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Abstract

In many cancer cells, p53 gene is mutated and accumulated, which is considered as a 
mechanistical target of tumorigenesis. The role of p53 in non-cancerous cells has been 
focused on, since p53 activation diversely affects as human diseases, including vascular 
dysfunctions. p53 regulates vascular events, including vascular inflammation and senes-
cence as well as cardiac dysfunction. Many researchers also have paid attention to the 
role of noncoding RNAs (ncRNAs), especially small-sized microRNAs (miRNAs) for the 
last decade and their noble biological cellular functions have been discovered. miRNAs 
expressed in endothelial cells (endothelial miRNAs) have been shown to control vascular 
events. Firstly, the importance of p53 in a variety of vascular events, such as vascular 
inflammation and senescence, are summarized. Secondly, the way to regulate miRNAs 
by p53 and the involvement of miRNAs on p53 function are demonstrated. Finally, sev-
eral endothelial miRNAs that have important roles are focused on. The aim of this chap-
ter is to understand the role of p53 in vascular diseases in the view of endothelial cell 
biology and the contribution of miRNAs related to p53.
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1. Introduction

1.1. p53 overview

p53 is one of well-known tumor suppressor protein and plays crucial roles in inhibiting tumor 

progression [1]. Tumor suppression by p53 might be carried out mostly through genotoxic 

stress, however, recent studies revealed that p53 is activated by oncogene activation, oxidized 
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lipoproteins, and hypoxic condition [2]. In general, p53 is rapidly degraded by the interaction 

with MDM2 and these stimuli increase p53 levels and activate antiproliferative or proapop-

totic responses via downstream signaling molecules [3]. The structure of p53 consists of amino 

terminal transactivation domain linked to the DNA-binding domain by proline-rich region 

(Figure 1) [4]. The DNA-binding domain on the other end is bound to the tetramerization 

domain by another proline-rich residue and this tetramerization domain is linked to carboxyl 

terminus [5]. The core domain (residue 94–312) is naturally unstable and is prone to have 

mutation [6, 7]. Once bound to the DNA, the whole structure closes around the DNA double 

helix. The whole process is facilitated by flexible proline-rich region between the core and the 
tetramerization domain [5]. Although the expression of p53 is in lower level during normal 

condition, upon activation, p53 increases its level along with the increase of its half-life [8] and 

gets translocated to the nucleus [9]. p53 is activated mainly by any signals that could damage 

the DNA [10]. Further p53 undergoes phosphorylation, acetylation, methylation, ubiquitina-

tion or SUMOylation to exert its respective activity [11]. p53 interacts with p300/CBP to get 

acetylated which stimulates the binding of p53 to the DNA, however, p53 requires only p300 

but not CBP for the well-known G1 arrest [12]. Two members of p53 family, p73 and p63, are 

also involved in this p53 world [13], which are not mentioned in this chapter. Regulation and 

function of p53 in cancer really become complex.

1.2. p53 and endothelial cells

In the complex network of cellular signaling, p53 is a transcription factor that plays an 

important role in controlling angiogenesis and it is a hub for cellular signaling [14]. p53 itself 

controls angiogenesis by taking cells under apoptosis or by downregulating mediators of 

angiogenesis [15]. The role of p53 in vasculature is the same as the other tissues, including cell 

cycle, apoptosis, senescence, and angiogenesis.

Mice genetically deleted p53 can develop normally, however, these p53 knockout mice had 

spontaneous tumors [16]. Conditional knockout of p53 in endothelial cells improves angio-

genesis of hindlimb ischemia mice model [17]. When mice were fed diet with high calorie, 

p53 expression increased in endothelial cells [18]. High calorie diet impaired the activation of 

endothelial nitric oxide synthase (eNOS), which was restored in endothelial p53 disruption. 
Knockdown of p53 in endothelial cells increased the expression of eNOS and thrombomodu-

lin in vitro [19]. Therefore, accumulating evidence suggested that p53 is one of the key tran-

scriptional factors to regulate endothelial cell function.

Figure 1. Linear structure of p53. p53 consists of 393 amino acid sequence. The protein is divided into the following 

domains. The transcriptional activation domain 1/2 (TAD1/2), DNA-binding domain, and the tetramerization domains 

(Tet) are lysine-rich basic C-terminal domain (CTD). PRR, proline-rich region; L, the linker region; Tet, tetramerization 

domains.
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2. p53 and vascular function

Normal cells including endothelial cells keep p53 levels quite low. Low grade upregulation 

of p53 is not apoptotic but it is engaged in other functions like inhibition of endothelial cell 

migration through downregulation of beta-3 integrin [20] and inhibition of cell survival by 

causing reversible cell cycle arrest [21]. The modulation of p53 varies vascular function, such 

as vascular inflammation, senescence, and remodeling.

2.1. Vascular inflammation

Vascular inflammation leads to form atherosclerotic lesions, in which many cells are orchestrat-
ing [22]. Role of p53 in atherosclerosis has been investigated by many researchers. Guevara et al. 

performed the experiments using double knockout mice with apolipoprotein E (apoE) and p53. 

This apoE−/−, p53−/− double knockout mice fed with high fat diet showed significant increase of 
bulky, hypercellular lesion in aorta, suggesting that p53 is involved in atherosclerotic change 

[23]. van Vlijmen et al. demonstrated that the role of p53 in subendothelial macrophages is one of 

the major components of atherosclerosis [24]. This study indicated that deficiency of p53 in mac-

rophage increased atherosclerotic lesions. Oxidative stress induces p53 accumulation in human 

macrophage, which is prevented by nitric oxide (NO) [25]. NO blocked the secretion of von 

Willebrand factor in endothelial cells and inhibited vascular inflammation [26]. The molecular 

mechanism by which p53 regulates atherosclerosis has been aggressively investigated.

2.2. Senescence

Aging is an independent risk factor for atherosclerosis-related diseases and impairment of 

vascular function is involved in systematic senescence. The molecular difference between 
senescence and cell death is not an easy question. Disturbed blood flow (d-flow) causes ath-

erosclerosis. Heo KS et al. identified protein kinase zeta (PKC zeta) as a d-flow-activated 
protein in endothelial cells [27]. d-Flow promotes endothelial cells apoptosis through p53 

SUMOylation. Apoptosis in aortic endothelial cells by d-flow decreased in p53−/− mice com-

pared to wild type mice. Endothelial cells constitutively express Nox2 and Nox4, two impor-

tant isoforms of catalytic subunit of NADPH, which are a major source of reactive oxygen 

species. Nox2 especially affects endothelial cell cycle arrest and cell death by modulating 
p53 and p21cip1 [28]. In turn, cellular senescence is a stress-induced phenomenon as well. 

Senescent cells delay or lose the ability to proliferate. In endothelial cells, hydrogen perox-

ide or frequent passage induces cellular senescence via p53 and NAD-dependent deacetylase 

sirtuin-1 (SIRT1) [29]. The expression of endothelial SIRT-1 is reduced during aging process 
[30, 31]. Reduced SIRT-1 in endothelial cells accumulates genomic instability, resulting in p53 
activation and promoting more senescence [32, 33]. AMPK and mTOR signaling is thought to 

be important for endothelial aging [34, 35]. These molecules are also connected to p53 signals, 

suggesting p53 as a key regulator of senescence of endothelial cells.

2.3. Vascular and heart remodeling

Vascular remodeling is a process of structural change of vascular walls, involving changes 

of cellular function, including growth and death. In this process, p53 is an important player. 
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Chronic hypoxia promotes pulmonary vascular remodeling, causing pulmonary hyperten-

sion. Mizuno S et al. demonstrated that p53 suppress hypoxia-induced pulmonary arterial 
remodeling and pulmonary arterial smooth muscle cell proliferation [36]. Kruppel-like factor 4 

(KLF4) controls vascular smooth muscle cell proliferation through p53 induction [37]. Cardiac 

remodeling and development occur during embryogenesis but stop in postnatal life due to the 

reduction of the genes responsible for cell cycle progression and growth factors [38, 39]. For 

remodeling, new cardiomyocytes are derived for pre-existing cardiomyocytes. The rate of the 

pre-existing cells differentiation is very low (less than 1% per year) and it decreases with age 
[40] and lesser then 50% of the cells are replaced during a lifespan [41]. One important molecule 

for cardiomyocyte division is survivin [42]. Downregulation of survivin contributes to cardiac 

development in spinal muscular atrophy mice model [43]. Survivin is negatively regulated 
by p53. Survivin expression was downregulated at mRNA and protein level by p53 through 
histone acetylation. While overexpression of survivin inhibited p53-induced apoptosis [44]. 

One of MAPK, p38, has been shown to be an important molecule that negatively regulates cell 

cycle in cardiomyocyte cell [45]. Treatment with FGF1 and p38 inhibitor enhanced heart regen-

eration by increasing cardiomyocyte proliferation and angiogenesis [46]. Repression of cyclin 

D1 result into downregulation of cardiac cell proliferation [47] and C reactive protein, besides 

downregulating cyclin D1 has been shown to accumulate and phosphorylate p53 which leads 

to cell cycle arrest [48]. Since p53 controls actin cytoskeleton through mechanoresponsive mol-
ecules, remodeling may be processing via p53 in mechanical environment-dependent manner.

3. p53 and miRNA in endothelial cells

3.1. miRNA overview: general information

MicroRNAs (miRNAs) are small noncoding RNAs (about 20–24 nucleotides in length) that 

controls gene expressions mainly by binding to 3′ untranslated region (3′ UTR) of their mes-

senger RNAs (mRNAs). The biogenesis of miRNAs in animals is very unique (Figure 2). 

Primary miRNAs (pri-miRNAs) are transcribed from miRNA-encoding genes. miRNAs are 

encoded in any place; some are located on protein-coding region, and some are in noncoding 

region or intron [49]. The pri-miRNAs are cleaved into hairpin-structured small size RNAs 

(precursor miRNAs; pre-miRNAs) by microprocessor complex containing RNase III, Drosha 

and DiGeorge critical region 8 (DGCR8) [50]. Exportin 5 (XPO5) and Ran-GTP transported 

pre-miRNAs into the cytoplasm from the nucleus, then pre-miRNAs are cleaved in double-

stranded smaller RNAs (miRNA duplexes) by another RNase III, Dicer [51]. One of the strand 

(mature miRNAs) are incorporated into miRNA-induced silencing complex containing 

Argonaute 2 (Ago2) and transactivation response RNA-binding protein (TRBP) in human 

and these miRNAs are ready to bind to target mRNAs [52] (Figure 2).

How do miRNAs inhibit the expression of target protein? In general, miRNAs use two ways 

of silencing: repression of translation and mRNA decay [53]. The seed sequence of miRNA 

(2–7 position from 5′ end) can bind to 3′UTR of target mRNA with incomplete match in ani-
mals. This miRNA-mRNA binding leads to repress the translation or destroy miRNA [54]. 

More than 60% of protein is regulated by miRNAs in human [55, 56]. Therefore, miRNAs are 

involved in modifying ubiquitous cellular functions.

Vasculitis In Practice-An Update on Special Situations-Clinical and Therapeutic Considerations68



3.2. miRNAs and p53

The relationship between miRNA and cancer was first described by Calin GA et al. in 2002. 
They described downregulation of miR-15a and miR-16-1 in B cell chronic lymphocytic leu-

kemia patients [57]. miRNAs associated with cancer are called ‘oncomiR’, which have been 

identified in many types of cancer [58]. Some oncomiRs decrease in cancerous tissue. In con-

trast, increased oncomiRs are also found in cancer, which in case inhibit tumor suppressor 

genes, following the proliferation of cancer cells. The proto-oncogene c-Myc is a transcrip-

tional factor and dysregulation of c-Myc was found in many cancers. The studies for regula-

tion of transcriptional factors by miRNAs have been started since O’Donnell et al. identified 
mir-17-92, a polycistronic miRNA transcript that yields six individual miRNA components, 

as c-Myc-regulated miRNAs in human B cell line [59]. It was not hard to assume that the next 

target of ‘transcription factors’ regulating miRNAs in cancer was p53.

3.3. Direct regulation of miRNAs by p53

In 2007, several articles about p53 regulation of miRNAs have been published independently 

from different research groups. All these studies revealed that p53 upregulated the expres-

sion of miR-34 family in different cells [60–64]. The miR-34 family comprises three members 

(Figure 4C). miR-34a is generated from the large transcript on chromosome 1p36 and miR-34b 

and miR-34c are generated from bicistronic transcript on chromosome 11q23 [65]. Though the 

expression levels of miR-34a, -34b, and -34c were not consistent in non-small cell lung cancers 

(NSCLCs) compared to the adjacent normal tissue, lower expressions of three miR-34 family 
members are lower in many cancer cell lines; H1299 (lung cancer), MCF-7 (breast cancer), 

U-2OS (osteosarcoma), HCT116 (colon cancer), and many pancreatic cancer cell lines such as 
PANC1 [60, 64]. In addition to cancer, p53 regulates miR-34 family in non-cancerous cells, such 

as mouse embryonic fibroblasts (MEFs) and human fetal lung fibroblasts (IMR-90 cells) [63].  

Figure 2. p53 regulation of miRNA biogenesis.
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Forced expression of miR-34 family induce growth arrest and apoptosis in a variety of cell 

lines, whatever cancers or non-cancerous cells [62]. A lot of target genes of miR-34 family 

have been identified, including cyclin E2 (CCNE2), cyclin-dependent kinase 4 (CDK4) and 
the hepatocyte growth factor receptor (MET), B cell CLL/lymphoma 2 (BCL2), baculoviral IAP 

repeat-containing 3 (BIRC3), and decoy receptor 3 (DcR3 also known as TNFRSF6B). Many 
miRNAs directly induced by p53 have been identified in cancer cell lines. As described above, 
miR-34a might be the most fascinating one. Among these p53-induced miRNAs, several miR-

NAs that affect endothelial function are demonstrated in Figure 5A.

3.3.1. miR-34 family

The expression of miR-34 family, which consists of miR-34a, -34b, and -34c are induced by p53 

activation [60, 64]. In many cancers, miR-34a-promoted apoptosis as described in the previ-

ous section. In primary normal human cells, miR-34 family can change cellular senescence. 

A series of miRNAs, including miR-34a, were upregulated in hydrogen peroxide-induced 

premature senescence in human fibroblasts [66]. There are two human p53 isoforms, p53 beta 

which lacks C-terminal oligomerization domain and delta133 p53 which lacks N-terminal 

transactivation and proline-rich domains. Human fibroblasts (MBC-5 and WI-38) at early 
passage had many delta133 p53 but not p53 beta. In contrast, p53 beta expressed well in 

fibroblasts at late passage. In fibroblasts, miR-34a control replicative cellular senescence and 
delta133 p53 repressed miR-34a expression, extending cellular replicative lifespan [67].

Aging of endothelial cells is one of the factors for cardiovascular diseases. miR-34a, expressed 

relatively higher in late-passage endothelial cells, modulated endothelial cell survival and 

senescence [30]. Overexpression of miR-34a triggers endothelial senescence mainly by block-

ing SIRT1. In mice, miR-34a expression also increases in heart and spleen from older ones. 
Endothelial progenitor cells (EPCs) are essential for many physiological processes such as 

wound healing. miR-34a impairs EPC-mediated angiogenesis by increasing the number of 

senescent EPC probably through SIRT1 inhibition [68]. SIRT1, the major target of miR-34a, 
was known to deacetylate p53. Activation of p53 increased miR-34a expression, which inhibit 

SIRT1 expression, causing accumulation of acetylated p53. Acetylated p53 induces cell cycle 
arrest and apoptosis, and this increase of p53 activity induced more miR-34a expression. This 

suggests that p53 – miR-34a – SIRT1 works as a positive feedback loop (Figure 3B) [69].

Notch signaling has crucial role in artery-vein differentiation, blood vessel sprouting, and 
branching. Dysregulation of Notch signaling causes cardiovascular diseases [70]. miR-34a 

could regulate Notch signaling pathway in vascular inflammation. In the case of placental dys-

function, miR-34a exacerbated vascular endothelial inflammation via suppression of regulator 
of calcineurin 1 (RCAN1) [71]. Shear stress is one of the central regulators of endothelial inflam-

matory responses. The expression of miR-34a decreased by anti-inflammatory physiological 
high shear stress, in turn, inflammatory oscillatory shear stress-induced miR-34a expression in 
endothelial cells [72]. Increased miR-34a promoted acetylation of NF-kB p65 subunit (Lys310) 

by downregulating SIRT1, which lead to upregulate vascular cell adhesion molecule-1 (VCAM-
1) and intercellular adhesion molecule-1 (ICAM-1) protein expression. miR-34a also contrib-

uted to shear stress-induced EPC differentiation through a novel target Forkhead box j2 (Foxj2) 
[73]. The important molecules targeting by endothelial miR-34a are listed in Figure 3A.
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3.3.2. miR-103 and miR-107

P53 positively regulates expressions of miR-103 and miR-107 in colorectal cancer cell lines [74]. 

miR-107 is encoded within an intron of the gene for pantothenate kinase enzyme 1, PANK1, 

while miR-103 is produced from primary miRNAs which are on miR-103-1 and miR-103-2 

locus (within introns of PANK2 and PANK3, respectively) (Figure 4A). The seed sequences 

of miR-103 and miR-107 are the same, therefore, these miRNAs should have similar func-

tion [75]. miR-103 and miR-107 (miR-103/107) were originally recognized as a key regulator 

of metabolism and a hypoxia responsible miRNA [76]. The levels of miR-103/107 increased 

in liver of obese mice, ob/ob mice and diet-induced obese (DIO) mice, and knockdown of 

miR-103/107 improved insulin sensitivity [77]. Caveolin-1 was one of miR-103/107 targets that 

altered the level of insulin receptor on lipid rafts.

miR-103/107 also affected angiogenesis as members of hypoxia-responsive microRNAs (HRMs) 
induced by HIF1α under hypoxia in endothelial cells [78, 79]. The crucial proteins for miRNA 

biogenesis, Dicer-1 and Ago-1, were identified as miR-107 and miR-103/107 targets, respectively. 
In both cases, miR-107 provided translational de-suppression of vascular endothelial growth fac-

tor (VEGF) mRNA and increased VEGF expression. AGO1 levels regulated by miR-103/107 were 

associated with higher survival rate in human hepatocellular carcinoma [78]. Antagomir-107 

decreased the number of capillaries in ischemic boundary zone after permanent middle cerebral 

artery occlusion (pMCAO) in rats, which was caused by miR-107 – Dicer-1 – VEGF axis [79].

In sepsis, miR-107 plays an important role in endothelial cells. One of the major complica-

tions of sepsis is the development of acute kidney injury (AKI) [80]. Septic AKI activates renal 
endothelial cells and leads to inflammation and breakdown of endothelial barrier in kidney 
[81]. Wang et al. isolated circulating endothelial cells (CECs) from septic AKI patients and 

prepared CEC-conditioned media. Human tubule epithelial cells (HK2 cells) treated with this 

CEC-conditioned media became more apoptotic, which was regulated by miR-107 [82].

Figure 3. The role of miR-34a in regulating endothelial functions. (A) miR-34a target in endothelial cells. (B) miR-34a – 

p53 feedback loop.
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In brain, miR-107 is enriched in neuron and the expression of miR-107 decreased in cerebral 

cortical gray matter of patients with Alzheimer’s disease (AD) [83]. The authors demonstrated 

that beta-site amyloid precursor protein-cleaving enzyme 1 (BACE1) was identified as a miR-
107 target. The cerebrovascular deposition of the amyloid beta protein, the key molecule in 

Alzheimer’s disease, causes the disruption of blood-brain barrier (BBB) and brain microvas-

cular endothelial cell dysfunction [84]. Another studies showed that miR-107 prevented amy-

loid beta-induced endothelial cells dysfunction by targeting endophilin-1 [85]. In a transgenic 

mouse model of AD, miR-107 expression in brain was lower compared to that in wild type 

mice [86]. Cofilin, which maintains the structure and function of cytoskeleton, was proved to 
be regulated by miR-107 in this mouse model. These data from AD patients and mice model 

suggest that relative high level of miR-107 in neurons and endothelial cells might negatively 

control the onset and progression of AD.

3.3.3. miR-143/145

miR-143 and miR-145 forms a bicistronic cluster (miR-143/145 cluster) in 5q33.1. The miR-

143/145 cluster has been recognized as a tumor suppressor [87]. In cervical cancer, overex-

pression of Musashi RNA-binding protein 2 (MSI-2) correlated with poor survival. MSI-2 
was repressed by p53 regulated miRNAs, miR-143 and miR-107, resulting in the prevention 

from proliferation and invasion of cervical cancer cells [88]. miR-143 and miR-145 have also 

potential roles in differentiation of vascular smooth muscle cells [89, 90]. The expression of 

miR-143/145 cluster decreased in aortic aneurysms and coronary artery diseases [91, 92]. miR-

145-5p controls vascular neointimal lesion formation in balloon-injured rat carotid arteries 

[93]. The expression of miR-145 was upregulated in the lung of bone morphogenetic pro-

tein receptor type 2 (BMPR2)-deficient mice and puomonary arterial hypertension (PAH) 
patients [94]. Deng L. et al. identified transcriptional factors that regulate miR-143 and miR-
145 expression in the promoter of miR-143/145 cluster [95]. Each miRNA in this cluster has 

Figure 4. Scheme of miRNA cluster (miR-103/107, miR-200/141, miR-34, and miR-17-92). (A) miR-103/107 cluster. (B) 
miR-200/141 cluster. (C) miR-34 cluster. (D) miR-17-92 cluster.
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each function; however, how this cluster or miR-143 and miR145 independently regulated has 

not been fully understood yet.

Shear stress suppressed angiotensin-converting enzyme (ACE) expression and increased 
miR-143/145 levels in HUVEC [96]. The authors have shown that shear stress elicited the 

AMP-activated protein kinase alpha2 (AMPKα2)-dependent phosphorylation of p53 (Serine 
15), and that p53 downregulation prevented the shear stress induced decrease in ACE expres-

sion. Since overexpression of miR-143/145 decreased ACE expression, AMPKα2 suppresses 
ACE expression through p53 activation and upregulation of miR-143/145 in EC. AMPKα2 
knockout mice showed higher ACE levels and impaired bradykinin-induced vasodilation 

compared to wild type mice. In streptozotocin-induced diabetes mellitus (DM) mice model, 

phosphorylation of p53 and miR-143/145 expression increased, leading to the decrease of ACE 

expression. Therefore, miR-143 and miR-145 may contribute to the vascular events in athero-

sclerosis and DM.

miR-143 itself has been studied for the role of VSMCs as well as miR-145. The expression of 
miR-143 decreased in proliferating hemangiomas and miR-143 overexpression suppressed 

cell viability and proliferation of hemangioma-derived endothelial cells [97]. Bai Y et al. 

showed that miR-143 is upregulated in the brain microvessels of methamphetamine-treated 

mice [98]. Knockdown of miR-143 protected brain-blood barrier (BBB) damage-related vas-

cular dysfunction by methamphetamine exposure. They identified an apoptosis inducing 
molecule, p53 upregulated modulator of apoptosis (PUMA), as a target of miR-143. Since the 
expression of miR-143 was regulated by p53 and miR-143 decreased PUMA, miR-143 might 
act for negative feedback of p53 signaling.

3.3.4. Others: miR-192, miR-200 family, and miR-194

Dysregulation of redox balance affects vascular homeostasis. Hydrogen peroxide treat-
ment significantly increased miR-192 levels, which were prevented by p53 knockdown in 
endothelial cells [99]. Overexpression of miR-192 inhibited endothelial cell growth. Another 

study has shown that miR-200 family and miR-141 were upregulated in HUVEC exposed 
to hydrogen peroxide and in skeletal muscle in acute hindlimb ischemia mice model [100]. 

miRNA-200 family consists of two clusters, one encodes miR-200b, miR-200a, and miR-429 

from chromosome 1 (1p33.36) and the other has miR-200c and miR-141 from chromosome 2 

(12p13.31) (Figure 4B). These miRNAs share the similar seed sequence and mostly target the 

same genes. miR-200 family targets ZEB1 and ZEB2, affecting endothelial cell proliferation 
and senescence as well as epithelial-mesenchymal transition (EMT). Astrocytes are involved 

in controlling central nerve system (CNS) damage. During repair process of CNS, astrocytes 
undergo phenotypic changes into endothelial cells. This astrocyte-endothelial cell transition 

was modulated by a p53 inducible miRNA, miR-194. Therefore, miR-194 could promote 

angiogenesis in CNS.

3.4. Regulation of miRNA biogenesis by p53

There are two mechanisms by which p53 regulates miRNA production - control of miRNA 

transcription and modulation of miRNA maturation. These representative miRNAs regu-
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lated by p53 are summarized in Section 4.3. Several miRNAs can modulate the process of 
miRNA biogenesis. The impact of miRNA biogenesis by transcriptional factors has first 
reported about transforming growth factor beta (TGF-beta) signaling in 2008 [101]. TGF-

beta family orchestrates biological processes in vascular development [102]. Davis et al. 

demonstrated that smads, downstream transcriptional factors of TGF-beta signaling, play 

a critical role in processing miRNAs by the RNase III-type protein Drosha in nucleus [101]. 

Similarly, p53 affects the maturation process of miRNAs. The nuclear RNase III Drosha 
complex contains Drosha, DiGeorge syndrome critical region gene 8 (DGCR8), and the 

DEAD box RNA helicases, such as p68 and p72 (DDX5 and DDX17, respectively) [103]. 

P53 interacts with Drosha through p68, facilitating the process of primary miRNAs into 

precursor miRNAs [104]. Maturation of some precursor miRNAs from primary miRNAs, 

such as miR-16-1, miR-143, miR-145, and miR-206, is promoted by Doxorubicin stimulated 

wild type p53 in colon cancer cell lines, HCT-116. Association between a set of miRNAs 

and Ago2 protein was controlled by p53 [105]. Activated p53 interacts with AGO2 to affect 
incorporation of let-7 family members. Moreover, p53 induced RNA-binding-motif pro-

tein 38 (RBM38) that determined target mRNA selection with miRNAs [106]. Interestingly, 

Rbm38 deficient mice were likely to accelerate senescence and prone to spontaneous 
tumors [107]. All these studies had no data using endothelial cells; however, basic insights 

would be connected to the future study about p53 and miRNAs in the cardiovascular 

research.

3.5. Regulation of p53 by miRNAs

Many miRNAs regulate p53 directly and indirectly. Endothelial miRNAs can target p53. 

More than 20 miRNAs that modulated p53 are reported. Among them, miR-92, miR-25, miR-

214, and miR-638 play important roles in endothelial cell (Figure 5B).

Figure 5. Endothelial miRNA and p53. (A) Endothelial miRNAs regulated by p53. (B) Endothelial miRNAs directly 

target p53.
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3.5.1. miR-125b

TGF-beta2 induces endothelial-to-mesenchymal transition (EndMT) [108]. The expression of 

miR-125b in EndMT-derived fibroblast-like cells is significantly higher compared to that in the 
original mice endothelial cells [109]. In this experiment, miR-125b elevation was negatively 

associated with p53 expression after EndMT change. Since p53 is a direct target of miR-125b in 
several human cells, such as neuroblastoma cells and lung fibroblast cells, downregulated p53 
by miR-125b possibly modulate TGF-beta-induced profibrotic signaling in endothelial cells 
[110]. The expression of miR-125b was altered by cell-matrix adhesion in human mesenchy-

mal stem cells (hMSCs) [111]. miR-125b targeted p53, which regulate survival of hMSCs and 
endogenous miR-125b increased during reprogramming of mouse embryo fibroblasts (MEFs) 
to induced pluripotent cells. Indeed, miR-125b was not increased by loss of cell adhesion in 

HUVEC. Sepsis damages endothelial cells, causing multiple organ failure [81]. Transfection of 

endothelial cells with miR-125b mimics attenuate LPS-induced ICAM-1 and VCAM-1 expres-

sion by inhibiting TRAF6 and NF-κB activation [112]. Induction of miR-125 in mice heart 

attenuated cecal ligation (CLP)-induced sepsis as well and improved survival. These studies 
suggest that miR-125b regulates angiogenesis and vascular inflammation.

3.5.2. miR-17-92 cluster

Seven individual mature miRNAs (miR-17-5p, miR-17-3p, miR-18a, miR-19a, miR-19b, miR-
20a, and miR-92a) are produced from primary miR-17-92, located in the open reading frame 

25 (C13orf25) on chromosome 13 in human (Figure 4D). Mice knockout or overexpressing of 

miR-17-92 cluster died shortly after birth, suggested that the balance of miR-17-92 expression 

are involved in normal development [113, 114]. Originally, miR-17-92 has shown to be a highly 

conserved cluster, called oncomir-1, and extensively studied the molecular mechanism of 

tumorgenesis [115]. The roles of miR-17-92 for cardiovascular diseases have been investigated.

One miRNA of this cluster, miR-92a, blocked angiogenetic function in endothelial cells and 

inhibition of miR-92a by systemic administration of an antagomir-enhanced neovasculariza-

tion and functional recovery from damaged tissue in hindlimb ischemic mice model [116]. 

Inhibition of miR-92a-enhanced endothelial cell proliferation and migration, probably through 

an increased phosphorylation of ERK1/2, JNK, and eNOS. miR-92a promotes pro-atherogenic 
changes in endothelial cells [117]. Disturbed flow increased miR-92a level in endothelial cells 
and miR-92a suppressed KLF2 and phosphatidic acid phosphatase type 2B (PPAP2B) that 

is involved in coronary artery disease (CAD) by genome-wide association studies (GWAS), 
driving inflammatory and adhesive endothelial phenotype [117]. Although no reports about 

miR-17-92 regulation of endothelial p53, according to accumulating data above, miR-17-92 

may be involved in vascular events and p53 took some parts in them.

3.5.3. Others: miR-98, miR-150, and miR-214 and beyond

There are many miRNAs that directly regulate p53 in cancer; however, a few in endothe-

lial cells. A variety of miRNAs, including miR-98, miR-150, and miR-214 has been shown to 

decrease p53 expression in cancer [118]. Hypoxia and reoxygenation conditions promote apop-

tosis and oxidized low-density lipoprotein (ox-LDL)-induced dysfunction of endothelial cells. 
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miR-98 rescues these phenomenon by targeting caspase-3 and lectin-like oxidized low-density 

lipoprotein receptor 1 (LOX-1), respectively [119, 120]. Stromal cell-derived factor 1α (SDF-1α) 
and its receptor CXCR4 control mobilization and migration of EPC. miR-150 decreased CXCR4 

expression, leading to impaired EPC migration [121]. In mice studies, decreased miR-150 in 

EPC helped to revascularize the ischemic heart. miR-150 affected blood-brain barrier (BBB) 
permeability. Antagomir-150 treatment protected BBB, reduced infarct volume in post-stroke 

rat via angiopoietin receptor Tie-2 [122].

Targets of miRNAs are recognized by pairing between the seed sequence of miRNA and comple-

mentary sites in target mRNAs. There are many useful tools to search for miRNA target genes. 

Among them, Targetscan is one of the reliable resources many researchers are widely taking. 

Targetscan predicts four miRNAs, let-7, miR-22, miR122, and miR-150, which are broadly con-

served among vertebrates to bind onto 3′UTR of human p53 mRNA (http://www.targetscan.org/
vert_71/). Future studies could reveal the function of these miRNAs and their relationship to p53.

4. Conclusion

miRNAs are crucial regulators of gene expression for diverse physiological and pathologi-

cal processes. Endothelial miRNAs have been intensively studied since Kuehbacher A et al. 

released that genetic knockout of Dicer and Drosha, miRNA-processing enzymes, inhibited cap-

illary sprouting of endothelial cells and tube formation [123]. Recently Hratmann P et al. dem-

onstrated that Dicer in endothelial cells promoted atherosclerosis and endothelial inflammation 
[124]. In contrast, p53 is involved in a variety of diseases, such as vascular remodeling, athero-

sclerosis, hypertension, and hypoxic pulmonary artery remodeling as well as cancer biology.

The importance of p53 and miRNAs in endothelial cells has been shown here. We demonstrated 

the regulation of endothelial miRNAs by p53 and the modulation of p53 by miRNAs in endo-

thelial cells. These miRNAs play pivotal roles in vascular development and the onset of car-

diovascular diseases. The ubiquitin E3 ligase Mdm2 stimulates p53 degradation, in turn, p53 

promotes Mdm2 gene expression. Therefore, there is a negative feedback loop between p53 and 

Mdm2. miR-192, miR-194, and miR-215 targeted Mdm2 protein, which could disrupt this p53-

Mdm2 feedback loop [125]. Future studies will unveil the complex and fascinating pathway and 

loop composed by p53 and miRNAs and develop therapeutic machinery of vascular diseases.
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