC: secondary spermatocytes; rSPT: round spermatids; eSPT: 

elongating spermatids; SPZ: spermatozoa.
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Spermatogenesis is highly sensitive to environmental stressors as energy availability, stress, 

life style, temperature, pollutants, heavy metals, or endocrine disruptor chemicals that act at 

several levels along the hypothalamus-pituitary-gonad axis [14–16]. In this respect, the activ-

ity of molecular chaperone/cochaperone, ubiquitination, but also DNA repair systems and 

antioxidants defenses ensures the physiological progression of spermatogenesis, avoids that 

damaged germ cells differentiate into SPZ, and deeply contributes to produce high-quality 
mature SPZ [17–19].

Conversely, impaired autocrine/paracrine/endocrine communication along the hypothal-

amus-pituitary-gonadal axis may impact spermatogenesis and have deleterious effects on 
male fertility due to: (1) spermatogenesis arrest and lack of SPZ, as in the case of hypogonado-

tropic hypogonadism; (2) defective production of gonadotropins/sex steroids with outcomes 

on spermatogenesis onset/progression and SPZ maturation; and (3) low sperm count and/

or the production of defective spermatozoa with morphological abnormalities or impaired 

motility [20]. However, in 30–40% of male infertility cases, the etiology remains unknown and 
infertility is therefore idiopathic, being a multifactorial disorder in which molecular defects in 

spermatogenesis and sperm function occur [21].

3. Upcoming issue for paternal epigenetic inheritance

Once considered just a “carrier” for male haploid genome at fertilization, nowadays, the func-

tional role of SPZ has been revised. In fact, a part haploid genome, SPZ, preserve some sperm-

specific RNA components, absent in the oocyte, such as fragments of longer transcripts, able 
to control early embryogenesis [22–24]. Mature SPZ also contain a rich repertoire of ncRNAs, 

such as miRNAs, tRFs, lncRNAs, and PIWI-interacting RNAs (piRNAs). Their deregulation 

not only alters SPZ physiology but may affect SPZ contribution to a regular embryo develop-

ment, through epigenetic dynamics [25], since there is a need to focus more attention on SPZ 
as carrier of transgenerational epigenetic inheritance.

The specific epigenetic signatures of SPZ include DNA methylation status, chromatin remod-

eling, and ncRNA pools. Unlike somatic cells, germ cells have hypomethylated DNA [26], and 

genome-wide hypermethylation of sperm DNA status is associated with pregnancy failure 

[27]. As reported in the previous paragraph, chromatin remodeling, made possible through 

histone replacement by protamines, is a key step of spermiogenesis and does not occur in ovo-

genesis [5, 28]. Interestingly, a deregulated histone-protamine exchange induces DNA dam-

age and male subfertility [29]. A small percentage of paternal genome retains histones and 

reveals a nucleosome organization, in not random distribution, thus affecting transcription 
factor accessibility to DNA at specific gene loci [30]. Furthermore, together with a well-known 
histone code, a protamine code has been suggested in SPZ [31]. Lastly, sperm RNA cargo plays 

an important role in SPZ epigenetic landscape. Several classes of RNAs have been identified in 
SPZ [32] and their possible contribution in the regulation of gene expression in embryo is cur-

rently under investigation. Surely these small RNAs take part in the sperm epigenetic trans-

generational pattern of inheritance because they are vulnerable to paternal exposure to various 
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forms of stress and they are able to regulate developmental trajectories of the offspring. In fact, 
a high-fat diet (HFD) in male mice alters sperm miRNA content and, thus, glucose tolerance 

in both male and female offspring [33]. Similarly, sperm tRNA fragments injected from HFD 

males or from male mice with a protein restriction status to normal zygotes are vehicles of 

transgenerational transmission of metabolic disorders in the offspring [34, 35].

Therefore, DNA methylation, posttranslational histone modifications, chromatin remodel-
ing, and ncRNA activity are plastic epigenetic mechanisms, modifiable in response to envi-
ronmental and behavioral events and heritable from father to the offspring as an acquired 
mark [36]. This also means that paternal lifestyle or experiences, including physical activity, 

nutrition, and exposure to pollutants, can alter SPZ epigenome, with male infertility, embryo 

development failure, abnormal embryonic molecular makeup, and disease susceptibility of 
the offspring as a result [37].

4. Conclusions

The assessment of SPZ quality represents the main bioindicator of male fertility and the analy-

sis of seminal plasma is a valid diagnostic instrument for male fertility, since it is enriched with 

molecules indicative of SPZ quality status. Furthermore, impressive advances have been made 

in conferring to SPZ a role in embryo development and in considering SPZ a carrier of “pater-

nal experience” to the offspring. As a consequence, the combined assessments of SPZ quality 
and (epi)genetic study are necessary for the diagnosis and the development of personalized 

treatment for male infertility and to preserve embryo development and offspring health.
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