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1. Introduction 
 

Neural network has good nonlinear function approximation ability. It can be widely used to 
identify the model of controlled plant. In this chapter, the theories of modeling uncertain 
plant by using two kinds of neural networks: feed-forward neural network and recurrent 
neural network are introduced. And two adaptive control strategies for robotic tracking 
control are developed. One is recurrent fuzzy neural network based adaptive control 
(RFNNBAC), and another is neural network based adaptive robust control (NNBARC). In 
RFNNBAC, a kind of recurrent fuzzy neural network (RFNN) is constructed by using 
recurrent neural network to realize fuzzy inference, In which, temporal relations are 
embedded in the network by adding feedback connections on the first layer of the network. 
Two RFNNs are used to identify and control plant respectively. Base on the Lyapunov 
stability approach, the convergence of the proposed RFNN is analyzed. In NNBARC, A 
robust controller and a neural network are combined into an adaptive robust robotic 
tracking control scheme. Neural network is used to approximate the modeling uncertainties 
in robotic system. Then the disadvantageous effects on tracking performance, due to the 
approximating error of the neural network and non-measurable external disturbances in 
robotic system, are attenuated to a prescribed level by robust controller. The robust 
controller and the adaptation law of neural network are designed based on Hamilton-Jacobi-
Issacs (HJI) inequality theorem. The weights of NN are easily tuned on-line by a simple 
adaptation law, with no need of a tedious and lengthy off-line training phase. 
This chapter is organized in the following manner. In the first section a robust robotic 
tracking controller based on neural network is designed and its effectiveness is proved by 
applying it to control the trajectories of a two-link robot. Secondly, a recurrent fuzzy neural 
network based adaptive control is proposed and simulation experiments are made by 
applying it on robotic tracing control problem to confirm its effectiveness. Finally, some 
conclusions are drawn. 

 
2. A robust robotic tracking controller based on neural network 
 

In the past decades, there has been much research on the applications of nonlinear control 
theory to control robots, and many useful properties of robot dynamics such as the skew-
symmetry property were discovered. There are basically two strategies to control such 
uncertain nonlinear systems: the robust control strategy and the adaptive control strategy. A 
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convenient point of robust control strategy is that it can attenuate disadvantageous effects of 
various uncertainties (e.g., structured parametric uncertainties and unstructured 
disturbances) to a required level, provided that the upper bound of uncertainties is well 
known (Abdallah et al. 1991). However, since this strategy use max-min method to design 
the controller, it can not yield good transient performance.  On the other hand, regressor 
matrixes are always used in the design of adaptive control systems for robot manipulators 
(Ortega & Spong 1989). In this situation, the unknown nonlinear dynamics of robotic 
systems are always assumed to be linearly parametrisable. However, there are some 
potential difficulties associated with this classical adaptive control design. For example, the 
unknown parameters may be quickly varying, the linear parametrisable property may not 
hold, computation of the regressor matrix is a time-consuming task, and implementation 
also requires a precise knowledge of the structure of the entire robot dynamic model (Saad 
et al. 1994; Sanner & Slotine 1998; Spooner & Passino 1996). 
It has been shown that multi-layer neural networks can approximate any continuous 
function as accurately as possible. Based on this universal approximation property, many 
important adaptive neural-network-based control schemes have been developed to solve 
highly nonlinear control problem (Sanner & Slotine 1998; Spooner & Passino 1996; Narenra 
& Parthasarathy 1990; Polycarpou 1996). But most of these schemes use grads-descent 
method to train the weights, which can not ensure the stability of whole closed-loop system. 
In the recent years, researchers began to develop the neural-network-based controller with 
closed-loop stability based on the Lyapunov method. A controller based on forward 
propagation network was developed in (Carelli et al. 1995), but it didn’t consider the effects 
of uncertainties. An adaptive neural network control strategy with guaranteed stability was 
proposed in (Behera et al. 1996) on the assumption that the approximation error of the 
neural network is known and bounded.  
In the first part of this chapter, we will propose a neural-network-based robust robotic 
tracking controller according to HJI inequation theorem presented by Shen in (Shen 1996). A 
neural network equipped with a robust learning algorithm is introduced firstly to learn the 
modeling uncertainties in robotic system. Then the disadvantageous effects on tracking 
performance caused by neural network approximating error and non-measurable external 
disturbances in robotic system will be attenuated to a prescribed level by the designing a 
robust controller.  
This section is organized as follows. In subsection 2.1, HJI inequation theorem is introduced. 
In subsection 2.2 the dynamics of robot system and its properties are described. The neural 
network based robust control strategy is proposed in subsection 2.3, where the structure of 
robust controller and the robust learning algorithm of neural network are derived. 
Simulations for a two-link robot are presented in subsection 2.4. 

 
2.1 HJI inequation theorem 
A system with non-measurable disturbance d can be formulated as: 
 

g(x)df(x)x +=&                                                                         (1) 

 
For evaluating the disturbance restraint performance of system (1), an evaluation signal 

h(x)z =  is introduced to represent the signals need to be concerned, such as error. And a 
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performance index signal can be defined as: 
 

2

2

02d d

z
supJ

≠
=                                                                       (2) 

 
Obviously, smaller J means better disturbance restraint performance. The robust design 
problem of system (1) can be solved by designing a controller to make J less than a 
prescribed level. 

HJI(Hamilton-Jacobi-Isaacs)InequationTheorem: Given an positive constant 0>γ , if there 

exists an derivable function, V(x)≥0, which satisfies the following HJI inequation: 
 

{ } d,zd
2

1
g(x)d

x

V
)x(f

x

V
x

x

V
V

222 ∀−≤
∂
∂

+
∂
∂

=
∂
∂

= γ&&                                  (3) 

 
then the performance index signal of system (1) is less than γ , that is to say, γ≤J . 

 
2.2 Problem statement 
The kinetics equation of a robotic manipulator with uncertainties can be expressed as: 
 

Td)qT(q,G(q)q)qV(q,qM(q) R =+Δ+++ &&&&&                                         (4) 

 

where nRq,qq, ∈&&& is the joint position, velocity, and acceleration vectors; nnRM(q) ×∈  

denotes the moment of inertia; q)qV(q, && are the Coriolis and centripetal forces; G(q) includes 

the gravitational forces; T is the applied torque; )qΔT(q, &  represents the modelling 

uncertainties in robotic system, and Rd  is external non-measurable disturbance.  

It is well known that the robot dynamics has the following properties. 

Property 1— Boundedness of the Inertia matrix: The inertia matrix M(q) is symmetric and 

positive definite, and satisfies the following inequalities: 
 

ΙλM(q)Ιλ0 Mm ≤≤<                                                          (5) 

 

where mλ and Mλ are known positive constants. 

Property 2—Skew symmetry: The inertia and centripetal-Coriolis matrices have the 
following property: 
 

0)}ξq2V(q,(q)M{ξT =− && , nRξ∈∀                                               (6) 

 
Property 1 is very important in generating a positive definite function to prove the stability 
of the closed-loop system. Property 2 will help in simplifying the controller.  
The aim of this paper is to design a neural-network-based robust controller (NNBRC) for the 
robot system under uncertainties, such that closed-loop system is guaranteed to be stable 
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and the joint position q(t)  can track the desired trajectory (t)qd rapidly and accurately. 

 
2.3 Design of NNBRC 
A NNBRC is proposed in this section. In the proposed strategy, a neural network (NN) is 

firstly used for identifing modelling uncertainties )qΔT(q, & , then, a robust learning algorithm 

and a robust controller are designed based on HJI equation theorem to counteract the 
disadvantageous effects caused by approximation error of the NN and external disturbance 

Rd . 

 
2.3.1 Construction of the neural network 

A three-layer NN is shown in Fig.1.Using 
(1)
i

(1)
i o,u  to denote the input and output of the ith 

node in the lth layer separately, the signal propagation and the operation functions of the 
nodes in each layer are introduced as follows. 
 

1
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Fig. 1. Structure of three-layer NN 

 
Layer 1— Input Layer:  
 

i
(1)
i

(1)
i xuo == , m,1,2,i L=                                                       (7) 

 
Layer 2— Hidden Layer: 
 

∑=
=

m

1i

(1)
i

(2)
j ou , k,1,2,j L=                                                       (8) 

 

])uexp([11σo
(2)
jj

(2)
j −+== , k,1,2,j L=                                         (9) 
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Layer 3— Output Layer: 
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then the outputs of the three-layer NN can be written as: 
 

σWY =                                                                (11) 

 
In this paper, the three-layer NN described above will be used to identify the modeling 

uncertainties )qΔT(q, &  in robotic system. Using Tε to denote the network approximation 

error, then the modeling uncertainties can be denoted by: 
 

)qT(q,W)q(q,ΔT  TTT && Δ+= εσ                                            (12) 

 

where TW is the weight matrix, Tσ is the activation function vector. 

Substitute (12) into (4), then the dynamics of the robot manipulator with a NN identifier can 
be formulated as: 
 

TdWG(q)q)qV(q,qM(q) RTTT =+++++ εσ&&&&                              (13) 

 

Regarding Tε  as another external disturbance of robotic system, and using RTR d+= εε , 

then (13) can be rewritten as: 
 

TWG(q)q)qV(q,qM(q) RTT =++++ εσ&&&&                                 (14) 

 

For attenuating disadvantageous effects caused by Rε  to a prescribed level, a robust 

learning algorithm of NN and a robust controller can be designed based on HJI equation as 
below 2.3.2. 

 
2.3.2 Robust controller and NN learning algorithm 
At first, we introduce a control signal u, which satisfies:  
 

TuG(q)q)qV(q,qM(q) dd =+++ &&&&                                       (15) 

 

where n
ddd Rq,q,q ∈&&&  is desired joint position, velocity, and acceleration vectors separately. 
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Thus, the closed-loop robot control system can be constructed by substituting (15) into (14). 

Let dqqe −= , the closed-loop system can be formulated as: 

 

uWe)qV(q,eM(q) RTT =+++ εσ&&&&                                          (16) 

 

By regarding Rε  as external disturbance and introducing the evaluation signal pezR = , 

where p is a positive constant, we can define the index signal as: 
 

2

2

0
2

supJ
R

R

R

R

z

εε ≠
=                                                          (17) 

 

The idea of NNBRC is to design controller u and the NN learning algorithm TW&  such that 

RJ is less than a prescribed level, γ . 

Define two state variables as:  
 

⎩
⎨
⎧

+=
=

eex

        ex

2

1

α&
                                                           (18) 

 
where α  is an prescribed positive constant. Thus, system (16) can be rewritten as: 
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where eVeMω αα += & , TW  is a kn× matrix that can be described as: 
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Theorem 1: Considering system (19), if the learning algorithm of NN is: 
 

TT WW η−=&                                                          (20) 

 
The controller u is designed as: 
 

222TT1 x
2Y

1
Wxu ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+−+−−= εσω                                     (21) 

 

and the parameter p in the evaluation signal , 1R pxpez == , satisfies: 
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1
2p

2

1
- εα =                                                               (22) 

 

where 21 ,εε  and η  are all prescribed positive constant, then the disturbance restraint index 

signal of system (19), RJ , is less than γ . 

Proof: Considering system (19), we define the following derivable function: 
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According to Property 2 of the robot dynamics, the above equation can be rewritten as: 
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Substituting (20) into above equation, then 
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Regarding Rε as external disturbance, let  

 

2
1

22
R

22
T

R
T
2TT1

T
2

2
1

2
R

2
R

2

xp
2

1

2

1
W  

x)uWx(xx

z
2

1

2

1
LH

+−−

−+−++−=

+−=

εγη

εσωα

εγ&

 

( )uWxxxp
2

1
- TT1

T
2

2
1

2 +−++⎟
⎠
⎞

⎜
⎝
⎛−= σωα  

2
R

22
TR

T
2

2

1
Wx  εγηε −−−  

www.intechopen.com



Adaptive Control 

 

188 

{ }

( )

2
T22TT1

T
2

2
1

2

2
22

2
TTT1

T
2

2
1

2

2
22

2
R

2
R

T
2

2
22

2
22

2

R2

2
22

2

R2

2
22

2
R

2
R

T
2

2
22

2
R

2
R

T
2

2
R

2
R

T
2

Wx
2

1
uWxxxp

2

1
-

x
2

1
WuWxxxp

2

1
-H

x
2

1

2

1
x

x
1

   

x
1

x
1

   

x
1

x
1

   

x
1

2xx
1

    

2x2x

η
γ

σωα

γ
ησωα

γ
εγε

γ

γ
γε

γ

γ
γε

γ

γ
εγε

γ

εγεεγε

−⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
++−++⎟

⎠
⎞

⎜
⎝
⎛−=

+−+−++⎟
⎠
⎞

⎜
⎝
⎛−≤

≤−−∴

≤

++−=

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

−+−=

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

−++−=

+−=−−Q

        

 

Substituting (21), (22) into above inequation, then  
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According to HJI equation theorem, we can conclude that the disturbance restraint 

performance index signal of system (19), RJ , is less than γ . The structure of the proposed 

neural network based robust control strategy is illustrated in Fig. 2. 
 

  
Fig. 2. Structure of the NN-based robust tracking control system 
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2.4 Simulation example 
In this section, the proposed control strategy will be applied to control the trajectory of a 
two-link robot (see Fig. 3) for proving its effectiveness. 
 

1t

2t 1m

2m

1l

2l

1θ

2θ

 
Fig. 3. Two-link robot 

 
In Fig.3, m1and m2 are masses of arm1 and arm2 respectively; l1 and l2 are lengths of arm1 

and arm2; t1 and t2 are torques on arm1 and arm2; 1θ and 2θ  are positions of arm1 and 

arm2.  The dynamics model of two-link robot is same as (4). 
Let  

 

[ ]T21 θ    θq = , [ ]T21 θ    θq &&& =                                            (24) 

 

[ ]T21 θ    θq &&&&&& = , [ ]T21 t    tT =                                             (25) 

 

ii cosθc ≡ , ii sinθs ≡ , )θcos(θc jiij +≡                                  (26) 

 

then M, V,G in (4) can de described as: 
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In this paper, the parameters of the two-link robot are 10m1 = kg, 2m 2 = kg, 1.1l1 = m, 

and 0.8l 2 = m. The Initial states are 0.5]0.5[q(0) = rad, T0]   [0(0)q =& rad/s, and 

T0]0[(0)q =&& rad/s2. The desired trajectories can be described as: 

 

[ ]Td t)cos(2  t)sin(2)t(q ππ= rad                                                 (30) 

 

        [ ]Td t)sin(22-    t)cos(22)t(q ππππ=&  rad/s                                      (31) 

 

     [ ]T22
d t)cos(24-    t)sin(24-)t(q ππππ=&& rad/s2                                (32) 

 
The model error due to friction is assumed as: 
 

⎥
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−+
−+

=
)]eexp()[0.2e(sign 

)]eexp()[0.1e(0.5sign 
ΔT

22

11

&&

&&
 N·m                                    (33) 

 

The external disturbance, [ ]T21R d  dd =  is a random signal which amplitude is less than 

10N·m.  In simulations, the NNBRC can be designed based on (21), in which 50=α , 

0.11 =ε , 0.12 =ε , 0.05=γ , 9p = . The NN learning algorithm is designed according to (20), 

where 0.1=η . 

Fig.4 and Fig.5 present the simulation experiment results, in which, proposed control 

strategy is compared to traditional robust control (TRC) strategy. From these results, we can 

conclude that the NN-based robust tracking control strategy proposed in this paper can 

counteract disadvantageous effects caused by uncertainties in robotic system efficiently, and 

can achieve better transient performance than traditional robust control.  

 

 
Fig. 4. Robot trajectories 
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Fig. 5. Robot tracking errors 

 
3. A Recurrent Fuzzy Neural Network Based Adaptive Control 
 

Recently, much research has been done on using neural networks (NN) to identify and 
control dynamic systems (Park et al. 1996; Narendra & Parthasarathy 1990; Brdys & 
Kulawski 1999). NN can be classified as feed forward neural networks and recurrent neural 
networks. Feed forward neural networks can approximate a continuous function to an 
arbitrary degree of accuracy. However, feed forward neural network is a static mapping; it 
can not represent a dynamic mapping. Although this problem can be solved by using 
tapped delays, feed forward neural network requires a large number of neurons to represent 
dynamical responses in the time domain. Moreover, since the weight updates of feed 
forward neural network is irrelative to the internal information of neural network, the 
function approximation is sensitive to the training data. On the other hand, recurrent neural 
networks (Ku & Lee 1995; Ma & Ji 1998; Sundareshan & Condarcure 1998; Liang & Wang 
2000) are able to represent dynamic mapping very well and store the internal information 
for updating weights later. Recurrent neural network has an internal feedback loop; it 
captures the dynamical response of a system without external feedback through delays. 
Recurrent neural network is a dynamic mapping and demonstrates good performance in the 
presence of uncertainties, such as parameter variations, external disturbance, unmodeled 
and nonlinear dynamics. However, the drawbacks of recurrent neural network, which are 
same as neural network, are that the function of the network is difficult to interpret and few 
efficient constructive methods can be found for choosing network structure and determining 
the parameters of neurons. 
As is widely known, both fuzzy logic systems and neural network systems are aimed at 
exploiting human-like knowledge processing capability. In recent years, researchers started 
to recognize that fuzzy control has some similarities to neural network (Jang & Sun 1993; 
Hunt et al. 1996; Buckley et al. 1993; Reyneri 1999). Fuzzy neural network (FNN), which uses 
NN to realize fuzzy inference, combines the capability of fuzzy reasoning in handling 
uncertain information and the capability of neural networks in learning from processes. It is 
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possible to train NN using the experience of human operators expressed in term of linguistic 
rules, and interpret the knowledge that NN acquired from training data in linguistic form. 
And it is very easy to choose the structure of NN and determine the parameters of neurons 
from linguistic rules. However, a major drawback of the FNN is that its application domain 
is limited to static problems due to its feed forward network structure.  
Recurrent fuzzy neural network (RFNN) is a modified version of FNN, which use recurrent 
network for realizing fuzzy inference and can be constructed from a set of fuzzy rules. It 
inherits all characteristics of FNN such as fuzzy inference, universal approximation and 
convergence properties. Moreover, with its own internal feedback connections, RFNN can 
temporarily store dynamic information and cope with temporal problems efficiently. For 
this ability to temporarily store information, the structure of RFNN is much simpler than 
FNN. Fewer nodes are required in RFNN for system identification. 
In this section, a recurrent fuzzy neural network structure is proposed, in which, the 
temporal relations are embedded by adding feedback connections on the first layer of FNN. 
Back propagation algorithm is used to train the proposed RFNN. To guarantee the 
convergence of the RFNN, the Lyapunov stability approach is applied to select appropriate 
learning rates. For control problem, an adaptive control scheme is proposed, in which, two 
proposed RFNN are used to identify and control plant respectively. Finally, simulation 
experiments are made by applying proposed adaptive control scheme on robotic tracking 
control problem to confirm its effectiveness. 
This section is organized as follows. In subsection 3.2, RFNN is constructed. The 
construction of RFNNBAC is presented in subsection 3.3. Learning algorithms of RFNN are 
derived in subsection 3.4. Stability of RFNN is analyzed in subsection 3.5. In subsection 3.6 
proposed RFNNBAC is applied on robotic tracking control and simulation results are given. 
Finally, some conclusions are drawn in subsection 3.7. 

 
3.1 Construction of RFNN 
The structure of the proposed RFNN is shown in Fig. 6, which comprises n input variables, 
m term nodes for each input variable, l rule nodes, and p output nodes. This RFNN thus 
consists of four layers and n + ( n × m ) + l + p nodes.  

Using k
iu , k

iO  to denote the input and output of the ith node in the kth layer separately, the 

signal propagation and the operation functions of the nodes in each layer are introduced as 
follows. 
Layer 1 (Input Layer): This layer accepts input variables. Its nodes transmit input values to 
the next layer. Feedback connections are added in this layer to embed temporal relations in 
the network. For every node in this layer, the input and output are represented as: 
 

( ) ( ) ( ) ( ) ( ) n,1,2,i ,kukO,1-kOwkxku 1
i

1
i

1
i

1
i

1
i

1
i L==+=                        (34) 

 

where k is the number of iterations; 1
iw is the recurrent weights.  

Layer 2 (Membership Layer): Nodes in this layer represent the terms of respective linguistic 
variables.  Each node performs a Gaussian membership function  
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)exp(uO,
)(b

)a-(O
u 2

ij
2
ij2

ij

2
ij

1
i2

ij =−=                                          (35) 

 

where n,1,2,i L= , m,1,2,j L= ; ija and ijb  are the mean and the standard deviation of the 

Gaussian membership function; the subscript ij indicates the jth term of the ith input 
variable. 
 

 
Fig. 6. Structure of four-layer RFNN 

 
Layer 3(Rule Layer): This layer forms the fuzzy rule base and realizes the fuzzy inference. 
Each node is corresponding to a fuzzy rule. Links before each node represent the 
preconditions of the corresponding rule, and the node output represents the “firing 
strength” of corresponding rule. 
If the qth fuzzy rule can be described as: 
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qth rule: if 1x  is 
q 
1A , 2x  is 

q 
2A , … , nx  is q 

nA  then 1y  is 
q 

1B , 2y  is 
q 
2B , … , py  is q 

pB ,  

where 
q 
iA is the term of the ith input in the qth rule; 

q 
jB is the term of the jth output in the 

qth rule. 
Then, the qth node of layer 3 performs the AND operation in qth rule. It multiplies the input 
signals and output the product.  

Using 2
iiqO to denote the membership of ix  to 

q 
iA , where { }m,1,2,q i L∈ , then the input 

and output of qth node can be described as: 
 

∏=
i

2
iiq

3
q Ou , l,1,2,qn;,1,2,i,uO 3

q
3
q LL ===                             (36) 

 
Layer 4(Output Layer): Nodes in this layer performs the defuzzification operation. the input 
and output of sth node can be calculated by: 
 

∑=
q

3
q

4
sq

4
s Owu ,  

∑
=

q

3
q

4
s4

s
O

u
O                                             (37) 

 

where p,1,2,s L= , l,1,2,q L= , 4
sqw is the center of 

q 
jB , which represents the output 

action strength of the sth output associated with the qth rule. 
From the above description, it is clear that the proposed RFNN is a fuzzy logic system with 
memory elements in first layer. The RFNN features dynamic mapping with feedback and 
more tuning parameters than the FNN. In the above formulas, if the weights in the feedback 

unit 1
iw are all equal to zero, then the RFNN reduces to an FNN. Since a fuzzy system has 

clear physical meaning, it is very easy to choose the number of nodes in each layer of RFNN 

and determine the initial value of weights. Note that the parameters 1
iw  of the feedback 

units are not set from human knowledge. According to the requirements of the system, they 
will be given proper values representing the memorized information. Usually the initial 
values of them are set to zero. 

 
3.2 Structure of RFNNBAC 
In this section, the structure of RFNNBAC will be developed below, in which, two proposed 
RFNN are used to identify and control plant respectively. 

 
3.2.1 Identification based on RFNN 
Resume that a system to be identified can be modeled by an equation of the following form: 

 

( ) ( ) ( ) ( ) ( )( )uy nku,,ku,nky,1kyfky −−−= LL                               (38) 

 

www.intechopen.com



Adaptive Control Based On Neural Network 

 

195 

where u is the input of the system, yn is the delay of the output, and un is the delay of the 

input. 
Feed forward neural network can be applied to identify above system by using y(k-1),… 
,y(k-n-1), u(k), … , u(k-m) as inputs and approximating the function f. 
For RFNN, the overall representation of inputs x and the output y can be formulated as  
 

(k))O,(k),g(Oy(k) 1
n

1
1 L=                                               (39) 

 
Where 
 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )[ ]

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )0x1w1kwkw  

2kx1kwkw1kxkwkx           

           

2kO1kw1kxkwkx           

1kOkwkxkO

i
1
i

1
i

1
i

i
1
i

1
ii

1
ii

1
i

1
ii

1
ii

1
i

1
ii

1
i

L

L

M

−+

+−−+−+=

−−+−+=

−+=

 

 
Using the current input u(k) and the most recent output y(k-1) of the system as the inputs of 
RFNN, (39) can be modified as: 
 

( ) ( ) ( ) ( ) ( )( )0u,,ku,0y,,1kyf̂kŷ LL−=                                    (40) 

 
By training the RFNN according to the error e(k) between the actual system output and the 
RFNN output, the RFNN will estimate the output trajectories of the nonlinear system (38). 
The training model is shown in Fig.7. 
 

 
Fig. 7. Identification of dynamic system using RFNN 
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From above description, For Using RFNN to identify nonlinear system, only y(k-1) and u(k) 
need to be fed into the network .This simplifies the network structure, i. e., reduces the 
number of neurons 

 
3.2.2 RFNNBAC 
The block diagram of RFNNBAC is shown in Fig. 8. In this scheme, two RFNNs are used as 
controller (RFNNC) and identifier (RFNNI) separately. The plant is identified by RFNNI, 
which provides the information about the plant to RFNNC. The inputs of RFNNC are e(k) 

and (k)e& . e(k)  is the error between the desired output r(t) and the actual system output 

y(k). The output of RFNNC is the control signal u(k), which drives the plant such that e(k) is 
minimized. In the proposed system, both RFNNC and RFNNI have same structure. 
 

 
Fig. 8. Control system based on RFNNs 

 
3.3 Learning Algorithm of RFNN 
For parameter learning, we will develop a recursive learning algorithm based on the back 
propagation method 

 
3.3.1 Learning algorithm for identifier 
For training the RFNNI in Fig.8, the cost function is defined as follows: 
 

( ) ( )( ) ( ) ( )( )∑ ∑ −==
= =

p

1s

p

1s

2
s Is

2
s II kykyke

2

1
kJ                                  (41) 

 

where (k)ys  is the sth output of the plant, ( ) 4
ss I Oky = is the sth output of RFNNI, and 

( )ke s I  is the error between (k)ys  and ( )ky s I  for each discrete time k.  

By using the back propagation (BP) algorithm, the weights of the RFNNI is adjusted such 
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that the cost function defined in (41) is minimized. The BP algorithm may be written briefly 
as: 
 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

∂
∂

+=

+=+

(k)W

(k)J 
-(k)W

(k)ΔW(k)W1)(kW

I

I
II

III

η
                                             (42) 

 

where Iη  represents the learning rate and IW  represents the tuning weights, in this case, 

which are 4
sq Iw , 

iiq Ia , iqi Ib , and 1
i Iw . Subscript I represents RFNNI.  

According to the RFNNI structure (34)~(37), cost function (41) and BP algorithm (42), the 
update rules of RFNNI weights are 
 

( ) ( ) ( )
( )kw

kJ 
kw1kw

4
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Iw4
I

4
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4
sq I

∂

∂
−=+ η                                       (43) 
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∂
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Where 
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3.3.2 Learning algorithm for controller 
For training RFNNC in Fig. 8, the cost function is defined as  
 

( ) ( )( ) ( ) ( )( )∑ ∑ −==
= =

p

1s

p

1s

2
ss

2
sC kykrke

2

1
kJ                                   (47) 

 

where )k(rs  is the sth desired output, )k(ys is the sth actual system output and )k(es  is 

the error between )k(rs  and )k(ys . 

Then, the gradient of CJ  is 
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where ou  is the oth control signal, which is also the oth output of RFNNC, and 

( ) ( ) ( )kukykyu osso ∂∂=  denotes the system sensitivity. Thus the parameters of the RFNNC 

can be adjusted by 
 

 
)

(k)W

(k)J 
((k)W

(k)ΔW(k)W1)(kW

C

C
CC

CCC

∂
∂

−+=

+=+

η
                                          (49) 

 

Note that the convergence of the RFNNC cannot be guaranteed until ( )kyu so is known. 

Obviously, the RFNNI can provide ( )kyuso  to RFNNC. Resume that the oth control signal 

is also the oth input of RFNNI, then ( )kyuso  can be calculated by  
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                             (50) 

 
3.4 Stability analysis of the RFNN 
Choosing an appropriate learning rate η  is very important for the stability of RFNN. If the 

value of the learning rate η  is small, convergence of the RFNN can be guaranteed, however, 

www.intechopen.com



Adaptive Control Based On Neural Network 

 

199 

the convergence speed may be very slow. On the other hand, choosing a large value for the 
learning rate can fasten the convergence speed, but the system may become unstable. 

 
3.4.1 Stability analysis for identifier 

For choosing the appropriate learning rate for RFNNI, discrete Lyapunov function is 
defined as 
 

( ) ( ) ( )( )∑==
s

2
s III ke

2

1
kJkL                                        (51) 

 
Thus the change of the Lyapunov function due to the training process is  
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The error difference due to the learning can be represented by 
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So (52) can be modified as 
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To guarantee the convergence of RFNNI, the change of Lyapunov function ( )kΔL I  should 

be negative. So learning rate must satisfy the following condition:  
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For the learning rate of each weight in RFNNI, the condition (22) can be modified as 
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3.4.2 Stability analysis for controller 
Similar to (51), the Lyapunov function for RFNNC can be defined as 
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So, similar to (56)-(59), the learning rates for training RFNNC should be chosen according to 
the following rules: 
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3.5 Simulation Experiments 
Dynamics of robotic manipulators are highly nonlinear and may contain uncertain elements 
such as friction and load. Many efforts have been made in developing control schemes to 
achieve the precise tracking control of robot manipulators. Among available options, neural 
networks and fuzzy systems (Er & Chin 2000; Llama et al. 2000; Wang & Lin 2000; Huang & 
Lian 1997) are used more and more frequently in recent years. In the simulation experiments 
of this chapter, the proposed RFNNBAC is applied to control the trajectory of the two-link 
robotic manipulator described in chapter 2.4 to prove its effectiveness. 

In the simulation, the parameters of manipulator are 1m =4 kg, 2m =2 kg, 1l =1 m, 2l =0.5 

m, g =9.8 N/kg. Initial conditions are given as ( )0θ1 =0 rad, ( )0θ2 =1 rad, ( )0θ1
& =0, 

and ( )0θ2
& =0 rad/s. The desired trajectory is given by ( )tθ̂1 = ( )t2sin π  and ( )tθ̂2 = ( )t2cos π . 

The friction and disturbance terms in (4) are assumed to be 
 

 ⎥
⎦

⎤
⎢
⎣

⎡
=

5cos(5t)

5cos(5t)
dR Nm, )q0.5sign()qΔT(q, && = Nm. 
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Simulation results are shown in Fig.9 ~Fig.14. Fig.9 and Fig.10 illustrate the trajectories of 
two joints; the two outputs of identifier (RFNNI) are shown in Fig.11 and Fig.12 separately; 
the cost function for RFNNC is shown in Fig.13; and Fig.14 shows the cost function for 
RFNNI.  
From simulation results, it is obvious that the proposed RFNN can identify and control the 
robot manipulator very well. 
 

 
                Fig. 9. Trajectory of joint1                                     Fig. 10. Trajectory of joint2 

 

 
         Fig. 11. Identifier (RFNNI) output1                Fig. 12. Identifier (RFNNC) output2 

 

 
             Fig. 13. Cost function for RFNNC                         Fig. 14. Cost function for RFNNI 
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4. Conclusion 
 

In this paper, the adaptive control based on neural network is studied. Firstly, a neural 
network based adaptive robust tracking control design is proposed for robotic systems 
under the existence of uncertainties. In this proposed control strategy, the NN is used to 
identify the modeling uncertainties, and then the disadvantageous effects caused by neural 
network approximating error and external disturbances in robotic system are counteracted 
by robust controller. Especially the proposed control strategy is designed based on HJI 
inequation theorem to overcome the approximation error of the neural network bounded 
issue. Simulation results show that proposed control strategy is effective and has better 
performance than traditional robust control strategy. Secondly, an RFNN for realizing fuzzy 
inference using the dynamic fuzzy rules is proposed. The proposed RFNN consists of four 
layers and the feedback connections are added in first layer. The proposed RFNN can be 
used for the identification and control of dynamic system. For identification, RFNN only 
needs the current inputs and most recent outputs of system as its inputs. For control, two 
RFNNs are used to constitute an adaptive control system, one is used as identifier (RFNNI) 
and another is used as controller (RFNNC). Also to prove the proposed RFNN and control 
strategy robust, it is used to control the robot manipulator and simulation results verified 
their effectiveness. 
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