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Abstract

The design and development of experimental, in vivo, chronobiological animal mod-
els may help reveal some of the relationships between circadian rhythms and biological 
functions. In vivo experiments require the use of appropriate anesthesia, which should 
be selected according to their particular effect on the organism. The aim of study was to 
review the status of acid-base balance and ion concentration in arterial blood under com-
mon used general anesthesias in experiments in dependence on the light-dark (LD) cycle 
in spontaneously breathing rats. The experiments were performed using 3- to 4-month-
old pentobarbital(P)-, ketamine/xylazine(K/X)-, and zoletil(Z)-anesthetized female Wistar 
rats after a 4-week adaptation to an LD cycle (12 h light and 12 h dark). We concluded that 
P anesthesia disturbs LD dependence of acid-base balance compared to K/X and Z anes-
thesia, but LD differences in plasma ion concentrations are disturbed under all type of 
general anesthesia. P anesthesia is not the most appropriate type of anesthesia in rat chro-
nobiological experiments. It eliminated LD differences and also produces a more acidic 
environment, more pronounced hypercapnia and hypoxia than K/X and Z anesthesias. 
This should be taken into account because the altered internal environment may affect 
the activity of systems whose functions are primarily dependent on acid-base balance.

Keywords: Chronobiology, electrophysiology of the heart, general anesthesia, internal 
environment, rat

1. Introduction

At the end of the eighteenth and early nineteenth century, the white rat became the most 

commonly used experimental animal in biomedical research because it was recognized as 

the preeminent model of the mammalian system. Currently, rat models are widely used not 
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only because of their low costs but also for their ability to mimic several human pathologies. 

These models are used to analyze basic physiological mechanisms, for preclinical and toxi-

cological studies and/or the evaluation of therapeutic approaches [1, 2]. Rats are also useful 

model animals for studying acid-base balance, especially in relation to the cardiovascular and 

respiratory systems [1].

The design and development of experimental, in vivo, chronobiological animal models may 

help reveal some of the relationships between circadian rhythms and biological function, 

which is sometimes exceedingly difficult to study in humus. Popilskis et al. [3] referred to 

the fact that “nonhuman primates are important models for a wide variety of biomedical and 

behavioral research because of their close phylogenetic relationship to humans and they are 

useful models for experimental surgical studies.” However, in the design and development 

of such chronobiological in vivo rat models, several problems may be encountered. First is 

the fact that homeostatic regulatory mechanisms are not eliminated; therefore, the responses 

of the animal as a whole are only a reflection of these mechanisms at a particular time of day. 
Second is that the circadian rhythms of the observed function itself are not accounted for. 

Finally, the initial state of the internal environment and the parameters of the function being 

observed―after the induction of general anesthesia―are often not considered.

In vivo experiments require the use of appropriate anesthesia, which should be selected 

according to their particular effect on the organism. Moreover, an increasing number of rat 
and mice studies have acknowledged that the toxicity and efficacy of some anesthetic agents 
fluctuate in circadian dependence. For example, the toxicity of barbiturates is higher in the 
early morning [4], and mortality after halothane anesthesia moves from 5% during the day to 

76% at night [5]. The toxicity of althesin is highest around 10:00 h [6], and the effective time 
of althesin anesthesia is 20% longer at 12:00 h than at 06:00 h [5]. Nevertheless, anesthesia has 

played an important role in ensuring humane surgical/interventions in experimental animals, 

particularly in long-term in vivo protocols requiring animal survival. Presently, anesthetic 

practice is primarily based on physiology. The importance of the application of physiological 

principles in anesthesia has been reaffirmed and emphasizes the need for progress in systemic 
physiology [7].

2. Acid-base balance, anesthesia, and circadian rhythms

To survive, all living organisms need to maintain acid-base balance and oxygenation. The key 

role of homeostatic maintenance in all living organisms is not at odds with the observation that 

various biological parameters are dynamic. Rhythmic changes observed in humans that occur 

regularly play an important role in adaptation to dynamic environments. Chronobiology 

affects the activities and functions of the organs and tissues and is also a driver of anatomi-
cal, physiological, and molecular changes [8]. Control of acid-base balance depends on the 

concentration of H+ and HCO
3
− ions in bodily fluids. In healthy wakeful mammals, including 

humans, compensatory mechanisms exist for the maintenance of the acid-base balance neces-

sary for normal enzymatic activity, electrolyte diffusion, hemoglobin saturation, and heart 
contraction, all of which leads to normal functioning of vital organs [9].
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The problem of acid-base balance in anesthesia was addressed by several authors in the early 

decades of the twentieth century. It was then pointed out that patients under general anes-

thesia experienced metabolic acidosis due to the ineffective metabolism of carbohydrates in 
states of unconsciousness [10]. However, later works began to report that this acidosis has a 

respiratory origin due to disordered respiration [11, 12]. In 1955, Lucas and Milne [13] high-

lighted the respiratory origin of acidosis in 166 patients who underwent surgery. Respiratory 

acidosis has been shown to be detrimental during surgery, because it predisposes to shock 

and the occurrence of problem reflexes. It has been shown that in deep general anesthesia 
with spontaneous breathing, respiratory acidosis invariably occurs regardless of the anes-

thetic used. If controlled breathing is used, significant respiratory alkalosis is common with 
a normal arterial CO

2
 pressure of approximately 20 mmHg. For anesthesiologists, metabolic 

acidosis associated with hypothermia and circulatory arrest is particularly important in car-

diac and peripheral vascular surgery [14]. Monitoring of acid-base balance is recommended, 
especially for prolonged surgical procedures. There are studies indicating that patients under-

going inhaled anesthesia are affected by metabolic acidosis, which depends not only on the 
duration of the operation but also on the duration of anesthesia. As the duration of general 

anesthesia is prolonged, pH decreases significantly [15, 16]. This most likely also applies to 

animal models involving general anesthesia. Therefore, the choice of anesthetic and its effect 
on the respiratory and cardiovascular system is critical [17, 18].

Changes in the functional efficiency of these systems lead to changes in acid-base balance, 
and vice versa, changes in acid-base parameters affect the functional state of these systems. 
Similarly, changes in acid-base balance also reflect 24 h fluctuations in respiratory and car-

diovascular functions. Therefore, reference values for acid-base balance can cause problems 

because the parameters of acid-base balance and ion concentration reflect the current state of 
the organism at a given time. Results are often compared with average reference values and 

often regardless of their dependence on the circadian rhythm.

However, rats are typical night animals, which adapt to a natural or controlled artificial light-
dark (LD) cycles, which are the strongest synchronizers of endogenous rhythms. This means 

that their physiological functions exhibit circadian rhythmicity (i.e., fluctuate over a 24 h 
period).

If we focus on the respiratory system, data confirm that ventilation and metabolism in rats 
exhibit circadian rhythms and rebut the hypothesis that breathing is affected only by the cur-

rent state of wakefulness or sleeping. The effects of circadian rhythms on breathing in sleep 
and wakefulness, as well as the rate of metabolism, are additive in the rat [19]. Some measures 

that reflect the mechanical properties of the lungs, such as functional residual capacity, forced 
expiratory volume, and respiratory airways resistance, vary periodically with the time of day. 

Additionally, resting pulmonary ventilation, tidal volume, and respiratory rate are governed 

by circadian patterns. Circadian oscillations of the respiratory pattern occur independently of 
the daily rhythms of other activities or states of wakefulness or sleep. Recent measurements 

of breath patterns over an extended time period in intact animals have shown that circadian 
changes occur in a close time phase with changes in oxygen consumption, carbon dioxide 

production, and body temperature. However, none of these variables can fully explain the 

circadian pattern of breathing, the origin of which remains unclear [20]. Selected parameters 
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of the cardiovascular system (e.g., heart rate, blood pressure) in rats also demonstrate circa-

dian rhythmicity [21, 22], which are regulated by various mechanisms, including those part 

of the autonomic nervous system [23, 24]. Vulnerability of the rat myocardium to ventricular 

arrhythmias during normal pulmonary ventilation demonstrates a defined 24-h course, with 
higher vulnerability during the light period of the day. The acrophase, calculated using the 

population cosinor test, was 22:53, with a confidence interval from 19:20 to 00:28 [25].

The problem of circadian variation of acid-base balance parameters, therefore, remains. 

Circadian rhythms of acid-base balance and blood gases have been studied in humans, and 

the following acrophases were found: pH at 16:05; stHCO
3
− at 18:45 h; HCO

3
− at 22:55 h; buffer 

bases (BB) at 19:03; pCO
2
 at 2:47 pm; pO

2
 at 04:39 h; HbO

2
 08: 07 h; and Hb at 2:16 pm [26]. 

In rats placed in constant darkness, diurnal rhythms were found in glycemia, pH, and pCO
2
. 

Light pulses of 30 min duration increased blood glucose levels but did not affect plasma pH 
and pCO

2
. These circadian rhythms are most likely under the control of the suprachiasmatic 

nuclei in the hypothalamus, while the hyperglycemic reaction to light is not controlled by 

circadian clocks and, thus, may involve retinal inputs to areas of the suprachiasmatic nuclei 

that are not sensitive to visual inputs [27].

3. Ion concentrations, anesthesia, and circadian rhythms

Ion concentrations neither can be neglected nor is there question whether they are affected by 
anesthesia or whether their circadian rhythm is maintained under anesthesia. These states can 

change significantly, for example, in myocardial excitability, which also changes over a 24 h 
period and is dependent on ion distribution. Based on ion status in the body and their particu-

lar role, especially in electrophysiological processes occurring in vital tissues, determination 

is essential. Potassium, for example, is an essential mineral micronutrient and is the primary 

intracellular ion for all types of cells, providing vital maintenance of fluid and electrolyte bal-
ance in humans and animals [28, 29].

There is clear evidence of the presence of circadian rhythm in potassium and sodium concen-

trations [30–35]. In all the examined species in which these rhythms occur, overlap of the peak 

excretion of potassium and sodium occurs essentially at the same time during a 24 h period. 

It is assumed that the peak of sodium excretion corresponds to reduced sodium reabsorp-

tion, and the peak in potassium concentration corresponds to an increase in potassium secre-

tion. Studies involving squirrels, monkeys [36], and rats [37, 38] indicate that cyclic changes 

in potassium excretion are independent of changes in plasma potassium concentration. 

However, the correlation between plasma potassium and cyclic potassium excretion has been 

observed in humans [39]. Maintenance of stable plasma potassium ion (K+) concentration is 

extremely important because K+ controls muscle and nervous activity. In humans, urinary 

excretion of K+ peaks in the early morning (05:30–07:30 h), with a minimum at night (21:00–

05:30 h) [40]. Circadian rhythmicity has also been demonstrated in thoroughbred racehorses, 

in which plasma K+ exhibited a significant rhythm, with acrophase during dark periods [41]. 

Similar results were found in plasma K+ concentration in mice, in which based on measure-

ment of urinary excretion, investigators found that peak excretion occurred in the resting 
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period [42]. Circadian variation of plasma sodium ion (Na+) in the rat was also demonstrated 

in a study by Sotak et al. [43]. Electrogenic Na+ transport in the rat colon was significantly 
higher during the subjective night than during the subjective day. Transporters and channels 

operating under the control of NaCl absorption exhibit diurnal regulation, and the role of the 

intestinal clock in coordinating intestinal NaCl absorption is presumed.

Because the above described events occur primarily in the kidneys, renal function is influ-

enced by circadian clocks through two types of circadian inputs. The first is onset of renal 
rhythms through external circadian signals such as rhythms of hormones, food intake, activ-

ity, and body temperature. The second is the activity of the internal renal circadian clock. For 

example, Doi et al. [44] reported that the circadian time system controls the reabsorption of 

sodium in the distal nephron and in the collecting channel via the effect of aldosterone pro-

duction in the adrenal glands. On the other hand, Rohman et al. [45] reported that internal 

renal clocks directly regulate Na+/H+ activity in the proximal tubule. Gumz et al. [46] reported 

that the circadian repressor period 1 is able to regulate expression of epithelial sodium chan-

nels in the cells of the collecting channel. A study by Roelfsema et al. [47] reported that the 

maximum excretion of potassium, phosphate, and magnesium is only slightly affected by 
the dietary regimen, indicating that it depends mainly on endogenous rhythm. In contrast, 

the minimum excretion of these ions is determined by food intake. Maximum calcium levels, 
as well as minimal excretion, correlate with dietary regimen. The sodium excretion pattern 
differs from the calcium, potassium, phosphate, and magnesium patterns, indicating that it 
is controlled by another mechanism. Unless this fact is taken into account, we can encounter 

distortions in which the final results are interpreted from a state that does not correspond 
with the physiological state before administration of the anesthetic.

Sodium ions are necessary for the generation of nerve impulses and for the maintenance of 

electrolyte and fluid balance. In animals, sodium ions are necessary for these functions and 
for heart activity and certain metabolic functions [28]. Symptoms of hyponatremia can vary 

from none to severe [48, 49]. Mild symptoms include a decreased ability to process informa-

tion, headaches, nausea, and poor balance [50]. Severe symptoms include confusion, seizures, 

and coma [48, 49]. Hypernatremia can evoke a strong feeling of thirst, weakness, nausea, and 

loss of appetite [51]. Severe symptoms include confusion, muscle twitch, and bleeding in or 

around the brain [51, 52].

Calcium ions also play a vital role in the physiology and biochemistry of organisms and the 

cell. They play an important role in signal transduction pathways [53, 54], where they act 

as a second messenger in neurotransmitter release from neurons, in the contraction of all 
muscle cell types and in fertilization. Many enzymes require calcium ions as a cofactor, those 
of the blood clotting cascade being notable examples. Extracellular calcium is also important 
for maintaining the potential difference across excitable cell membranes, as well as proper 
bone formation. Symptoms of hypercalcemia may include abdominal pain, bone pain, con-

fusion, depression, weakness, kidney stones, or abnormal heart rhythm and cardiac arrest 

[55]. Hypocalcemia can be associated with disorders of hemocoagulation, numbness, muscle 

spasms, seizures, confusion, or cardiac arrest [56]. Chloride is an essential electrolyte located 

in all bodily fluids and is responsible for maintaining acid-base balance, transmitting nerve 
impulses, and regulating fluid in and out of cells.
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What is the effect of anesthetics on ongoing ion-dependent processes? Evidence from 
voltage-clamp studies of individual nerve fibers suggests that, for example, molecules of 
local anesthetic interact with sodium channels directly from the inside of the nerve mem-

brane. Anesthetics bind to sodium channels, which open during membrane depolarization 

and prevent normal sodium flow. Anesthetic molecules can separate from open channels, 
but not from channels that remain closed when the nerve is kept in the resting state. The 

“gate” properties, which regulate the opening and closing of sodium channels, are revers-

ibly adjusted during anesthesia [57]. Despite the significant advances in chronobiological 
studies, the mechanisms of circadian regulation of ion channels remain largely unknown. By 

exploring and understanding the circadian regulation of the ion channel in detail, progress 

in the development of therapeutic effective strategies for the treatment of sleep disorders, 
cardiovascular diseases, and other diseases associated with circadian desynchronization [58] 

will be developed.

4. Chronobiology of anesthesia

Anesthesia is often required in in vivo experiments to ensure comfort and to eliminate pain 

in animals. However, in small animals, the use of anesthesia can cause certain problems, and 

therefore, it is necessary to recognize the effect of anesthesia on the internal environment and 
to account for LD changes in the individual parameters of homeostasis. However, from exper-

imental practice, we know that experiments are performed mostly during working hours (i.e., 

during light). Thus, if rats are synchronized to the light and dark modes corresponding to 

the annual season, experiments are performed in the light period of their regimen day (i.e., 

during their inactive period, when many physiological functions are inhibited). Experiments 

are, therefore, essentially performed on “sleeping” animals, and questions regarding function 

during the active part of their regimen day will remain. However, most methodologies do 

not specify the time of day at which the experiments are performed or the factors responsible 

for changes in the particular monitored parameters over time. Instead, they focus primarily 

on current mechanical and metabolic changes, often regardless of the functional status of 

the body systems over a 24 h period, which may be a problem from a chronobiological point 

of view [59, 60]. Animal adaptation should, therefore, be taken into account, particularly in 

in vivo experiments.

Normative data regarding arterial acid-base balance and plasma ion concentrations would 

help to identify healthy animals suitable for experiments [1], and there are studies that have 

examined the reliability of these data [61]. Tables 1 and 2 summarize the ranges of some 

acid-base balance parameters and ion concentrations in arterial rat blood, which have been 

described in several published studies. However, the time at which the experiments were 

performed or the time of blood sampling for evaluation of blood gases, pH, bicarbonates, 

and some ions, or the synchronization of animals to the LD cycle, was not considered in the 

methodologies of these studies.

Although chronobiological studies investigating the interactions between general anesthesia 

and circadian rhythms are scarce, they all suggest that general anesthesia has a significant 
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effect on biological functions [78]. Some have pointed to the temporal dependence of some 

anesthetic effects on the [78] circadian rhythm. For example, in locomotor activity, a phase 

shift of circadian rhythm occurred after administration of selected anesthetics, indicating 

its dependence on time. Pentobarbital injections induced both advanced and delayed phase 

shifts in the circadian rhythm of movement activity in SK mice; however, no phase shifts were 

observed in any circadian time with pentobarbital injections in C57BL mice. This suggests 

Author(s) (year of publication) pH pCO
2
 (kPa) pO

2
 (kPa) HCO

3
− (mmol/l)

Lewis et al. [62] 7.43 5.47 12.13

Pepelko and Dixon [63] 7.446–7.486 5.24–5.74 11.77–12.71

Brun-Pascaud et al. [64] 7.45–7.49 4.2–4.99 11.26–12.72 24–27

Girard et al. [65] 7.46–7.47 4.57–4.71 12.72–13.02 25–25.8

Hess et al. [66] 7.43–7.51 3.33–4.67 12.2–15.4

Dettmers et al. [67] 7.38–7.46 5.19–5.99 9.4–11

Chi et al. [68] 7.27–7.37 4.78–5.77 13.8–17

Ohoi and Takeo [69] — 4.66–5.32 13.3–17.3

Schultz et al. [70] 7.35–7.45 3.33–5.32 10.6–14.6

Sun and Wainwright [71] 7.40–7.45 4.64–5.32 11.3

Forkel et al. [72] 5.16–6.39 12.85–15.48

Valenza et al. [73] 7.41–7.43 5.18–5.48 — 25.3–27.1

Subramanian et al. [1] 7.26–7.4 5.05–7.51 10.76–14.60 21.5–28.1

Peralta-Ramírez et al. [74] 7.2–7.46 5.62–6.20 — 23.2–25.8

Luo et al. [75] — 5.58–6.08 10.37–12.19

Range* 7.369–7.452 4.75–5.298 10.75–14.184 23.8–26.78

*Ranges were calculated as the mean value from the lower and upper limits of the ranges reported in these studies.

Table 1. Values of pH, blood gases, and bicarbonate in the arterial blood of rats published in previous studies.

Authors (year of publication) Na+ (mmol/l) K+ (mmol/l) Ca2+ (mmol/l) Cl− (mmol/l)

Menegon et al. [76] 142.1–143.9 3.6–3.8

Costa et al. [77] 138.9–141.1 4.74–4.86 6.72–7.38

Valenza et al. [73] 132.4–140 4.1–4.42 102.9–107.7

Subramanian et al. [1] 140.7–145.6 3.08–4.02

Peralta-Ramírez et al. [74] 134.6–137.3 3.93–4.25 1.23–1.29 104.4–108.1

Range* 137.4–140.7 3.86–4.21 ? 103.7–107.9

*Ranges were calculated as the mean value from the lower and upper limits of the ranges reported in these studies.

Table 2. Arterial plasma ion concentrations in the arterial blood of rats according to previously published studies.
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that differences in phase shifts after the use of pentobarbital are not quantitative but qualita-

tive [79], and that pentobarbital-induced phase shifts are not the result of increasing levels of 

activity [80].

In a study by Pang et al. [81], pentobarbital had no apparent effect on melatonin release and 
did not affect plasma levels of cerebral natriuretic peptide in rats, in which both hormones 
are at a relatively low level at 02:30 h [82]. Naguib et al. [83] described the effects of anes-

thesia on melatonin production. Anesthesia disrupts the circadian rhythm of melatonin, the 

major humoral transmitter of suprachiasmatic nuclei activities in the hypotalamus [84–86]. 

It appears that intravenous anesthetics with different behavioral profiles act on different 
and specific ligand-bound ion channels to create specific anesthetic behavior. Whether the 
anesthetic effect of melatonin is due to a direct effect on melatonin receptors remains largely 
unknown. Melatonin receptors, as such, are not commonly considered to be molecular targets 
for general anesthetic effects. However, there is evidence to suggest that the central effects 
of melatonin include at least partial facilitation of GABAergic transmission by modulation 

of GABA receptors [87–89]. In a study by Mihara et al. [90], pentobarbital demonstrated no 

effect on melatonin secretion or on movement activity, regardless of the time of dosing. On 
the other hand, in rats under general propofol anesthesia, the plasma concentration of mela-

tonin decreased over the first 4 h after anesthesia induction and increased after 20 h. Thus, 
general propofol anesthesia abolishes the circadian rhythm of melatonin in rats adapted to 

an LD cycle [91].

Results of a study by Kana et al. [92], involving the inhalation anesthetic sevoflurane, reported 
that sevoflurane had the greatest efficacy in suppressing mPer2 expression (mPER2 acts as a 
positive rhythm transcription regulator in hypothalamic suprachiasmatic nuclei) in the morn-

ing. The investigators proposed that, in the morning, this biochemical reaction is inhibited 

by anesthesia, which can lead to suppression of mPer2 expression and effectively reflect cir-

cadian clocks. However, at the phase delay of movement cycle activation, sevoflurane acted 
independently of time.

Prudian et al. [93] and Pelissier et al. [94] reported a disrupting effect of ketamine on cir-

cadian rhythms; however, this effect was associated only with a modification of acrophase, 
amplitude or mesor, without loss of daily rhythmicity. To date, however, there is no literature 

evidence supporting the effect of general anesthesia on acid-base balance and ion concentra-

tion in arterial blood, depending on circadian rhythmicity or LD cycles. This highlights the 

fact that different anesthetics may have different effects on the circadian rhythms of many 
parameters.

5. Aims

The specific objective of the present in vivo study is to investigate chronobiological aspects of 
the status of acid-base balance and plasma ion concentrations in arterial blood (i.e., existence 
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of possible circadian variations) and to determine whether there are differences between 
types of anesthesia after the immediate application of the most common anesthetics in in vivo 
rat experiments, pentobarbital (P), ketamine/xylazine (K/X), and zoletil (Z) in spontaneously 
breathing rats.

6. Materials and methods

The present study conformed to the Guide for the Care and Use of Laboratory Animals pub-
lished by the United States National Institutes of Health (NIH publication number 85–23, 
revised 1996). The study protocol was approved by the Ethics Committee of the Medical 
Faculty of Safarik University (Kosice, Slovak Republic) (permission numbers 2/05 and ŠVPS 
SR: Ro-4234/15–221).

The present study was performed using female Wistar rats (mean [±SD] weight 310 ± 20 g), 
3–4 months of age after a 4-week adaptation to an LD cycle (12 h light:12 h dark [intensity of 
artificial illumination 80 Lux]; 40–60% humidity; cage temperature 24°C; two animals/cage; ad 

libitum access to food and water). The effect of the light period on the monitored parameters 
was examined after adaptation to an LD cycle, with the light period from 06:00 to 18:00 h. The 
effect of the dark period was monitored after adaptation to the inverse setting of the LD cycle 
(i.e., with the light period from 18:00 to 06:00 h) (Figure 1).

The animals were divided into one of three experimental groups according to anesthetic agent 
used (Table 3). Approximately 20 min after administration of anesthetic agent, the spontane-
ously breathing animals were fixed supine to an experimental table. pH and blood gases from 
blood samples obtained from the femoral artery were examined using a blood-gas analyzer 

Figure 1. Scheme of adaptation to the light-dark (LD) cycle. Arrows indicate the time of the experiment. The experiments 
were performed once in each animal in the course of a single LD period (the first animal at 09:00 h and the second at 12:00 h).
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(ABL 800 Flex, Radiometer Medical, Copenhagen, Denmark) in the Department of Laboratory 
Medicine, Faculty Hospital Louis Pasteur in Kosice. The depth of anesthesia was estimated 
according to whether painful stimuli evoked noticeable motor or cardiovascular responses.

6.1. Statistical analysis

The data were analyzed using GraphPad InStat (GraphPad Software, USA) and presented as 

mean ± SD. ANOVA was used to detect significant differences within a single end point. The 
Tukey-Kramer test was used to identify significant differences between groups; p < 0.05 was 
considered to be statistically significant. The experiments were performed over the course of 
an entire year, and the results were averaged independent of season and estrous cycle.

7. Results

7.1. pH

Under P anesthesia, significant LD differences in arterial pH were not found, and values 
remained at the same levels. Under K/X (p < 0.001) and Z (p < 0.001) anesthesias, the pH was 
significantly higher in the dark (active) versus the light part of the rat regimen day (Table 4, 

Figure 2). In the light part of the day, the pH values reflect acidosis, compared with the range 
calculated from other authors (Table 1) in all types of anesthesia, and there was no signifi-

cant difference between individual types of anesthesia. In the dark part of the day, mean pH 
values were significantly higher in K/X (p < 0.05) and Z (p < 0.05) anesthesias compared with 
P anesthesia. The pH was acidic under P anesthesia, from normal to alkaline under K/X anes-

thesia and from acidic to normal under Z anesthesia.

7.2. pCO
2

Significant LD differences in pCO
2
 were found under K/X anesthesia but not under P and 

Z anesthesias (Table 4). In both light parts of the rat regimen day, significant hypercapnia 

Experimental 

period

Number of 

animals

Anesthesia Route of administration

Group 1 Light 16 Pentobarbital (40 mg/kg, SPOFA, Prague, Czech 

Republic)

Intraperitoneal

Dark 27

Group 2 Light 11 Ketamine (100 mg/kg, Narkamon) + xylazine 

(15 mg/kg, Rometar, SPOFA, Prague, Czech 

Republic)

Intramuscular

Dark 13

Group 3 Light 10 Zoletil (30 mg/kg, VIRBAC, France) Intraperitoneal

Dark 12

Table 3. Experimental groups.
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Pentobarbital Ketamine/xylazine Zoletil

Light Dark Light Dark Light Dark

Acid-base parameter

pH 7.31 ± 0.04 7.31 ± 0.07 7.33 ± 0.04 7.43 ± 0.14** 7.32 ± 0.05 7.38 ± 0.06***

pCO
2

8.58 ± 1.22 8.64 ± 1.49 6.76 ± 1.84 2.88 ± 0.72** 6.75 ± 0.93 6.65 ± 1.11

pO
2

8.36 ± 1.64 8.89 ± 2.86 7.17 ± 0.37 10.75 ± 1.84*** 10.06 ± 2.31 8.46 ± 2.08*

HCO
3
− 31.56 ± 2.73 31.31 ± 2.09 28.02 ± 4.57 15.55 ± 5.62*** 25.28 ± 1.3 28.8 ± 2.11***

stHCO
3
− 26.67 ± 1.72 26.55 ± 2.01 24.16 ± 1.24 19.22 ± 5.14* 22.95 ± 1.37 27.0 ± 1.91***

ctCO
2

32.61 ± 4.15 31.66 ± 3.48 28.4 ± 2.69 15.91 ± 5.93*** 22.58 ± 1.05 25.6 ± 2.23***

BE 3.66 ± 2.12 3.43 ± 2.38 0.06 ± 1.71 −5.23 ± 6.34* −1.41 ± 1.58 2.21 ± 1.34***

BB 51.56 ± 2.23 51.13 ± 2.82 48.34 ± 1.71 42.44 ± 6.65* 46.39 ± 1.56 50.21 ± 1.34***

ctO
2

9.22 ± 2.29 10.28 ± 2.72 11.76 ± 5.11 20.05 ± 0.56* 18.58 ± 1.34 19.17 ± 1.05

SatO
2

87.25 ± 8.86 87.8 ± 10.34 84.66 ± 2.96 93.29 ± 7.42** 89.96 ± 5.46 89.25 ± 4.64

Data presented as mean ± SD.*p < 0.05;
**p < 0.01; and
***p < 0.001 statistically significant differences between the light and dark parts of the rat regimen day. pCO

2
 (kPa) – partial pressure of carbon dioxide, pO

2
 (kPa) – partial 

pressure of oxygen; HCO
3

− (mmol/l) – bicarbonate; stHCO
3

− (mmol/l) – standard bicarbonate; ctCO
2
 – the sum of carbon dioxide bound to hemoglobin and carbon dioxide 

dissolved in plasma; BE (mmol/l) – base excess; BB (mmol/l) – total buffer bases; ctO
2
 – the sum of oxygen bound to hemoglobin and oxygen dissolved in plasma, satO

2
 

(%) – saturation of hemoglobin by oxygen.

Table 4. Values of acid-base balance parameters for selected type of anesthesia in the light and dark parts of the rat regimen day.
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occurred under P and Z anesthesias. More pronounced hypokapnia was found under K/X 
anesthesia in the dark part. In the light part, there was a significant difference between P and 
Z anesthesia (p < 0.001), with higher values in P anesthesia. In the dark part of the rat regime 
day, significant differences between all selected types of anesthesia (P vs. K/X [p < 0.001]; P 
vs. Z [p < 0.01]; and K/X vs. Z [p < 0.001]) were observed (Figure 3). Because the pCO

2
 ranges 

listed in Table 1 are considered to be physiological compared with these ranges, the mean 

pCO
2
 reported in this study is in the range of hypercapnia for each type of anesthesia in both 

light parts, except K/X anesthesia in the dark part of the rat day.

7.3. pO
2

Similar to pH, LD differences in pO
2
 were only significant in K/X (p < 0.001) and Z (p < 0.05) 

anesthesias (Table 4). However, it is interesting to note that for all types of general anesthesia 

used in this study, hypoxia was detected in spontaneously breathing rats in both light parts of 

Figure 3. pCO
2
 in the light (yellow columns) and dark (blue columns) parts of rat regimen day in pentobarbital (P)-, 

ketamine/xylazine (K/X)-, and zoletil (Z)-anesthetized rats. Data presented as mean ± SD. **p < 0.01, ***p < 0.001 were 
considered to be a statistically significant difference between individual types of anesthesia. Red dotted lines represent 
the ranges reported in Table 1.

Figure 2. pH in the light (yellow columns) and dark (blue columns) periods in pentobarbital (P)-, ketamine/xylazine 

(K/X)- and zoletil (Z)-anesthetized rats. Data presented as mean ± SD. * p < 0.05 was considered to be a statistically 
significant difference between individual types of anesthesia. Red dotted lines represent the ranges reported in Table 1.
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the rat regimen day. Statistically significant differences were found in a light part between P 
and K/X (p < 0.001), P and Z (p < 0.05), and between K/X and Z anesthesia (p < 0.001), with the 
lowest values under K/X anesthesia. In the dark part, more pronounced hypoxia was under Z 

anesthesia (p < 0.05) compared with K/X anesthesia. Differences between P and Z anesthesias 
were not found (Figure 4).

7.4. HCO
3
−

Significant LD differences in HCO
3
− were detected under K/X and Z anesthesias (Table 4). Taking 

into account that the normal range of bicarbonate (from Table 1) is from 23.8 to 26.78 mmol/l, 

increased levels were measured in P anesthesia, which would correspond to metabolic alkalosis 

in both light parts of the regimen. Normal levels were detected in Z anesthesia in both light 

parts. In K/X anesthesia, the levels of HCO
3
− were dependent on the cycle of alternating light 

and darkness. Under this type of anesthesia, in the light part, values moved around the normal 

range; however, in the dark part of the day, levels were reduced to what corresponds to meta-

bolic acidosis. Between individual anesthetics, significant differences were found, especially in 
the dark part of the rat regimen day (Figure 5).

7.5. BE, BB, and saturation of hemoglobin by O
2

Significant LD differences in total buffer bases (BB) and base excess (BE) were found in K/X 
and Z anesthesias (Table 4). BB moves from 40 to 60 mmol/l in all types of anesthesia and 

the BE from −8 to +12 mmol/l in both light parts of the rat regimen day under all types of 
anesthesia. Saturation of hemoglobin by oxygen was practically the same in all types of 

general anesthesia, and significant LD differences were not found except for K/X anesthe-

sia, with higher saturation in the dark part of the rat regimen day. Significant differences of 
acid-base parameters  between the single type of anesthesias are summarized in (Table 5).

Figure 4. pO
2
 in the light (yellow columns) and dark (blue columns) parts of rat regimen day in pentobarbital (P)-, 

ketamine/xylazine (K/X)- and zoletil (Z)-anesthetized rats. Data presented as mean ± SD. *p < 0.05, **p < 0.01, and 
***p < 0.001 were considered to be a statistically significant difference between individual types of anesthesia. Red 
dashed lines represent ranges reported in Table 1.
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7.6. Ions

LD differences for plasma Na+ concentration were not detected under any of the selected general 

anesthesias (Table 6). The highest Na+ concentrations were under P anesthesia in the both light 

parts of the rat regimen day (light P vs. K/X, p < 0.01; P vs. Z, p < 0.01; dark P vs. K/X, p < 0.01; 
and nonsignificantly higher compared with Z anesthesia). In the light part of the day, the highest 
plasma concentration of Na+ was recorded under P anesthesia and the lowest concentration in Z 

anesthesia but with increasing dispersion of values. Based on our findings, it appears probable 
that the distribution of Na+ ions is significantly influenced by Z anesthesia (Figure 6). Under P 

anesthesia, regardless of the light or dark part of the day, hypernatremia was detected. In K/X 

and Z anesthesia, mean plasma Na+ concentrations moved from hyponatremic to hypernatremic.

Significant (i.e., p < 0.01) LD differences in plasma K+ concentration were found only under 

K/X anesthesia, with higher values during the dark part of the rat regimen day (Table 6). 

pH pO
2

pCO
2

HCO
3
− stHCO

3
− BE BB ctCO

2
ctO

2
satO

2

Light

P-K/X 0.617 0.001 0.094 0.166 0.01 0.01 0.01 0.05 0.339 0.419

P-Z 0.869 0.05 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.401

K/X-Z 0.708 0.001 0.985 0.252 0.104 0.136 0.064 0.01 0.05 0.01

Dark

P-K/X 0.05 0.137 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.251

P-Z 0.05 0.707 0.01 0.01 0.559 0.001 0.001 0.001 0.001 0.730

K/X-Z 0.268 0.01 0.001 0.001 0.001 0.001 0.01 0.001 0.01 0.119

Bold values indicate statistically significant differences. P – pentobarbital P; K/X – ketamine/xylazine Z – zoletil; pCO
2
 

(kPa) – partial pressure of carbon dioxide; pO2 (kPa) – partial pressure of oxygen; HCO
3
-(mmol/l) – bicarbonate; stHCO

3
 

(mmol/l)-standard bicarbonate; ctCO
2
 – the sum of carbon dioxide bound to hemoglobin and carbon dioxide dissolved 

in plasma; BE (mmol/l) – base excess; BB (mmol/l) – total buffer bases; ctO
2
 – the sum of oxygen bound to hemoglobin 

and oxygen dissolved in plasma, satO
2
 (%) – saturation of hemoglobin by oxygen.

Table 5. P values reflecting the statistical significance of differences in acid-base parameters among individual types of 
anesthesia in the light and dark parts of the rat regimen day.

Figure 5. HCO
3
− in the light (yellow columns) and dark (blue columns) periods in pentobarbital (P)-, ketamine/xylazine (K/X)- 

and zoletil (Z)-anesthetized rats. Data presented as mean ± SD. **p < 0.01 and ***p < 0.001 were considered to be a statistically 
significant difference between individual types of anesthesia. Red dotted lines represent the ranges reported Table 1.
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Under this type of anesthesia, the mean value was significantly higher (p < 0.001) compared 
with both P and Z anesthesias in both light parts of the day (Figure 7). Moderate hyperkalemia 
was detected under P and Z anesthesias in both light parts of rat regimen day.

Similar to Na+, no significant LD differences in plasma Ca2+ concentrations were found 

(Table 6). Under P and Z anesthesias, plasma concentrations of Ca2+ were practically the 

same. In the light part of the day under K/X anesthesia, there was a significantly (p < 0.001) 
higher Ca2+ concentration versus P and Z anesthesias. In the dark part of the day under 

K/X anesthesia, the values were out of range of the ABL 800 Flex ion analyzer (Figure 8). 

Although significant differences were found between the different types of anesthesia in 
both light parts of the day, the animals were in relatively severe state of hypocalcemia, 

especially when under P and Z anesthesias.

A significant (i.e., p < 0.05) LD difference in plasma concentrations of Cl− was found only under 

Z anesthesia (Table 6). Hypochloremia occurred under P anesthesia in both light parts of the rat 

regimen day. Normochloremia to hyperchloremia occurred under both K/X and Z anesthesias in 

both light parts of the rat regimen day (Figure 9). In the dark part of the day under K/X anesthe-

sia, the values were out of the detection range of the ABL 800 Flex ion analyzer. Significant differ-

ences in ion concentrations  between the single type of anesthesias are summarized in (Table 7).

Ion P-light P-dark K/X-light K/X-dark Z-light Z-dark

Na+ 145.08 ± 2.13 143.24 ± 1.7 140 ± 6.74 134.17 ± 5.56 133.97 ± 16.06 140.8 ± 7.67

K+ 4.69 ± 0.31 4.91 ± 0.30 6.81 ± 1.42 8.85 ± 1.31** 5.00 ± 0.71 4.68 ± 0.50

Ca2+ 1.31 ± 0.05 1.33 ± 0.05 2.14 ± 0.07 — 0.99 ± 0.44 1.00 ± 0.38

Cl− 100.1 ± 1.21 100.51 ± 2.43 110.2 ± 2.39 — 104.8 ± 5.19 101.1 ± 5.1*

Data presented as mean ± SD.*p < 0.05,
**p < 0.01 statistically significant differences between the light and dark periods. P – pentobarbital P; K/X – ketamine/
xylazine Z – zoletil; Na+ − sodium, K+ − potassium, Ca2+ − calcium and Cl− chloride anions.

Table 6. Ion concentrations in arterial blood under individual types of anesthesia.

Figure 6. Plasma concentration of Na+ in the light (yellow columns) and dark (blue columns) periods in pentobarbital 

(P)-anesthetized, ketamine/xylazine (K/X)-anesthetized, and zoletil (Z)-anesthetized rats. Data presented as mean ± SD. 

*p < 0.05 and **p < 0.01 were considered to be a statistically significant difference between individual types of anesthesia. 
Red dashed lines represent ranges reported in Table 2.
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Figure 7. Plasma concentration of K+ ions in the light (yellow columns) and dark (blue columns) periods in pentobarbital 

(P)-anesthetized, ketamine/xylazine (K/X)-anesthetized, and zoletil (Z)-anesthetized rats. Data presented as mean ± SD. 

***p < 0.001 was considered to be a statistically significant difference between single types of anesthesia. Red dotted lines 
represent the ranges reported in Table 2.

Figure 8. Plasma concentration of Ca2+ ions in the light (yellow columns) and dark (blue columns) periods in pentobarbital 

(P)-anesthetized, ketamine/xylazine (K/X)-anesthetized, and zoletil (Z)-anesthetized rats. Data presented as mean ± SD. 

*p < 0.05, **p < 0.01 and ***p < 0.001 were considered to be a statistically significant difference between individual types 
of anesthesia. Red dashed lines represent ranges reported in Table 2.

Figure 9. Plasma concentration of cl− ions in the light (yellow columns) and dark (blue columns) periods in pentobarbital 

(P)-anesthetized, ketamine/xylazine (K/X)-anesthetized, and zoletil (Z)-anesthetized rats. Data presented as mean ± SD. 

***p < 0.001, **p < 0.01 were considered to be a statistically significant difference between individual types of anesthesia. 
Red dashed lines represent the ranges reported in Table 2.
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8. Discussion

The methodological character of this study was based on the chronobiological perspective of 

the initial state in acid-base balance and plasma ion concentration in arterial blood after appli-

cation of commonly used anesthetics in experiments, as well as to differences in parameters of 
the internal environment between used the selected types of general anesthesia. The methodi-

cal characteristics of this study highlight the potential risks of experimental design. Each of 

the acid-base balance parameters reflects the current state of the internal environment, which 
can significantly affect the functionality of the monitored system.

If we only hypothetically assume that experiments are performed during working hours (i.e., 

in the light [inactive], part of the rat regimen day), the values presented in Tables 1 and 2 are 

comparable with our results only from the light (inactive) part of the day. In the dark (i.e., 

active) part of the rat regimen day, the values―although significantly different among the 
individual types of general anesthesia―may be within the normal range but can also move 
out of range; this also applies to ion concentrations. In this case, therefore, comparisons are 

irrelevant.

8.1. pH and blood gases

The cardiovascular system is particularly sensitive to changes in the internal environment. 

For example, earlier work by Gerst et al. [95] did not detect an impact of respiratory acidosis 

and alkalosis on the threshold of heart vulnerability to ventricular fibrillation in dogs; how-

ever, together with hypoxia, they increased its threshold [96]. Conversely, metabolic acido-

sis reduces the ventricular fibrillation threshold, reduces the maximum diastolic potential, 
shortens the duration of action potentials, inhibits excitability, stimulates impulse conduction 

between Purkinje fibers and muscle tissue [97], worsens atrioventricular (AV) conduction, and 

inhibits AV node automation [98]. Acidosis affects the mechanical and electrical activity of the 

Na+ K+ Ca2+ Cl−

Light

P-K/X 0.01 0.001 0.001 0.001

P-Z 0.01 0.203 0.05 0.01

K/X-Z 0.202 0.001 0.001 0.01

Dark

P-K/X 0.01 0.001 — —

P-Z 0.246 0.770 0.01 0.687

K/X-Z 0.05 0.001 — —

Bolded values indicate statistically significant differences.

Table 7. Differences in plasma ion concentrations of individual types of anesthesia in the light and dark parts of the rat 
regimen day.
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mammalian heart. In this way, acidosis can dramatically prolong the delay of AV conduction. 

In combination with short cycle times, this may cause partial or complete AV block of conduc-

tion and, consequently, contribute to the development of bradyarrhythmias under conditions 

of local or systemic acidosis [99]. Hypoventilation in rats is associated with systemic acidosis, 

hypoxia and hypercapnia, decreased mesor, amplitude, as well as altered circadian rhythm of 

ventricular arrhythmia threshold from one peak to two peaks, with a smaller peak between 

15:00 and 18:00 h and higher between 24:00 and 03:00 h [25].

Our results indicate that P, K/X, and Z anesthesias cause acidosis, hypoxia, and hypercapnia, 

especially in the light period of the rat regimen day. In the dark part of the day, values are 

closer to physiological ranges, except for P anesthesia [100]. It also appears that  differences 
in pH, pO

2
, and pCO

2
 differ among each type of general anesthesia, depending on the light 

period. The decrease in pH, observed in all types of anesthesia, is probably the result of a 

contemporaneous depression of pulmonary ventilation and decrease in body temperature in 

the light as well as in the dark part of the rat regime day.

We have confirmed the conclusions of other work investigating the effects of anesthesia on 
pulmonary ventilation. Induction of anesthesia in rats using P significantly increases pCO

2
 

and TCO
2
, while pH is decreased [64, 101, 102]. P-induced anesthesia caused mild respiratory 

acidosis accompanied by an increase in arterial lactate levels. Urethane anesthesia leads to par-

tially compensated metabolic acidosis. Hypothermia reduces metabolic acidosis and hyper-

capnia induced by P anesthesia. In urethane anesthesia, no difference was observed between 
hypothermic and normal values [103]. Alfaro and Palacios [104] compared acid-base balance 

in mildly hypothermic (30°C) and seriously hypothermic rats (20°C). The authors found that in 
the first group of hypothermic animals, respiratory alkalosis occurred with an increase in pH 
from 7.476 to 7.546 and a decrease in arterial bicarbonate from 22.9 to 16.8 mmol/L; in the sec-

ond group, from 7.484 to 7.563 with a bicarbonate drop from 20.7 to 14.6 mmol/l. This pattern 
was clearly different in rats under P anesthesia (mild respiratory acidosis) and under urethane 
anesthesia (metabolic acidosis). Similar results were reported by Gaudy et al. [105]. Anesthesia 

may interfere with the development of processes that lead to the acid-base balance pattern 
observed in conscious animals. In 1997, Alfaro and Palacios [106] supplemented that their 

observations regarding the blood pH of normothermic anesthetized rats (body temperature 

Tb = 37°C) was also associated with an increase in plasma anions (lactate and Cl−). More severe 
metabolic acidosis in rat blood were detected in urethane-induced hypothermia (Tb = 32°C).

Changes observed in rats anesthetized with the thiobarbiturate inactin were similar to urethane 

anesthesia, although they were generally less severe. Most subjects treated with barbiturates 
were significantly hypercapnic. Urethane anesthesia was characterized by a higher and more 
stable heart rate and greater pulse pressure. Arterial carbon dioxide and bicarbonate values in 

the urethane group were significantly lower at all sampling times than those obtained in the 
barbiturate groups [107]. In connection with hypercapnia, it is also interesting to note that mild 

hypercapnia increases peripheral tissue oxygenation in healthy individuals, which can improve 

resistance to infections after surgical intervention. Partial pressure of tissue oxygen, blood flow 
rate through the skin, cardiac index, and saturation of muscle oxygen increases linearly with 

partial CO
2
 pressure. The observed difference in peripheral oxygenation is clinically important 

because previous work has suggested that a comparable increase in tissue oxygenation reduces 

the risk of infection from 7–8%, to 2–3% [108].
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Considering changes in blood gases from a chronobiological perspective, Ohshima et al. [109] 

and Iwase et al. [110] reported interesting results regarding the effects of histamine on ventila-

tion and the balance of energy metabolism via H1 receptors in the brain. The hypothesis was 

tested on mice as to whether the ventilatory response to hypoxia fluctuated between the light 
and the dark period and whether histamine H1 receptors are necessary for circadian variation. 

The results demonstrated that during hypoxic conditions, minute ventilation in wild type 

mice increased during the dark period. Hypoxia reduced metabolism, but O
2
 consumption 

and CO
2
 elimination were higher in the dark period. In H1 receptor knockout mice, changes 

in minute ventilation were minimal because minute ventilation was relatively increased with 

respect to O
2
 consumption in the light period. In this group, HCO

3
− and BE were elevated in 

arterial blood, and serum levels of ketolate were increased, indicating metabolic acidosis. The 

results of that study assume that minute ventilation varies between the light and dark periods, 

and that H1 receptors play a role in the circadian variation of minute ventilation through acid-

base balance control and metabolism in mice [109, 110].

Rectal temperature in rats measured before administration of anesthetic agent varies 

depending on the LD cycle, with significantly higher values in the dark (active) part of the 
day, indicating the preservation of the circadian rhythm of body temperature. After anes-

thetic administration, a significant drop in rectal temperature (rectal temperature before 
anesthetic administration versus rectal temperature 15 min after induction of anesthesia 

[p < 0.001]) has been observed under all types of anesthesia in both light parts of the rat 
regimen day [100]. Interestingly, LD differences in K/X and Z anesthesias were maintained, 
except for P anesthesia. These results confirm the well-known fact that thermoregulation is 
impaired under general anesthesia [111]. This basic process occurs when the body core tem-

perature is redistributed to the surface of the skin by anesthetic-induced vasodilation and 

depression of hypothalamic thermoregulatory centers [112]. Thus, the loss of LD differences 
under P anesthesia confirms this fact, and that P likely also acts on the suprachiasmatic 
nuclei of the hypothalamus.

Sustained anesthesia and hypothermia may be required under certain conditions of critical 

care. Data suggest that mild hypothermia (35–33°C), in combination with sustained anesthe-

sia, may reduce the need for high levels of breathing volume and respiratory rate without 

significant changes in arterial oxygenation and acid-base balance. The risk for barotrauma in 
ventilated rats exposed to conditions similar to critical care could, therefore, be reduced by 

using lower volume/pressure ventilation in the presence of mild hypothermia and P anesthe-

sia [113]. Moderate hypothermia in rats induced by sustained P anesthesia reduces ventila-

tion but without a change in arterial oxygenation or acid-base balance, measured at normal 

body temperature. In theory, observations in spontaneously breathing rats indicate that a 

combination of moderate hypothermia and anesthesia can be safely used to maintain ade-

quate ventilation with relatively low ventilation. It is assumed that such a maneuver, when 

used during mechanical ventilation, can prevent secondary pulmonary damage by allowing 

a lower adjustment of the volume and pressure of the ventilator [114].

Metabolism and pulmonary ventilation change over a 24 h period and exhibit circadian fluc-

tuations. Because their changes are always synchronic, blood gases can remain stable in a 

narrow range. Piccione et al. [115] monitored arterial blood gases, pH, body temperature and 

respiratory rate in 5 cows and detected a circadian rhythm only for pCO2. In cows, blood 

Chronobiology of Acid-Base Balance under General Anesthesia in Rat Model
http://dx.doi.org/10.5772/intechopen.75174

125



gases remain highly stable for 24 h. Daily body temperature oscillations, respiratory rate, and 

probably many other factors affecting metabolism and pulmonary ventilation do not exclude 
excellent blood gas homeostasis.

If respiratory acidosis is induced after anesthesia, it is logical to adjust pulmonary ventila-

tion so that the acid-base balance is adjusted to a physiological range. However, there is a 

problem with how to set up artificial ventilation to adjust acid-base balance parameters. The 
method of artificial ventilation for rats under general anesthesia has been in use since 1940 
[116–119]. This can be a suitable procedure for creating experimental models observing the 

effect of pulmonary ventilation disorders on various functional systems. However, artificially 
controlled ventilation parameters using room air should be adequate to maintain acid-base 

balance. There are several types of normal artificial ventilation in rats that can be applied to 
maintain acid-base balance (Table 8).

The selection of anesthetic agent may be problematic with respect to the respiratory and car-

diovascular systems [17, 18]. Changes in the functional performance of these systems lead to 

changes in acid-base balance. Conversely, changes in acid-base balance also reflect 24 h fluctua-

tions in respiratory and cardiovascular function. Therefore, acid-base balance reference values 

may be problematic because acid-base balance only reflects the current state of the organism at 
a particular time of day. The results are then often compared with the average reference values, 

often regardless of dependence on the circadian rhythm of changes in acid-base balance. If both 

pH and partial pressures of the respiratory gases depend on respiratory and cardiovascular 

Author (year) Respiratory rate, breaths/min Tidal volume, ml/100 g

Fagbeni et al. [120] 54 2

Richard et al. [121] 60 1

Guarini et al. [122] 55 2

Lott et al. [123] 70 1.5–2

Ohoi and Takeo [69] 40–60 1

Godin-Ribuot [124] 54 1.5

Oosting et al. [125] 60 3

Schultz et al. [70] 65–70 Not determined

Sun and Wainwright [71] 54 2

Häfner et al. [126] 30 Not determined

Tanno et al. [127] 44–55 1.5–2.5

Ravingerova et al. [128] 65–70 1.2

Wang et al. [89] 60–70 1.2

Neckař et al. [129] 65–70 1.2

Neckař et al. [130] 69 1.2

Table 8. Previously published artificial lung ventilation parameters to maintain normal acid-base balance ranges in vivo 
in rats.
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activities and demonstrate circadian rhythmicity in these systems, acid/base balance parameters 

will also exhibit a parallel circadian rhythmicity. The functional efficiency of the respiratory and 
cardiovascular systems is greater during periods of activity; therefore, pO

2
 will also be higher at 

these times, and CO
2
 output will be increased. pH depends on changes of pCO

2
. The question, 

therefore, remains: to what extent are changes in acid-base balance parameters still acceptable in 

in vivo rat models? Additionally, to what extent should the dependence on circadian rhythms 
be accounted for in the design of in vivo experiments involving general anesthesia?

8.2. Acid-base balance and ion concentration

When considering parameters of acid-base balance, the most important is bicarbonate concen-

tration. In general, given the impact of some processes on acid-base balance, it is advisable to 

especially consider changes in the concentrations of the major ions and their equilibrium to 

evaluate changes in the concentration of bicarbonate. The change in pH is secondary due to the 

change in the Henderson-Hasselbach equation. Eventual loss or addition of protons is immedi-

ately equalized by buffering mechanisms, and the capacity of which are significant with regard 
to regulating proton concentration.

Bicarbonate content in serum or plasma is a significant indicator of electrolyte dispersion and 
anion deficiency. Together with pH determination, bicarbonate measurements are used to 
diagnose and treat many potentially serious disorders associated with acid-base imbalance(s) 

in respiratory and metabolic systems. Concentration of bicarbonate reflects the acidity or 
alkalinity of the blood. In metabolic acidosis, the bicarbonate concentration is low, and in 

metabolic alkalosis, bicarbonate concentration is high. The actual concentration of bicarbon-

ate reflects not only the metabolic component but also the respiratory component. For control 
of the respiratory component, standard bicarbonate is a better measure of the metabolic com-

ponent than actual bicarbonate. Standard bicarbonate is inverse to the standard pH, which 

is pH under standard conditions (pCO
2
 = 40 mmHg, temperature 37°C, and 100% oxygen 

saturation).

8.3. Bicarbonate and acid-base balance

The relationships between acid-base balance and ion management are closely connected. The 

main reason is that one part of the bicarbonate buffer has no charge (H
2
CO

3
 [i.e., CO

2
]), while 

the second component is charged (HCO
3
−). Therefore, the bicarbonate anion must be in equi-

librium with other ions to preserve electroneutrality in the internal environment. For partial 

pressure of CO
2
, this does not apply, and therefore, its regulation can be largely independent. 

According to the Henderson-Hasselbach equation, the pH of the internal environment depends 

on the ratio of bicarbonate concentration to pCO
2
. Regarding the regulation of most major ions 

(Na+, K+, Cl−), these regulations are very sensitive but have only limited possibilities for rapid 

influence, resulting in serious functional consequences for the organism. In this case, if the 
concentration of a particular ion alters some pathological process, this change must be compen-

sated by a change in the concentration of another ion to maintain electrical neutrality. Often, 

this compensation is afforded by changes in bicarbonate concentration. Biocarbonates, regard-

less of blood pH, alter the transcellular distribution of K+, reflecting the utility of hydrogen 
carbonate therapy in hyperkalemia, even in conditions of compensated blood pH [131].
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Our measurements indicated elevated levels of bicarbonate under P anesthesia, which, com-

pared with the normal range (23.8–26.78 mmol/l in rats), would correspond to metabolic alka-

losis, unless there were changes in other parameters of acid-base balance in both light parts of 

the day. However, under P anesthesia, we also found relatively severe acidosis, hypercapnia, 

hyperkalemia, and hypochloremia, which could signal the compensation of this state or the 

replacement of chlorides in the blood by bicarbonates. In this regard, P anesthesia induces 

more serious disruption of acid-base balance, independent of the cycle of alternating light and 

darkness. In K/X and Z anesthesias, these changes were more subtle, and when LD differences 
appear to be preserved, we assume that circadian rhythms are also preserved, and therefore, 

from a chronobiological point of view, these are appropriate types of general anesthesia.

8.4. BE and BB

BE relates to a true excess of base in the range (above or below) of the total BB. Normally, BB 

is 48–49 mmol/l. If BB is 40 mmol/l, it means that the buffer base was decreased by almost 
8 mmol/l or BE is −8 mmol/l (also known as base deficiency). If BB is 60 mmol/l, it indicates 
that the base of the buffer is increased by approximately 12 mmol/l, or BE is +12 mmol/l. Fifty 
percent of BB is produced by bicarbonate and 25% by other buffers (proteins, phosphates, sul-
fates). In our experiments, BE and the total BB moved within the normal ranges, which would 

mean that buffering capacity was sufficient not only in the dark but also in the light period of 
the rat regimen day and under all types of anesthesia.

8.5. Ions

8.5.1. Potassium and acid-base balance

As early as the 1950s and 1960s, the relationship between extracellular potassium, bicarbon-

ates, and blood pH was recognized. Relatively small changes in potassium concentration in 

the cell compartment can result in large changes in plasma potassium concentration. As a 

result, plasma potassium concentration may be reduced, normal, or elevated, despite normal 

stores of potassium in the body. The main regulator of transcellular potassium distribution 

is the pH of the extracellular fluid, which is reflected in blood pH. It was demonstrated that 
lowering the pH of blood increases serum potassium levels and vice versa [132–135]. It has 

recently been found that the concentration of extracellular bicarbonate―apart from its effect 
on extracellular pH―affects a wide range of metabolic reactions [136–139]. During this time, 

there was contradictory evidence that changes in blood hydrogen carbonate concentration in 

isohydric conditions alter plasma potassium concentration [140–143] in normokalemia, and 

no information regarding the role of bicarbonates in hypokalemia or hyperkalemia was avail-

able. At the increase of pH about 0.1, kalemia is increased about 0.5–0.6 mmol/l.

In acidemia, a number of “redundant” protons will enter the cells in which they will buffer. 
Consequently, a cation is transferred through the plasma membrane, which would in itself 

lead to a change in membrane potential. Instead of the proton, another cation is transferred 

from the intracellular to the extracellular space. Because the conductivity of the plasma mem-

brane is highest for K+ ions, primarily potassium ions will be transferred. Acidemia in this 

scenario leads to hyperkalemia. The total amount of potassium in the body does not increase, 
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and it only changes its distribution between compartments. From a whole-body perspective, 

potassium depletion will be a consequence of acidity, because its renal loss increases (so that 

heavier and longer-lasting acidosis will be accompanied by depletion of potassium at the 

current hyperkalemia). Similarly, alkalemia is accompanied by hypokalemia. However, the 

entire mechanism also works inversely: hyperkalemia causes acidosis and hypokalemia, on 

the other hand, leads to alkalosis. Simplified, we can imagine that potassium cations that 
move through the plasma membrane are exchanged for protons.

From the chronobiological point of view, however, this was not confirmed by our results. In 
each type of anesthesia, hyperkalemia was recorded, irrespective of whether the measure-

ments were made in the light or dark part of the rat regimen day. Acidosis occurred only in 

the light part of the day under each type of anesthesia, while in the dark part of the day, the 

pH values also moved within normal ranges, but only under K/X and Z anesthesias These 

findings should, therefore, be taken into account to avoid application of particular anesthesias 
in the light part of the rat regimen day because positive correlations between pH and plasma 

K+ concentration have been calculated for all types of anesthesia (P light r = 0.41, P dark = 0.16; 

K/X light r = 0.57, K/X dark r = 0.01, Z light r = 0.79, dark r = −0.22). What this means that the 
increase in plasma concentration K+ shifts the pH to the alkalinity, respectively. Alkalosis 

increases K+ leakage if the rat is in general anesthesia. In the dark part of the rat regimen day, 

no pH dependence on K+ was found under all types of anesthesia.

If we generally consider the consequences of changes in plasma K+ concentration affect-
ing membrane processes, they touch primarily exciting tissues. In case of hyperkalemia, 

the concentration gradient decreases so that potassium escapes from the cell more slowly. 

However, the resting membrane potential becomes less negative and, therefore, in the 

initial phase of hyperkalemia, excitability increases (the resting potential is closer to the 

threshold). Increasing the potassium concentration in the extracellular environment by 

increasing the potential leads to blockage of voltage-gated Na+ channels, and consequently, 

excitability decreases.

Considering the electrophysiology of the heart, hyperkalemia affects the production and con-

duction of impulses, which can lead to ventricular fibrillation through several mechanisms:

• the concentration gradient of K+ in the direction from the intracellular into extracellular 

space is the key factor determining the value of the resting membrane potential. Increases 

in the extracellular K+ concentration leads to a decrease in the gradient to a decreased out-

ward K+ current and thus to a decrease in the negativity of the membrane potential. In the 

myocardium, the resting membrane potential is reduced from −90 to −80 mV.

• at decreased negativity of the resting membrane potential, the difference between resting 
and threshold potential is lower and depolarization is more easily induced. If the nega-

tivity of the resting membrane potential continues to fall, the negativity of the threshold 

potential also begins to decrease.

• the value of the resting membrane potential also determines the number of sodium chan-

nels that open during depolarization to allow Na+ input into the cell. The lower the nega-

tive resting membrane potential, the less the Na+ channels are activated and depolarization 

occurs slower.
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• repolarization is the result of opening K+ channels and the subsequent outward K+ current. 

For unclear reasons, the amount of K+ from the cell paradoxically increases with increasing ex-

tracellular K+ concentration. In hyperkalemia, therefore, acceleration of repolarization occurs.

Electrolyte abnormalities are becoming an increasingly important cause of arrhythmias. In 

humans monitored using electrocardiography, spiky and narrow T-waves (acceleration of repo-

larization) are the most common manifestations, QRS complex enlargement and prolongation 

of the PQ interval (slow depolarization). If hyperkalemia deepens, atrial activity may disappear, 

and ventricles are stimulated from AV node with resulting bradycardia. In severe hyperkalemia, 

the QRS complex expands, with consequent risk for ventricular fibrillation and cardiac arrest.

Although electrocardiographic (ECG) changes in hyperkalemic rats are poorly understood, it 

is clear that excess plasma potassium may also alter cardiac excitation. In addition, the effects 
of hyperkalemia on ECG in rats may differ from other species that do not have ST segments 
and longer QT intervals. At testing, the effects of two local anesthetics (bupivacaine and lido-

caine) at normocalcemia and hyperkalemia were found that hyperkalemia with concentra-

tion 9.0 mmol/l had little effect on heart rate or AV conduction in the absence of bupivacaine 
or lidocaine. Nevertheless, the effect of local anesthetics on slowing the ventricular rate was 
significantly enhanced. For bupivacaine, ventricular deceleration to 50% vs. control, during 
hyperkalemia, was performed almost completely through inhibition of AV conduction whereas 

for lidocaine through not only inhibition of AV conduction but also atrial rate. Regardless of the 

mechanism, hyperkalemia of this grade increased the ventricular slowing effect of bupivacaine 
and lidocaine [144]. Kuwahara et al. [145] described changes in rat ECG in dependence on 

K+ levels. In moderate hyperkalemia, an increased amplitude of T wave occurred. The duration 

of the PR interval and the QRS complex was slightly reduced, and the P wave disappeared in 

most rats at potassium levels above 8.0 mmol/l. In advanced hyperkalemia (plasma potassium 

concentration higher than 7.5 mmol/l), conduction was suppressed in all parts of the heart.

As for hypokalemia, except impacts on other functions and systems, heart failure and cardiac 

rhythm are typical of cardiac symptoms. On the ECG, low, flat, or inverted T-waves and prolonga-

tion of the QT interval can be seen. Supraventricular and ventricular extrasystoles occur episodically.

8.5.2. Calcium and acid-base balance

Similarly as the proton is exchanged for the potassium cation, a calcium cation is also exchanged 

for protons. Plasma proteins play a key role in this mechanism. Blood plasma proteins behave 

as buffers, primarily due to carboxyl groups and amino groups. As regard the carboxyl groups, 
these groups are in protonic, nondissociated state (-COOH) in the acidic environment. In the 

alkaline environment, they begin to buffer and their dissociation into the carboxylate -COO− 

occurs, which is able to bind very effective especially Ca2+. It means that in the case of acidosis, 

the -COOH does not change to -COO−, and in the case of alkalosis, it dissociates to -COO− and 

H+ and the calcium binds to -COO−.

It can also be said that the pH depends on what part of the calcium will be ionized and what 

part will be nonionized. The practical consequence is that alkalosis leads to ionized hypocal-

cemia, acidosis, on the contrary, to ionized hypercalcemia. Although total calcium does not 

change, we have to realize that ionized calcium is metabolically active, especially when it 

comes to membrane processes.
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Hypercalcemia is a state when the serum Ca2+ level is greater than 2.8 mmol/l and ionized 

Ca2+ is greater than 1.4 mmol/l. At values above 4 mmol/l, “chemical death” may occur when 

cardiac arrest may occur. Hypertension and arrhythmias occur at the hypercalcemia. On the 

ECG, QT interval is shortened. Hypocalcemia is accompanied by an increase in neuromuscu-

lar excitability, but myocardial contractility decreases.

8.5.3. Chlorides and acid-base balance

During Cl− loss (e.g., vomiting), the concentration of the other major ions is not altered, and for 

maintenance of the electrical neutrality, the anion deficiency is supplemented by an increase 
in the bicarbonate concentration. pCO

2
 does not change; therefore, ventilation is maintained 

and hypochloremic alkalosis develops. In summary, substitution of chlorides in the blood 

occurs at the expense of hydrogen carbonates.

9. Conclusions

After summarizing the results from the analysis of acid-base balance parameters (Table 6), 

we concluded that there are differences in the final status of the rat internal environment that 
depend on the LD cycle and on the type of anesthesia.

In the light part of the day, under P anesthesia, the rats are in a state of acidosis, hypercapnia, 

and hypoxia, and elevated levels of bicarbonate have been reported. Similarly, it is also in the 

dark, but with mild acidosis, hypercapnia and hypoxia with a moderate decrease to normal 

pO
2
 values but with elevated levels of bicarbonate. Saturation of hemoglobin by oxygen was 

at the same level in both light parts of the rat regimen day, and at approximately 87%, the effi-

ciency of the buffer system was not impaired because the values were within the normal range.

Under K/X anesthesia, we found a dependence on LD cycle in all monitored parameters. In the 

light part of the day, unambiguous acidosis, pCO
2
 ranging from normocapnia to hypercapnia, 

pO in the hypoxic range, relatively large range of bicarbonate (from reduced to increased lev-

els) levels and lower saturation (around 85%) were observed. In the dark part of the day, from 

normal to alkaline pH, hypocapnia, moderate decreased to normal pO
2
 but with a reduced 

level of bicarbonate. Different values were in saturation of hemoglobin by oxygen, where 
higher saturation was during the dark (active) part (around 90%). The efficiency of the buffer 
system moved within the normal range in both light parts of the day.

Under Z anesthesia, the status was as follows: acidosis, hypercapnia, hypoxia to normoxia, and 

normal levels of bicarbonate in the light part of the day. In the dark part of the day, the state of 

the internal environment was from acidic to normal, hypercapnia, and pO
2
 moved from mild 

hypoxia to normoxia at a normal to moderately elevated level of bicarbonate. The saturation of 

hemoglobin by oxygen fluctuated around 89% in both light parts of the rat regimen day, and 
BB and BE were also in the normal range; thus, buffering capacity remained intact.

It was concluded that P anesthesia is not the most appropriate type of general anesthesia to use 

in chronobiological rat models. It is likely to produce a more acidic environment than K/X and 

Z anesthesias, and although an LD difference in P anesthesia was not recorded, the pH values 
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were the lowest in both light parts of the rat regimen day compared with K/X and Z anesthesias. 

Initially, acidosis is induced, irrespective of the synchronization of animals with the LD cycle, 

and therefore, it is not possible to monitor periodic changes in the functions of individual sys-

tems that are primarily dependent on changes in extracellular pH. As a result, P probably and 

immediately reduces either the activity of the buffer systems or inhibits the regulatory mech-

anisms associated with the maintenance of isohydria, independently of the LD cycle. In this 

regard, K/X and Z anesthesias may be more appropriate for general anesthesia because the arte-

rial pH varies within the range of isohydria. This assumption is only valid if the rat experiments 

are performed under K/X and Z anesthesia in the dark (i.e., active) parts of the day.

Hypoxia modifies circadian oscillations of important variables, such as body temperature 
and metabolism, and may lead to the expectation that the rhythms of many functions are dis-

rupted by hypoxia according to their relationships and association with the primary variables 

[146]. This effect appears to be apparent in rats under P anesthesia. From a chronobiological 
point of view, P anesthesia, therefore, is not a suitable form of general anesthesia. Using this 

type of anesthesia, with the exception of the initial hypoxia and hypercapnia, the LD differ-

ences in pO
2
 and pCO

2
 are eliminated. As a result, the effect of initial hypoxia and hypercap-

nia on the circadian rhythms of oxygen-dependent systems, immediately after administration 

of anesthetics, can significantly affect the end result.

Based on the results of this study, we concluded that general anesthesia affects the circadian 
fluctuation of arterial acid-base balance and plasma concentrations of some ions (Table 9). 

This should be taken into account, and experiments should start with a normal range of acid-

base balance. Even at the beginning of the experiment, the altered internal environment may 

affect the activity of systems whose functions are primarily dependent on acid-base balance.

Anesthetic Status

Pentobarbital

Light Acidosis, from hypoxia to hypercapnia, increased HCO
3
, hypernatremia, hyperkalemia, 

hypocalcemia, hypochloremia

Dark Acidosis, from normoxia to hypoxia, hypercapnia, increased HCO
3

−, hypernatremia, from 

normokalemia to hyperkalemia, hypocalcemia, from hypochloremia to normochloremia

Ketamine/xylazine

Light Acidosis, hypoxia, from normocapnia to hypercapnia, from decreased to increased level 

of HCO
3

−, from hyponatremia to hypernatremia, hyperkalemia, hypocalcemia, from 

normochloremia to hyperchloremia

Dark From normal pH to alkalosis, from hypoxia to normoxia, hypocapnia, decreased HCO
3

−, from 

hyponatremia to normonatremia, hyperkalemia, hypocalcemia,

Zoletil

Light Acidosis, from hypoxia to normoxia, hypercapnia, normal HCO
3

−, from hyponatremia to 

hypernatremia, from hypokalemia to hyperkalemia, hypocalcemia, from hypochloremia to 

hyperchloremia

Dark From acidosis to normal pH, from hypoxia to normoxia, hypercapnia, from normal to 

increased HCO
3
, from normonatremia to hypernatremia, hyperkalemia, hypocalcaemia, 

hyperchloremia

Table 9. Internal environment under general anesthesia dependent on the light-dark cycle in the rat.
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