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Abstract

Wind-induced vibration affects the performance and structural integrity of high voltage
transmission lines. The finite element method (FEM) is employed to investigate wind-
induced vibration in MATLAB. First, the FEM model was used to develop the equation of
motion of the power line conductor. In addition, dampers, conditions for damping, free
and forced vibrations of the overhead conductor were considered in the FEM model.
Wind-induced experiments were conducted in the laboratory using an actual overhead
power conductor. The developed FEM models were simulated in the MATLAB comput-
ing environment. The results from the MATLAB simulation, finite element and experi-
mental recordings were compared in order to evaluate the efficacy of models simulated in
MATLAB and developed using the FEM.

Keywords: aeolian vibration, power conductor damping, resonant frequency, MATLAB

1. Introduction

The availability and use of electrical power in the society is crucial in the development and

growth of the society. Power generated from power stations is transmitted using high voltage

transmission lines. The transmission of power from the point of generation to the point of use

requires complex network of high voltage lines, systems and components [1]. High voltage

conductors are usually subjected to vibration and the vulnerabilities of the power lines to

vibration can lead to fatigue failure. Thus, power loading determination and control on the

power grid can influence the integrity of the transmission network. High voltage conductor

vibration is very difficult to model due to the fact that the responses exhibit a non-linear
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behaviour. There has been concerted effort to try and predict the conductor response as a result

of aeolian vibration. Evaluations of conductor vibration caused by aeolian forces have been

investigated be several researchers [2–6].

Recent researches developed models to investigate wind-induced vibration using nonlinear

time history, expert systems, the concept of principal modes, aero-elastic and bending stiffness

[7–17]. The investigation of vortex formation and the phenomenon of wind-induced vibration

was done using the concept fluid–solid dynamic excitation [18–20]. The models were used to

determine how wind loading influenced the oscillation of transmission lines. This form of

investigation was done by experimental studies carried out in a wind tunnel [21, 22]. The

outcomes of these experiments were used to determine conductor input loading. Several

models developed by various researchers can be used to determine conductor damping and

also the placement of vibration absorbers on the line conductors to curtail the effect of cable

mechanical oscillation [23–27]. Based on the various models that have been developed by

researchers as indicated in the first and second paragraphs, there is a need to further analyze

wind-induced vibration using finite element method (FEM) in MATLAB.

The design, construction and maintenance of power transmission network requires adequate

understanding of the system dynamics that occurs when subjected to vortex induced vibration

[28]. Various analysis can be conducted using techniques that suit certain objectives. System

integrity in high voltage transmission lines is of paramount importance. MATLAB is a multi-

model simulation environment used for numerical computing. It can be integrated with phys-

ical hardware or systems in order to determine real-time performance, characteristics and

behavior. MATLAB also provides a platform for special hardware in loop simulations [29].

These functionalities amongst others are vital in determining various characteristics and

behaviors in high voltage transmission lines.

High voltage transmission lines and grid can experience vulnerabilities such as vibration,

electromagnetic transients, fatigue, transmission loss, switching surges, conductor sag fluctua-

tion [30, 31]. When the conductor experiences vibration, the transmission lines experience high

amplitudes of vibrations from wind forces and can lead to fatigue of the transmission lines [1].

The use of systems simulation and analysis provides the platform to understand the response

of the transmission conductor. The responses considered in the chapter include transmission

line excitation through wind loading, conductor properties such as damping and damper

placement used in mitigating the vibration.

The chapter discussed the development and implementation of a wind-induced high voltage

transmission line vibration using finite element method (FEM) in MATLAB. The sections in the

chapter discussed the development of transmission line equation of motion, the solution to the

equation of motion, free and forced vibration of the transmission line, dampers and conductor

self-damping, FEM MATLAB setup and implementation, simulation of FEM models. The

chapter also discussed results from FEM models, simulation and experimental investigation.

The chapter is focused towards the development of a finite element method and its implemen-

tation on the MATLAB software. The developed finite element method (FEM) was based on

the concept of the simply supported beam model and it was used in modeling the transverse

vibration of power line conductors. The results from the FEMwere then compared with results

from the analytical model and results obtained from experimental studies documented in [1].
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The results from MATLAB simulations from the finite element models and experimental

results were compared in order to determine the accuracy of the models. The developed FEM

was then used as the means to verify the effect of varying the conductor axial tension on the

natural frequencies of the conductors.

2. Transmission line equation of motion (EOM)

The transverse displacement of high voltage transmission line conductor is generally caused by

wind loading. This form of vibration with small displacement is known as aeolian vibration and

it is a source of concern to the power lines reliability. One the vulnerabilities is that it can cause

fatigue failure of the transmission lines. Conductors are example of continuous or distributed

systems and modeling its mechanical vibration can either be as a beam or taut string. In [18, 19],

it was ascertained that modeling a conductor as a beam is more accurate than modeling it as a

taut string due to the effect of the bending stiffness. Hence, in line with the above, the conductor

transverse vibration was modeled as a beam, simply supported or pinned at both ends. The

distributed loading on the conductor is replaced by effective point load that can effectively have

the same resultant effect as that of the actual distributed load.

The high voltage transmission line equation of motion was formulated by assuming that

power conductors can modeled as beams with fixed ends. The following assumptions were

considered [1]:

• The power conductor is uniform along its length and it is slender

• The power conductor is a solid with cylindrical body having both linear and homoge-

neous physical properties throughout its cross-sectional area

• The power conductor has a symmetrical plane which acts as the plane of vibration such

that there is the decoupling of translational and rotational motion.

The assumptions were based on beam theory. In considering the power conductor as a beam,

sagged by a tensile force S, being acted upon by a concentrated wind load f x; tð Þ, with cross-

sectional area A, density r, flexural rigidity EI, displaced at a distance of x after time. In Eq. (1),

the high voltage transmission line equation of motion is expressed as:

f x; tð Þ ¼ EI
∂
4y x; tð Þ

∂x4
� S

∂
2y x; tð Þ

∂x2
þ rA

∂
2y x; tð Þ

∂t2
(1)

For x∈ 0; 1ð Þ, t > 0. The boundary conditions are expressed and indicated in Eqs. (2) and (3):

y 0; tð Þ ¼
∂
2 0; tð Þ

∂x2
¼ 0 (2)

y l; tð Þ ¼
∂
2 l; tð Þ

∂x2
¼ 0 (3)

The initial conditions at t ¼ 0 are indicated in Eq. (4), Eq. (5) and expressed as:
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y x; 0ð Þ ¼ yo xð Þ (4)

_y x; 0ð Þ ¼ _y xð Þ (5)

Introducing the mass per unit length of the power conductor, the new equation of motion

indicated in Eq. (6) is expressed as:

f x; tð Þ ¼ EI
∂
4y x; tð Þ

∂x4
� S

∂
2y x; tð Þ

∂x2
þm

∂
2y x; tð Þ

∂t2
(6)

In order to derive a possible solution, the model was simplified using dimensionless functions

and Dirac delta functions. In Eqs. (7)–(12), the variables are expressed in dimensionless form

and expressed as:

Y ¼
y x; tð Þ

D
(7)

X ¼
x

L
(8)

τ ¼
t

f
(9)

Ip ¼
Df 2

g
(10)

Sp ¼
SD

γL2
(11)

Mp
EI D

γL4
(12)

Eq. (13) indicates the revised equation of motion and it is expressed as:

Mp:
∂
4Y

∂X4
� Sp

∂
2Y

∂X2
þ Ip

∂
2Y

∂τ2
¼

1

γ
F X; τð Þ þ

X

n

δ X� Xnð ÞFn τð Þ

" #

(13)

Where γ represents the power conductor weight per unit length and g represents gravitational

constant. Xnδ X� Xnð Þ represents the Dirac delta function, F X; τð Þ denotes the net transverse

force per unit length acting on the conductor and Fn τð Þ denotes the nth concentrated force

acting transversely on the conductor.

3. Solution to the EOM

The general solution to the high voltage transmission line equation of motion was derived

using Euler-Bernoulli equation. The particular solution to the equation of motion was derived
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using a product of two functions. The two functions were first separated using the principle of

variable separation as expressed in Eq. (14) [19]:

Y x; tð Þ ¼ X xð ÞT tð Þ (14)

Where X xð Þ is the normalized function representing the mode shape of the equation of motion.

The normalized function ensures that orthogonality condition was satisfied in the derivation of

the EOMmodel solution. Applying the normalized function in the EOM yields Eqs. (15) and (16):

EI X
====

xð Þ � S X
==

xð Þ � ω
2
rAX xð Þ ¼ 0 (15)

€T tð Þ þ ω
2T tð Þ ¼ 0 (16)

Where X
====

xð Þ ¼ d4y

dx4
, X

==

xð Þ ¼ d2y

dx2
, €T tð Þ ¼ d2y

dt2
and ω

2 is a constant that equates x and t. Assuming

that X xð Þ ¼ ZeΨx, the model is expressed in Eq. (17) as:

ZeΨx EIΨ4 � SΨ2 � rAω2
� �

¼ 0 (17)

Considering that ZeΨx 6¼ 0, hence EIΨ4 � SΨ2 þ rAω2
� �

¼ 0. The general solution of the Euler-

Bernoulli equation which represents the solution to the equation of the motion of the transmis-

sion line is expressed in Eqs. (18) and (19) as [9]:

Ω
2,Ψ2 ¼ �

�Sð Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

S2 � 4 EIð Þ �rAω2ð Þ
q

2EI
(18)

Ω,Ψ ¼ �ð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

S�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

S2 þ 4EIðrA
q

ω
2Þ

2EI

v

u

u

t

(19)

The values of Ω and Ψ represents the general solution of the equation of motion. The practical

implication of the derived solution is that it represents the transverse vibration of the high

voltage transmission line. The derived solution has infinite number of solutions and the

solution is indexed to accommodate all the possible solutions from the model. The indexed

solution is expressed in Eqs. (20) and (21) as:

Ωn ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

S

2EI
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

S2

2EIð Þ2
þmL

2πf n
� �2

EI

v

u

u

t

v

u

u

u

t (20)

Ψn ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�
S

2EI
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

S2

2EIð Þ2
þmL

2πf n
� �2

EI

v

u

u

t

v

u

u

u

t (21)

Where ωn ¼ 2πf n and for n ¼ 1, 2, 3,….
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In Eqs. (22)–(24), the infinite natural frequencies of the power conductor were derived while

considering that the mode shape is the same as a pinned-pinned beam eigenfunction model

with no external force. Hence,

Yn x; tð Þ ¼ sin
nπx

l
cosωnt (22)

EI
nπ

l

� �4
sin

nπx

l
cosωnt� S �

nπ

l

� �2
sin

nπx

l
cosωntþ rA �ωnð Þ sin

nπx

l
cosωnt ¼ 0 (23)

sin
nπx

l
cosωnt

EI

rA

nπ

l

� �4
þ

S

rA

nπ

l

� �2
� ωn

2

� �

¼ 0 (24)

The natural frequency of the power conductor in rad/s is expressed in Eqs. (25) and (26)

as:

ω2
n ¼

nπ

l

� �2 S

Ar
þ

nπ

l

� �4 EI

Ar
(25)

ωn ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

nπ

L

� �2 S

mL
1þ

nπ

L

� �2 EI

S

� �

s

(26)

The natural frequency in Hz is expressed in Eq. (27) as:

Fn ¼
1

2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

nπ

L

� �2 S

mL
1þ

nπ

L

� �2 EI

S

� �

s

(27)

4. Free vibration of power conductor

The self-damping model of the power conductor provided the basis to analyze free vibration

experienced by the conductor. Free vibration occurs when the forcing function causing the

power conductor to vibrate become zero. Hence the equation of motion is expressed in Eq. (28)

as [19]:

EI
∂
4y x; tð Þ

∂x4
� S

∂
2y x; tð Þ

∂x2
þ βI

∂
5y x; tð Þ

∂x4∂t
þ C

∂y x; tð Þ

∂t
þ rA

∂
2y x; tð Þ

∂t2
¼ 0 (28)

Applying the principle of separation of variable to the equation of motion yields Eq. (29):

EI X
====

xð ÞT tð Þ � S X
==

xð ÞT tð Þ þ βI X
===

xð Þ _T tð Þ þ CX xð Þ _T tð Þ þ rAT tð ÞX xð Þ ¼ 0 (29)

Integrating the eigenfunction Xn xð Þ ¼ sin nπx
l

� �

in the model yields Eqs. (30)–(33):
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EI nπ
l

� �4
sin

nπx

l

� �h i

T tð Þ � S
�nπ

l

� �

sin
nπx

l

� �h i

T tð Þ

þβI nπ
l

� �4
sin

nπx

l

� �h i

_T tð Þ þ C sin
nπx

l

� �h i

_T tð Þ þ rA sin
nπx

l

� �h i

€T tð Þ ¼ 0
(30)

sin
nπx

l

� � EI nπ
l

� �4
T tð Þ þ S nπ

l

� �2 _T tð Þ

þ βI nπ
l

� �4
T tð Þ þ C _T tð Þ þ rA €T tð Þ

" #

¼ 0 (31)

rA €T tð Þ þ βI
nπ

l

� �4
þ C

� �

_T tð Þ þ S
nπ

l

� �2
þ EI

nπ

l

� �

� �

T tð Þ ¼ 0 (32)

€T tð Þ þ
βI

rA

nπ

l

� �4
þ

C

rA

� �

_T tð Þ þ
S

rA

nπ

l

� �2
þ

EI

rA

nπ

l

� �4
� �

T tð Þ ¼ 0 (33)

Considering that the vibration model represents a multi-degree vibration system. The

natural frequency of the power conductor is determined and expressed in Eqs. (34) and

(35):

ω2
n ¼

S

rA

nπ

l

� �2
þ

EI

rA

nπ

l

� �4
(34)

2ξωn
2 ¼

βI

rA

nπ

l

� �4
þ

C

rA

� �

(35)

The temporal solution to the free vibration model is expressed in Eq. (36) as:

Tn ¼ A1e
�ξnωnt sin ωdtþ ϕ

� �

(36)

The solution can also be represented in Eq. (37) and expressed as:

Tn ¼ e�ξnωnt B1 sinωdtþ B2 cosωdtð Þ (37)

Where the damped frequency of the power conductor is expressed in Eq. (38) as:

ωd ¼ ωn

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ξ2
q

(38)

The system response is expressed in Eq. (39) as:

y x; tð Þ ¼
X

∞

n¼1

A1e
�ξnωnt sin ωdtþ φð Þ sin

nπx

l
(39)

The response can also be represented in Eq. (40) and expressed as:

y x; tð Þ ¼
X

∞

n¼1

e�ξnωnt B1 sinωdtþ B2 cosωdð Þ
	 


sin
nπx

l
(40)

High Voltage Transmission Line Vibration: Using MATLAB to Implement the Finite Element Model of a Wind…
http://dx.doi.org/10.5772/intechopen.75186

47



5. Forced vibration of power conductor

High voltage transmission lines are exposed to loading from the wind. The actual system

representation through system simulation strategy considers a case of distributed load

through the span of the conductor. In order to simplify simulations, the external force acting

on the conductor is represented as a point load. In Eqs. (41)–(43), the equation of motion is

solved with an excitation force in order to evaluate the actual response of high voltage trans-

mission lines under aeolian vibration [1]. Hence,

EI
∂
4y x; tð Þ

∂x4
� S

∂
2y x; tð Þ

∂x2
þ βI

∂
5y x; tð Þ

∂x4∂t
þ C

∂y x; tð Þ

∂t
þ rA

∂
2y x; tð Þ

∂t2
¼ f x; tð Þ (41)

sin
nπx

l

� � EI nπ
l

� �4
T tð Þ þ S nπ

l

� �2 _T tð Þ

þ βI nπ
l

� �4
T tð Þ þ C _T tð Þ þ rA €T tð Þ

" #

¼ F sinωdrt (42)

€T tð Þ þ
βI

rA

nπ

l

� �4
þ

C

rA

� �

_T tð Þ þ
S

rA

nπ

l

� �2
þ

EI

rA

nπ

l

� �4
� �

T tð Þ ¼ F sinωdrt (43)

Expressing the model as a multi-degree system yields Eq. (44):

T tð Þ ¼ Ae�ζωnt sin ωdtþ ϕ
� �

þ X cos ωt� θð Þ (44)

The natural frequency of the power conductor under forced vibration is expressed in Eqs. (45)

and (46) as:

ω2
n ¼

S

rA

nπ

l

� �2
þ

EI

rA

nπ

l

� �4
(45)

2ξωn
2 ¼

βI

rA

nπ

l

� �4
þ

C

rA

� �

(46)

The solution to the equation of motion under forced vibration is expressed in Eq. (47) as:

y x; tð Þ ¼ sin
nπx

l
Ae�ζωt sin sinωtþ ϕ

� �

þ X cos ωt� θð Þ
h i

(47)

6. Conductor self-damping and dampers

The influence of external and internal damping mechanisms was considered in the conductor

vibration model. The factors considered included the following [1, 32]:

• The power conductor inter-strand motion and fluid damping. This is proportional to the

conductor velocity and represented as viscous damping in the model.

• The rate of strain in the power conductor. This proportional to the internal damping of the

power conductor.
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The high voltage transmission line damped model is expressed in Eq. (48) as:

EI
∂
4y x; tð Þ

∂x4
� S

∂
2y x; tð Þ

∂x2
þ βI

∂
5y x; tð Þ

∂x4∂t
þ C

∂y x; tð Þ

∂t
þ rA

∂
2y x; tð Þ

∂t2
¼ f x; tð Þ (48)

Where C and β represent damping constants. In the presence of axial load, viscous air damping,

strain rate damping or Kelvin-Voigt damping, high voltage transmission line integrity can be

managed.

There are various types of dampers that can be used to reduce vibration. The dampers are

excited by the vibration of the power conductor and the vibration of their masses connected by

the massager cable help to damp out energy. Stockbridge dampers are commonly installed on

high voltage transmission lines to reduce aeolian vibrations. Stockbridge dampers can be sym-

metrical or asymmetrical in their design. An example of dampers installed on high voltage

transmission lines is shown in Figure 1. The design of Stockbridge dampers follows the principle

of cantilever beams with mass at the free ends. The contribution of dampers to power conductor

vibration mitigation is to lower the severity of the vibration to a level that might prevent failure

to the line.

7. FEM MATLAB model setup, formulation and implementation

In order to implement the conductor model in MATLAB environment, finite element analysis

formulation was done as function of the physical state of power transmission line conductor.

The models developed using finite element analysis can then be implemented in MATLAB.

The FEM model enables the analysis of the dynamic behavior and response of power line

conductor to the dynamic forces of wind [33]. Consider a power transmission line subjected to

dynamic aeolian vibration as an assembly of thin strands having distributed mass and elastic-

ity. The physical model can be represented used partial differential equations. Each strand in

the transmission line experiences axial, bending and torsional loads from the wind [34, 35]. The

accurate representation of each factor is critical in the determination of the dynamic behavior

of power transmission lines [36, 37]. Euler-Bernoulli curved beam theory was used to formu-

late the finite element model of power transmission lines.

Consider a power transmission line experiencing a vertical force, curvature and an axial force

has an axial displacement modeled in Eq. (49) as [21]:

Figure 1. Asymmetrical damper.
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u x; yð Þ ¼ u0 xð Þ þ
v

R
� y θx þ

u xð Þ

R

� �

(49)

Where θx represents the rotation of the power line due to flexural effect, R represents the

radius of rotation, y represents the distance from the axis of rotation to the centroidal axis of

the conductor or transverse displacement, v represents tangential displacement and u xð Þ rep-

resents the axial displacement of the power lines. The shape function for power transmission

lines having rotation, bending and axial motion components is modeled using discretization

techniques and represented in Eqs. (50)–(52) as:

u sð Þ ¼ b0 þ b1s (50)

v sð Þ ¼ c0 þ c1Sþ c2S
2 þ c3S

3 (51)

θ ¼
dvðSÞ

ds
¼ c1 þ 2c2Sþ 3c3S

2 (52)

The solution to the discretization of the models yields Eq. (53) to Eq. (59):

u

v

θ

2

6

4

3

7

5
¼

N1 0 N2

0 N3 0

0 0 N4

0 0 0

N4 N5 N6

0 N5 N6

2

6

6

4

3

7

7

5

u1
v1

θ1

u2

v2
θ2

2

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

5

(53)

Where

N1 ¼
1

2
1� ζð Þ (54)

N2 ¼
1

2
1þ ζð Þ (55)

N3 ¼
1

4
2� 3ζþ ζ

3
� �

(56)

N4 ¼
1

4
1� ζ� ζ

2 � ζ
3

� �

(57)

N5 ¼
1

4
2þ 3ζ� ζ

3
� �

(58)

N6 ¼
1

4
1� ζþ ζ

2 þ ζ
3

� �

(59)

The power line matrix model contains the strand stiffness K, mass matrix M and the load

vector F. They are expressed in Eq. (60) as:
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K½ � ¼
1

2

ð

Na
T EAð ÞNa δζþ

1

2

ð

NB
T EIð ÞNB δζþ

1

2

ð

NB
T Tð ÞNB,T δζ (60)

Where A represents the cross-sectional area of the power line, E represents the young modulus

of the power line material, I represents polar moment of area, T represents the kinetic energy

of the system. The matrix is modeled in Eq. (61).

M½ � ¼
1

2

ð

_uT
rA _u þ

1

2

ð

_gTrA _v (61)

Where r represents the density of the power line material and Eq. (62) indicates external

excitation.

δW ¼
1

2

ð

F δu (62)

The power line conductor model is constructed using Euler-Bernoulli theories and summa-

rized in Eq. (63) as:

M11 M12

M21 M22

� �

€u

€v

� �

þ
K11 K12

K21 K22

� �

u

v

� �

¼
F1

F2

� �

(63)

The finite element analysis follows a step by step numerical computation in the MATLAB

environment as documented in [38, 39]. The dynamic response analysis assumes continuous

displacement, velocity and acceleration [40, 41]. The numerical integration technique utilized

was based on Newmark integration method. The compact form of the high voltage transmis-

sion line model is expressed in Eqs. (64)–(69) as [18]:

M½ � €yf g þ C½ � _yf g þ K½ � yf g ¼ F½ � (64)

K
∧

� �

sþ1

¼ K½ �sþ1 þ a3 m½ �sþ1 (65)

F
∧

� �

s, sþ1

¼ Ff gsþ1 þ m½ �sþ1 a yf gs þ a _yf gs þ a €yf gs
� �

(66)

a3 ¼
2

γ Δtð Þ2
(67)

a4 ¼
2

γΔt
(68)

a5 ¼
1

γ
� 1 (69)

The initial conditions are expressed in Eq. (70) as:
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€y½ �0 ¼ M½ ��1 F½ �0 � K½ ��1 y½ �0 (70)

The acceleration vector is expressed in Eqs. (71)–(74) as:

€y½ �sþ1 ¼ a3 yf gsþ1 � yf gs
� �

� a4 _yf g � a5 €yf gs (71)

€y½ �sþ1 ¼ €yf gs þ a2 €yf gs ¼ a1 €yf gsþ1 (72)

a1 ¼ αΔt (73)

a2 ¼ 1� αð ÞΔt (74)

8. FEM MATLAB model implementation strategy

In order to test the validity of the models discussed earlier using MATLAB, an aluminum power

conductor with a steel core having a total diameter of 35.56 mm and having an ultimate tensile

strength of 51.51kN was used in setting up the MATLAB simulation. Further physical properties

of the power cable are shown in Table 1. The power conductor had a minimum bending stiffness

EImin of 8.66 Nm2 and maximum bending stiffness EImax of 433 Nm2. The wholistic finite

element models where implemented in MATLAB using strategy expressed in Figure 2.

The inputs in the MATLAB algorithm were bending and axial loads, the cross-sectional area of

the power conductor, strand radius and strand material type. The type of analysis which can

be either static or dynamic was also specified as part initial and boundary conditions. Also

included in the algorithm was to specify if the computation focuses on local vibration of the

power conductor or the global vibration model.

9. Experimental investigation of conductor vibration

MATLAB code was written for the FEM and this was used to model the dynamic analysis of

the problem of conductor vibration. To validate the FEM model an experimental study was

conducted at the Vibration and Research Testing Centre (VRTC) situated at the University of

KwaZulu-Natal which comprises of apparatus similar to that shown in Figure 3. The sweep

tests (resonance search) were carried out and the test results were used to obtain natural

frequencies and the modes of vibration for a Pelican conductor. The frequency range for the

Strand layer Strand material Diameter (mm) No. of strands Pitch per length (cm) Lay direction

Layer 0 Steel 2.25 1

Layer 1 Aluminum 3.38 6 16.1 Left hand lay

Layer 2 Aluminum 3.38 12 22.2 Right hand lay

Table 1. Power transmission conductor physical properties.

MATLAB - Professional Applications in Power System52



Figure 2. FEM MATLAB implementation strategy.

Figure 3. Experimental test set-up [7] .
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Pelican conductor was between 5 and 50 Hz and testing was done for three axial tensions of 20,

25, 30 and 35% of its ultimate tensile strength (UTS). The experimental results obtained were

used to validate the developed FEM model. The comparison between results from the experi-

mental data, FEM and the theoretical model for the three different axial tensions for high

voltage conductors are reported in the next section.

10. Simulation and experimental results

The results from the MATLAB simulations were compared with results from the finite element

models (FEM) and experimental recordings. These are shown in Figures 4–7. The results were

compared in terms of the natural frequency of vibration or vertical displacement of the power

conductor.

Figure 4. Frequency of vibration at 20% UTS.

Figure 5. Frequency of vibration at 25% UTS.

MATLAB - Professional Applications in Power System54



11. Conclusion

The results showed that the implementation of the derived models in MATLAB provided

a reliable strategy in the determination of the wind-induced dynamic properties of high

Figure 6. Frequency of vibration at 30% of UTS.

Figure 7. Frequency of vibration at 35% of UTS.
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voltage transmission lines. The results from MATLAB simulation, finite element method

and experimental recordings were similar in values and showed similar trend. MATLAB as

an environment can be used as a reliable simulation tool to implement and analyze high

voltage conductor dynamics. The parameters obtained from the results, to some degree of

accuracy can be used to predict the response of conductors due to aeolian vibration caused by

wind loading.
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