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Abstract

Noninvasive brain stimulation (NIBS) technologies have been applied to study brain phys-
iology and, more recently, have been recognized for their therapeutic potential as an adjunc-
tive treatment for various neurologic and psychiatric disorders. Transcranial magnetic
stimulation (TMS) and transcranial electric stimulation (tES) are two of the most studied
NIBS modalities in Parkinson’s disease. They are non-systemic and relatively safe. Most
therapeutic trials have been conducted to ameliorate motor symptoms of Parkinson’s dis-
ease (PD) with overall positive results using various stimulation modalities and methods.
Notwithstanding significant results, evidence has not yet been compelling mainly due to
small-size studies, lack of standardization of methodologies and other study design limita-
tions. NIBS hold promise for treatment of PD symptoms and PD related complications.
Large, well designed clinical trials are needed to corroborate these positive findings and
inform its durability and the overall clinical relevance for the treatment of PD.

Keywords: neuromodulation, brain stimulation, electric stimulation, TMS, direct current,
therapy, Parkinson’s disease

1. Introduction

Parkinson’s disease (PD) affects as many as 1.5 million people in the United States, with about

60,000 additional patients newly diagnosed each year. PD is a chronic, progressive syndrome

in which a large number of dopaminergic neurons located within the basal ganglia circuitry

degenerate. This dopamine depletion contributes to clinical motor symptomatology, including

bradykinesia, tremor, rigidity, postural instability and gait dysfunction. Despite currently

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



available treatments, PD symptoms progress along with cortical dysfunction, leading to cumu-

lative disability. The pharmacotherapy of PD is based on the restoration of dopamine levels

through the administration of its precursor, levodopa (L-DOPA). Less powerful therapeutic

strategies involve the direct stimulation of post-synaptic dopaminergic receptors through

dopamine-agonist compounds or the inhibition of dopamine breakdown through catabolic

inhibitors. A good control of symptoms is commonly obtained, leading to a good functional

recovery, as well as to a general betterment of quality of life. Nonetheless, the results are

maintained for a limited period, and, after a few years, certain complications related to the

medication may arise, thus limiting the tolerability and the effectiveness of the treatment. At

this point, doses are often limited by side-effects such as drowsiness, orthostasis, nausea,

confusion, hallucinations, and the emergence of motor complications like fluctuations and dyski-

nesias. Furthermore, some symptoms known to be poorly responsive to available medications,

such as freezing of gait, balance impairment and postural abnormalities, tend to emerge as the

disease progresses. In the last decade, different therapeutic strategies have been developed in the

effort to address the advanced stage of the disease, typically characterized by a progressive

functional decline and decrease in quality of life with an unsatisfactory response to conventional

pharmacological treatments. These “advanced strategies” show a variable profile of effectiveness

and invasiveness. A recently introduced therapy is the duodenal administration of a gel formula-

tion of L-DOPA (Duodopa), which is continuously released though a duodenal tube connected to

a portable pump through a percutaneous endoscopic gastrostomy. This device permits a contin-

uous delivery of the drug, with a stable kinetics, resulting in a significant reduction of the OFF-

time and a marked simplification of the oral therapy. There are also more invasive surgical

options that could offer symptomatic benefits. Deep brain stimulation (DBS) is the most com-

monly performed surgical treatment for Parkinson’s, but it is not recommended for all patients.

DBS has been demonstrated to be effective in remodulating the pathological activity of the basal

ganglia motor circuit by acting on specific nuclei, including the subthalamic nucleus, the globus

pallidus interna and the thalamus. This technique involves the implantation of pacing devices

providing a continuous high frequency stimulation of the targeted area. DBS can ease some PD

symptoms and motor fluctuations, but it does not change the underlying course of disease.

Currently, there are no disease-modifying therapies available. Disease progression and disability

eventually require a multidisciplinary approach involving physical therapy, social/occupational

therapy, psychotherapy, etc. Alternative treatments able to maintain or reconsolidate function and

quality of life are needed. Non-invasive brain stimulation (NIBS) techniques are potential adjunct

therapies for PD. NIBS techniques do not require surgical intervention and are performed in

outpatient settings. The practicality and safety of NIBS result in an important alternative therapy

to maintain physical and/or cognitive function or promote functional recovery in PD patients.

NIBS is an area of rapid growth in neuroscience. The term “non-invasive brain stimulation”

encompasses different modalities of intervention involving the administration of energy to

modify the bioelectrical state of neuronal cells and influence brain regional activity. There is

some controversy surrounding the name; some have suggested that the term “non-invasive”

misrepresents both the possibility of side effects from the stimulation, and the longer-term

effects (both adverse and desirable) that may result from brain stimulation [1]. The “non-

invasive” denomination, as used in this review, is derived from the fact that the intervention

does not require the insertion of instruments through the skin or into a body cavity.

Parkinson's Disease - Understanding Pathophysiology and Developing Therapeutic Strategies52



The different sub-modalities of NIBS are named based upon how energy is physically deliv-

ered to the brain. In transcranial magnetic stimulation (TMS), transient rapid changing mag-

netic fields are utilized to induce secondary electric currents in the underlying cortical surface,

which, in turn, trigger neuronal action potentials [2]. By contrast, in transcranial electric

stimulation (tES), a weak electrical current is directly applied to the scalp to modulate neuronal

membrane potentials without directly inducing synchronized neuronal discharge [3]. These

different modalities of NIBS have shown a clear capacity to modify cortical excitability and

potentially harness neuroplasticity for therapeutic applications, and they will be revised sepa-

rately. The substantially safe, reproducible and non-invasive nature of NIBS makes these

techniques of appealing interest for the study and treatment of various neurological and

psychiatric disorders including PD. NIBS has proven efficacy in depression and chronic pain.

NIBS in Parkinson’s disease have led to numerous publications and variable results that we

intend to summarize and review with a focus in research clinical trials (RCT). The chapter will

be a narrative review describing the latest advancements in utilizing transcranial magnetic

stimulation (TMS) and transcranial electric stimulation (tES). The proposed mechanisms of

neuromodulation, its safety, therapeutic results and challenges will also be reviewed.

2. Mechanisms of action of non-invasive brain stimulation

The biological effects of NIBS are essentially determined by two types of factors: extrinsic

(related to the intervention) and intrinsic (related to the stimulated subject). On one hand,

extrinsic factors are related to the amount of energy and to the pattern of current flow deliv-

ered to the brain. These include specific parameters that can be actively controlled by the

operator, such as current intensity, stimulation frequency, number of pulses, number of ses-

sions, coil design, electrode montage, etc. However, for the same dose of energy delivered,

different intrinsic factors inherent to the stimulated subject contribute to the individual’s

biological outcome. For instance, the subject’s pharmacological profile can affect the brain’s

activation state and connectivity by modulating neuronal propensity to fire and undergo

plastic phenomena. In patients with Parkinson’s disease (PD), this is particularly noteworthy,

as changes in cortical excitability and neuroplasticity are critically influenced by dopamine

bioavailability, and the institution of a dopaminergic therapy can influence the subsequent

neurophysiologic and behavioral effects of stimulation [4].

2.1. Motor cortex transcranial magnetic stimulation (TMS)

TMS is a focal modality of NIBS where an intermittent, high intensity, electrical current of brief

duration is generated through a capacitor to induce transient magnetic fields spreading from

the coil to the underlying surface. TMS has an FDA cleared indication for the treatment of

medication refractory depression. As described by Michael Faraday’s electromagnetic princi-

ple, the temporal variation of such magnetic fields—namely their exchange rate—is associated

with the induction of secondary electrical currents. These currents are capable of triggering

neuronal action potentials; the volume of the stimulated area roughly falls into that of a golf

ball, and the transfer of energy is maximal with parallel orientation of conductors. Due to the
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anatomical structure of the cortical layers, most of the neurons whose firing can be manipu-

lated through TMS are parallel to the scalp and, as such, are mainly represented by interneu-

rons. These cells can trans-synaptically modify the activity of interconnected pyramidal cells

through indirect descendent volleys known as “I-waves” [5]. Descending volleys originating

from the motor cortex (M1) can be recorded with electrodes from the peripheral muscle and

the recordings are regarded as motor evoked potentials (MEPs). When TMS is delivered

repetitively in trains of sufficient intensity and duration (e.g. 10–30 minutes), it is able to exert

modulatory effects as evidenced by changes in MEPs amplitude, with an effect that outlasts

each stimulation train. Therefore, the neurophysiological effects of trains of repetitive TMS

(rTMS) can be quantified in light of some indirect neurophysiologic parameters, which are

regarded as markers of cortical excitability. In healthy subjects, different stimulation frequen-

cies are associated with opposite changes in local cortical excitability. More specifically, repet-

itive TMS (rTMS) at a frequency of one pulse/second (1 Hz) is associated with “inhibition-like”

effects over the stimulated area, while higher frequencies of five or more Hz are associated

with “excitatory-like” phenomena [6]. Newer TMS paradigms have been developed that are

able to modify cortical excitability in significantly less time (20–190 seconds) [7]. Of those, one

of the most popular is the theta burst stimulation, where high frequency pulses (3 pulses at

50 Hz) are applied repeatedly at intervals of 200 ms, delivered as a continuous (cTBS) or

intermittent (iTBS) train. The former protocol is characterized as being “inhibitory” and the

latter being “excitatory,” according to the changes produced in MEPs size (Figure 1). This is

admittedly an oversimplification, as there is a wide heterogeneity of response between sub-

jects. The final biological effect of TMS is determined by the vector summation of all changes in

the excitability of cortical interneurons, the status of the neurons prior to stimulation, the

intrinsic properties and geometrical orientation of fibers within the cortical region, pharmaco-

therapy interactions, etc.

2.2. TMS proposed mechanisms of action for therapy

While a single session of TMS induces rather short-term effects (minutes up to hours) [9], the

application of rTMS over time (several days/weeks) generates significantly longer lasting

biological outcomes (in the order of weeks or a few months) [10]. The evidence of clinical

changes that persist well beyond the time of stimulation is the foundations of therapeutic and

rehabilitative perspectives. Two types of TMS-induced effects are essentially recognized: short-

term and medium-term. Although the molecular mechanisms underlying these changes are

not yet conclusive, several theories have been postulated. Short-term effects appear to be

related to immediate changes in neuronal ionic conductivity induced by electrolysis phenom-

ena resulting from propagating electromagnetic currents [11]. An additional proposed mecha-

nism behind short-term effects is the release of neurotransmitters. It has been demonstrated

that high-frequency rTMS applied over the left dorsolateral prefrontal cortex is associated with

a tonic release of dopamine in the ipsilateral caudate and orbitofrontal cortex [12]. Meanwhile,

medium-term effects of TMS are believed to be mediated by neuroplastic phenomena. The

term “neuroplasticity” defines the ability of the CNS to respond to a broad spectrum of

extrinsic and intrinsic stimuli through a functional, dynamic reorganization of its structures

and connections. The epicenter of neuroplastic phenomena is the synapse. Increased synaptic

strength, synaptogenesis and enhanced selectivity in the recruitment of neural pathways are
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some of the main mechanisms involved in neuroplasticity (Figure 2). It is believed that TMS

can harness plastic phenomena by modulating long-term potentiation (LTP) and long-term

depression (LTD) like phenomena. The molecular bases of such phenomena are likely to be

found in the activation of the postsynaptic N-methyl-D-aspartate (NMDA) receptor [2, 8]. The

calcium-mediated signal moderated by this receptor involves the activation of a complex

subcellular pathway leading to downstream changes in protein synthesis and, consequently,

to functional and structural changes in synaptic efficiency.

Finally, changes in gene expression of neurotrophic molecules as well as increased neurotrophic

signaling are considered to be involved in the induction of more sustained effects of TMS. The

knowledge concerning these effects at the molecular and cellular level is still very limited. Brain-

derived neurotrophic factor (BDNF) is a member of the neurotrophic family that has been

demonstrated to exert neurotrophic and neuroprotective effects both in vitro and in vivo. In

animal models, a significant increase in BDNF mRNA levels has been found in the hippocampal

areas, parietal and piriform cortex following high frequency rTMS paradigms [13]. It has also

Figure 1. Illustration of motor evoked potential (MEP) changes induced by different types of NIBS over motor cortex.

Blue colored arrow (left side) represents inhibitory and red colored arrow (right side) excitatory effects on MEPs.
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been posed that rTMS could increase BDNF tropomyosin receptor kinase B (TrkB) signaling in

rats and humans by increasing the affinity of BDNF for its receptor TrkB [14]. These evidences

support a potential role of rTMS in providing long-term neuroprotective effects, although the

exact neurochemical mechanisms underlying these properties remain to be fully elucidated.

2.3. Transcranial electric stimulation

Transcranial electric stimulation (tES) includes different NIBS techniques increasingly used for

modulation of CNS excitability in humans. The principal mechanism of action of tES is a sub-

threshold modulation of neuronal membrane potentials, which alters cortical excitability

depending on the current flow direction through the target neurons [15]. For these reasons, tES

techniques are more properly regarded as “neuromodulation” techniques, as, instead of inducing

an activity in resting neuronal networks, theymodulate spontaneous neuronal activity depending

on the previous physiological state of target cells. Among different tES techniques, transcranial

direct current stimulation (tDCS) is the best characterized and most widely used in both clinical

and research settings. tDCS involves the application of a low amplitude direct current (DC) via

surface electrodes on the head for a predetermined time in a painless, safe manner (Figure 3) [3].

tDCS offers many advantages over other NIBS devices due to a favorable non-invasive, safe

profile, portability, tolerability, and cost effectiveness. Several studies have shown that tDCS

modulates cortical excitability in the human motor [16, 17] and visual cortex [18]. Studies in

young-adult, healthy controls showed that 13 minutes of motor cortex tDCS modifies the ampli-

tude of motor evoked potential (MEP) for the subsequent 90 minutes [16]. Furthermore, pharma-

cological blocking of N-methyl-D-aspartate (NMDA) receptors prevents long lasting effects of

tDCS on cortical excitability, suggesting tDCS may recruit NMDA receptor-dependent plasticity.

However, in animal models of tDCS, stimulation intensities comparable to those modeled in

humans are not directly associated to LTP phenomena [19]. It is believed that tDCS alone produce

Figure 2. Schematic representation of the cascades of events involved in long-term potentiation (LTP) and depression

(LTD). Reproduced with permission from Udupa and Chen [8].
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only a subliminal neural hyperpolarization (under the cathode) or depolarization (under the

anode), reducing/increasing in turns the responsiveness of the target neurons to the on-going

afferent brain activity. Importantly, when combined with a second input, tDCS could results in

powerful induction of LTP or LTD like phenomena. The mechanisms underlying this potential

synergistic effect are not fully known, but they may rely on associative plasticity. It is known that

task-specific training can induce task-specific neuronal changes based on use-dependent plasticity

phenomena [20]. Therefore, the combination of behavioral tasks and tDCS may offer significant

chances to achieve neuroplastic changes. The task-dependency of tDCS may influence the inter-

individual variability of behavioral or neurophysiologic outcome observed after stimulation [21].

Many strategies are currently under investigation with the aim of boosting neurorehabilitation:

NIBS, motor learning theories, behavioral interventions, robot-assisted rehabilitation, pharma-

cological agents, and neural engineering. It is likely that the optimal combination of these

different approaches shall modify the science of neurorehabilitation in the future.

3. Safety of non-invasive brain stimulation

Since there are several methodological and technological differences between the different

NIBS types, the tolerability, adverse effects and safety are addressed separately.

Figure 3. Example of transcranial direct current stimulator (tDCS) setup; mini-clinical trials (mini-CT) Unit, Soterix

Medical©.
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3.1. Transcranial magnetic stimulation general safety

Different side effects resulting from the application of TMS have been reported in the litera-

ture. The international safety, ethical considerations, and application guidelines for the use of

transcranial magnetic stimulation in clinical practice and research [6] have listed them

according to their respective frequency. Common side effects include transient headache, local

pain, neck pain, toothache, and paresthesia. Pain duration is usually limited, lasting up to few

hours after the session, and it can be commonly relieved with acetaminophen or other over-

the-counter medications. Less common adverse effects include transient hearing changes,

transient cognitive/neuropsychological changes, syncope (as epiphenomenon and not related

to a direct brain effect), and transient acute hypomania (after left prefrontal rTMS). Rare

adverse effects reported include changes in blood levels of thyroid stimulating hormone and

lactate, and seizures. Seizure activity has been reported mostly with high-frequency (HF)

rTMS. TMS-induced seizures are self-limited and are not reported to have permanent sequelae.

High frequency TMS has 1.4% crude risk estimate of inducing seizures in epileptic patients

and less than 1% in non-epileptic subjects [22]. There is a theoretical risk of inducing currents

in electrical circuits when TMS is delivered in close proximity of electric devices (e.g., pace-

makers, brain stimulators, pumps, intra-cardiac lines, cochlear implants) which can cause

malfunction of these devices.

3.2. Transcranial magnetic stimulation safety in Parkinson’s disease population

From 211 studies published in PubMed regarding the use of TMS in Parkinson’s disease

patients from 1993 to October 2017, the most common adverse events (AEs) were scalp pain

and headache. Most of these happened during high frequency rTMS sessions. Other less

commonly reported AEs in PD include neck pain, tinnitus, and facial twitching. One study

reported subclinical worsening of complex and preparatory movement as measured by spiral

drawing impairment in patients after rTMS and worsening of resting tremor in one patient

[41]. Rare AEs possibly related to TMS reported were transient fatigue, mild transient visual

hallucinations, and transient hypotension [28]. One study reported a subject who experienced

worsening in pre-existing lower back pain (Table 1) [37]. In our neurostimulation lab, we had

one report of mild transient low mood [23] and one serious AE represented by an ischemic

stroke. The ischemic stroke event was due to carotid disease (atherosclerosis) and was deemed

unrelated to the study, though [26]. As an important note, to date, there are no reports of

seizures induced by TMS among Parkinson’s disease patients.

3.3. Safety concerns regarding “Novel” stimulation protocols

3.3.1. Deep repetitive transcranial magnetic stimulation

This technique utilizes deep TMS coils (called H-coils), which, due to a much slower decay of

the electric field as a function of distance, allows for the stimulation of deeper brain regions.

One study of deep rTMS [29] found that mild transient dyskinesias following stimulation to be

a relatively frequent side-effect (15% of PD patients in that study). Dyskinesias happened
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while the patients were OFF-medication and only in patients suffering from levodopa-induced

dyskinesias (LID) prior to the stimulation. The same study also reported headache and one

case of transient hypotension [29]. In another study, common effects reported included scalp

discomfort and transient fatigue, with one episode of mild visual hallucinations [28].

3.3.2. Theta burst stimulation

To date, 19 studies have applied different patterned theta burst TMS to patients with PD.

Among these studies, there is only one report of transient tinnitus (<5 minutes) and local pain

during stimulation [32]. Overall, these findings seem to indicate that TBS does not carry

additional risks with respect to conventional TMS protocols in PD.

Study TMS parameters N Adverse events (AEs)

ExerTMS (2017) [23] HF rTMS 8 Scalp pain (n = 2), neck pain (n = 2), low mood (n = 1)

LocoTMS (2017) [24] HF rTMS 5 Neck pain (n = 1)

Chang et al. (2017) [25] HF rTMS � tDCS 32 Headache (n = 1)

Brys et al. (2016) [26] HF rTMS 61 Headache and neck pain (n = 34), ischemic stroke (n = 1)

Shin et al. (2016) [27] HF rTMS 18 Facial twitch (n = 1), headache (n = 1)

Cohen et al. (2016) [28] HF rDTMS 19 Scalp discomfort (n = 9), transient fatigue (n = 3), transient visual

hallucinations (n = 1)

Spagnolo et al. (2014) [29] HF rDTMS 27 Transient hypotension (n = 1), headache (n = 1), mild dyskinesia

affecting only with LID (n = 4)

Shirota et al. (2013) [30] LF rTMS 106 Tinnitus (n = 1), headache (n = 1)

Murdoch et al. (2012) [31] HF rTMS 20 Headache (n = 2)

Benninger et al. (2011) [32] iTBS 13 Transient tinnitus (n = 1), local scalp pain (n =?)

Pal et al. (2010) [33] HF rTMS 12 Headache (n = 2)

Benninger et al. (2009) [34] spTMS 10 Ipsilateral CN VII stimulation

Rothkegel et al. (2009) [35] LF/HF rTMS 22 Headache (n = 2), nausea(n = 1)

Cardoso et al. (2008) [36] HF rTMS 11 Headache (n =?)

Hamada et al. (2008) [37] HF rTMS 55 Increased lower back pain (n = 1)

Khedr et al. (2006) [38] HF rTMS 55 Headache (n =?)

Lomarev et al. (2006) [39] HF rTMS 18 Intolerable scalp pain (n = 1)

Dragasevic et al. (2002) [40] LF rTMS 10 Burning sensation in the scalp(n = 4), headache(n = 3)

Boylan et al. (2001) [41] spTMS HF rTMS 10 Worsening of tremor (n = 1), scalp discomfort(n = 3), subclinical

worsening of complex and preparatory movement (n = 5)

HF: high frequency; iTBS: intermittent theta burst stimulation; LF: low frequency; LID: levodopa induced dyskinesia;

rDTMS: repetitive deep TMS; spTMS: single pulse TMS; rTMS: repetitive TMS; tDCS: transcranial direct current stimula-

tion.

Table 1. Reported adverse events in studies involving TMS use in Parkinson’s disease patients.
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3.3.3. Repetitive TMS preconditioned by tDCS

Both high frequency and low frequency rTMS preconditioned by tDCS have been used in PD.

From these studies [25, 42, 43], only one occurrence of mild headache has been reported [25].

3.3.4. TMS in PD patients with implanted deep brain stimulators

Eighteen studies have been conducted in DBS-implanted PD patients with no reported AEs. Of

note, electroconvulsive therapy, which uses much higher current than TMS, has also been

performed in DBS patients without adverse effects. There is currently no evidence supporting

the risk of heating or displacing DBS leads, but TMS has demonstrated induction of secondary

currents in a DBS wire if closely applied to it [44, 45]. The main factors in determining the risk

of inducing eddy currents in the DBS device seem to be the distance between the TMS coil and

the DBS lead, as well as the number of loops of the wire over the DBS lead [46, 47]. Additional

safety studies should be conducted to evaluate the magnitude of induced voltages and

induced currents generated by TMS in implanted stimulator systems like DBS and cortical

stimulation with epidural electrodes. According to current international safety guidelines [6],

TMS should only be done in patients with implanted stimulators if there are scientifically or

medically compelling reasons justifying it.

3.3.5. High frequency rTMS beyond 25 Hz

Rossi and colleagues seminal paper in 2009 had shown safety consideration with HF rTMS

only up to 25 Hz [6]. Benninger et al. performed 50 Hz sub-threshold rTMS over the motor

cortex for up to 2 seconds in 10 PD patients with only one withdrawal due to uncomfortable

facial muscle stimulation [34]. A second study was then carried out with 6-second train

duration where 13 PD participants received 50 Hz rTMS. No AEs and no EMG/EEG patholog-

ical increases of cortical excitability or epileptic activity were reported [48].

3.4. Transcranial direct current stimulation general safety

The protocol of stimulation (therapeutic or experimental) constitutes a critical determinant of

safety, as well as the inclusion/exclusion criteria and protocol technical execution. Bikson et al.

reported that from aggregated data of 33,000 sessions over 1000 subjects receiving repeated

tDCS sessions, no evidence for irreversible brain injury was produced by conventional tDCS

protocols within a wide range of stimulation parameters (≤40 minutes, ≤4 mA, ≤7.2 Coulombs).

This includes a wide variety of subjects, including persons from potentially vulnerable

populations [49]. In contrast to TMS, tDCS does not trigger neuronal depolarization; this might

account for the unlikelihood of tDCS causing seizures. Although one seizure was reported in

an epileptic, 4-year-old boy with cerebral palsy while receiving tDCS [50], this has been, to

date, the only possibly tDCS-associated seizure reported. Other plausible causes of his seizure,

such as reduced antiepileptic medication at the time and possible interactions with serotoner-

gic medication, were considered.

Commonly reported AEs appear to be of mild intensity and transient duration. In their meta-

analysis, Brunoni and colleagues characterized the incidence of AEs in 209 studies published
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from 1998 until August 2010 [51]. Of these 209 studies, 117 were compared for active tDCS vs.

82 sham tDCS studies and showed side effects of tingling (22 vs. 18%), headache (15 vs. 16.2%),

burning sensation (9 vs. 10%), itching (39 vs. 33%), and discomfort (10 vs. 13%) [51]. Results

suggested that some AEs, such as itching and tingling, were more frequent in the tDCS active

group, although this was not statistically significant. The authors disclosed a selective

reporting bias for reporting, assessing, and publishing AEs of tDCS that hinders further

conclusions. The authors raised awareness of the need to improve systematic reporting of

tDCS-related AEs.

The local effects of tDCS on the skin are not believed to be necessarily linked to the hazards

involving the underlying brain tissue. Several causative factors for skin lesions have been

proposed, including electrode position (the front side of scalp due to curvature and lack of

hair), skin conditions, allergic predisposition, skin preparations, high skin impedances, high

electrical currents, duration of stimulation, repeated sessions, small electrodes (high current

density), electrode shape, dry electrodes, inadequate fixation of electrodes, non-uniform con-

tact pressure of electrodes to skin, extensive skin heating, solution salinity of electrode

sponges, sponge shape, and deterioration of the sponges [52]. Other notable, non-skin AEs

that have been reported are nausea, dizziness, and sleepiness [53, 54]. Several studies

conducting tDCS over DLPFC reported hypomania or mania in unipolar and bipolar depres-

sion treatment trials, but these AEs cannot be fully attributed to tDCS [55–57]. The risk of

hypomania or mania in depressed subjects receiving tDCS might not be generalizable to a

different population or different brain location; however, it could be a risk if a study does not

exclude depressed participants.

3.5. Remotely supervised transcranial direct current stimulation

Recent trials have developed tDCS as a ‘telemedicine protocol.’ This paradigm utilizes com-

puter videoconferencing for real-time monitoring between the study subject and a study

technician [58]. This innovative approach is intended to increase compliance and facilitate

research participation by allowing patients to receive therapy in the comfort of their homes.

While traveling to clinic or research labs for a tDCS session can present an obstacle to subjects

and their caregivers, with modified devices and headgear, tDCS can be administered remotely

under clinical supervision, potentially enhancing recruitment due to convenience, while still

maintaining clinical trial and safety standards [59]. Perhaps the most promising and tested

paradigm is remotely supervised tDCS (RS-tDCS). RS-tDCS has been proven to be safe,

feasible, and acceptable for patients with multiple sclerosis [60–62].

3.6. Transcranial direct current stimulation safety in Parkinson’s disease population

Current published studies utilizing tDCS in PD patients have shown mostly mild and expected

adverse events [63], with only one reported event of skin burn (similar to first degree burn)

[63]. The skin burn was deemed due to mal-positioned electrodes and resolved without

sequela in 3 days. There is no specific provision or precautions for tDCS in PD. However, as

previously pointed out by Brunoni et al., as almost half of studies do not report presence/

absence of AEs, it is indispensable that clinical research document and report AEs in an active,
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systematic fashion in order to guarantee that tDCS is indeed a safe technique [51]. Our

neurostimulation lab is currently conducting clinical trials with RS-tDCS for PD. Our experi-

ence has been very positive with regard to feasibility, safety, and acceptability of RS-tDCS in

PD [64, 65]. Further trials of RS-tDCS need to be conducted to corroborate the feasibility and

safety of remote videoconferencing tDCS sessions. At-home, tele-monitored tDCS therapy

(e.g., RS-tDCS) could become crucial to ease the development of multicenter initiatives with

longer period of stimulation and minimizing participant’s burden.

In summary, the safety and tolerability of tDCS can be maximized by following standard

procedures, defining optimal stimulation parameters, and following good clinical and good

research practice implying adequately trained personnel, constant checking of stimulation

settings, careful selection of subjects, prompt and systematic reporting of AEs, and regular

supervision of tDCS equipment. The international safety guidelines for tDCS neuromodulation

[19] emphasizes the importance of adequately trained personnel in delivering the stimulation

and overseeing all related procedures (i.e., for RS-tDCS). Overall, tDCS is a generally safe

technique when used within standardized protocols in a research or clinical setting. However,

generalization of safety beyond these settings into different clinical contexts or do-it-yourself

(DIY) should be avoided [66]. RS-tDCS standardized framework for safety, tolerability, and

reproducibility, once established, will allow for translation of tDCS clinical trials to a greater

size and range of patient populations.

4. Potential applications and therapeutic effects of NIBS in PD

There has been cumulative evidence supporting beneficial effects of TMS and tDCS in PD.

However, several limitations have obscured the evidence-based generalizability of these

results. Main limitations are wide methodological heterogeneity in study designs (outcomes,

eligibility criteria, intervention parameters, brain targets, etc.) and exploratory designs with

small sample sizes in the majority of the studies. As TMS research is significantly more

advanced in terms of number of studies and Class I multicenter initiatives, TMS and tDCS

therapeutic evidence will be revised separately.

4.1. Effects of TMS in PD

Several systematic reviews and meta-analyses support the positive therapeutic effect of TMS in

PD [67, 68]. The wide use of the Unified Parkinson’s Disease Rating Scale (UPDRS) across most

studies enabled results to be compared through meta-analysis [67, 69]. UPDRS is likely the

most widely used assessment for PD and combines elements of four scales to produce a

comprehensive and flexible tool to monitor the course of Parkinson’s and the degree of

disability. The cumulative score will range from 0 (no disability) to 199 (total disability). Motor

UPDRS (part III) is usually administered by a healthcare professional and scores the motor

performance in a series of items, including rigidity, bradykinesia, and tremor. UPDRS part II,

on the other hand, is a self-evaluation of activities of daily living “during the last week.” It is

important to point out that the beneficial TMS effects are mostly seen in motor scores in the
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UPDRS part III; as such, this might question the overall functional relevance and impact in

quality-of-life. The average improvement of motor UPDRS sub-score in these clinical trials

ranged from �2.7 to �6.4 points and mainly reflected improvements in bradykinesia and

rigidity. The minimal clinically important change of motor UPDRS sub-score has been pro-

posed to be between 5 and 6 points [70, 71].

Chou and colleagues conducted subgroup analysis of clinical trials and showed that the effect

sizes estimated from high-frequency rTMS targeting the primary motor cortex (SMD, 0.77; 95%

CI, 0.46–1.08; P < .001) and low-frequency rTMS applied over other frontal regions (SMD, 0.50;

95% CI, 0.13–0.87; P = .008) were significant. The effect sizes obtained from the other 2

combinations of rTMS frequency and rTMS site (i.e., high-frequency rTMS at other frontal

regions: SMD, 0.23; 95% CI, �0.02 to 0.48, and low primary motor cortex: SMD, 0.28; 95% CI,

�0.23 to 0.78) were not significant. Meta-regression revealed that a greater number of pulses

per session or across sessions are associated with larger rTMS effects [69].

The two more recent multicenter randomized clinical trials of TMS for PD were not included in

the referenced reviews. Shirota et al. [30] explored the efficacy and stimulation frequency effect

of rTMS over the supplementary motor area (SMA) in PD. Results showed a decrease

(improvement) of 6.84 points in the UPDRS part III in the 1 Hz group at the last follow up

(12 weeks post-intervention). Sham stimulation and 10 Hz rTMS improved motor symptoms

transiently, but their effects disappeared in the observation period. The magnitude of improve-

ment is similar to prior HF rTMS studies; however, it was only significant at the last follow up.

Interestingly, the preliminary results of a prior trial from the same group showed that HF

rTMS was significantly better than LF over SMA [37]. A final interesting observation is that

rTMS was applied once weekly for 8 weeks rather than daily session. These findings have not

been replicated yet.

The latest large multicenter clinical trial was published in 2016 by Brys et al. [26]; the study

innovated “multifocal stimulation” in PD patients suffering from comorbid depression. It

compared motor cortex stimulation with dorsolateral pre-frontal cortex (DLPFC) stimulation,

both alone and in combination. The results provided Class I evidence of motor beneficial

effects of HF rTMS over motor cortex, but failed to prove synergistic effects when combined

with DLPFC. The magnitude of the improvement (�4.9 points in the UPDRS-III), was close to

a minimal clinically important change on the UPDRS-III [71] but slightly below that found in

meta-analyses (�6.4 and �6.3 points) [69, 72]. It is worth mentioning that the effects were only

significant at 1-month follow up and not significant in the following observations at three and

6 months distance respectively. These extended follow-up period results raise concern on the

sustainability of significant improvements beyond 1 month. Despite the amount of data

regarding the efficacy and safety of this technique in relieving motor symptoms of PD, rTMS

has not yet been systematically assessed as a potential treatment for FoG. An initial report by

Rektorova and colleagues found no significant effect on OFF-related FoG in six PD patients

treated with five sessions of high-frequency rTMS over the DLPFC and primary leg motor area

[73]. However, a later double-blind cross-over study on 20 patients with FoG investigating the

effects of a single session high frequency rTMS did suggest efficacy [74]. As recently observed,

the contribution of NIBS alone or combined with neurorehabilitation to address this highly
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disabling phenomenon remains to be systematically assessed through well-powered, well-

designed and reproducible studies [75].

The use of rTMS for the treatment of dyskinesias is limited to small studies showing contra-

dictory findings, with either LF rTMS over M1 [76, 77] or LF rTMS over SMA [78, 79].

In 2014, a group of European experts in TMS were commissioned to revise all available trials to

elaborate evidence-based guidelines for the therapeutic use of rTMS [80]. This included random-

ized controlled trials with at least 10 subjects receiving active stimulation, along with at least 2

comparable studies (same cortical target and same stimulation frequency), published by inde-

pendent groups before the end of March 2014. Results concluded possible antiparkinsonian

effect of HF rTMS over motor cortex delivered bilaterally. Other results were: no recommenda-

tion for dyskinesias and a probable antidepressant effect on HF rTMS over the left DLPFC in PD.

Novel paradigms of pairing TMS with other rehabilitation methods to try synergies and

optimizing rehabilitation have recently been explored. Experimental protocols carried out in

our neurostimulation lab have combined TMS with motor skill learning [81], physical therapy

[35], aerobic exercise [23], and finally, with treadmill training [82]. Larger studies will need to

be conducted to further validate these paradigms. Optimal treatment parameters remain

elusive. Standardization of PD outcomes, of TMS methodologies and bigger multicenter col-

laborative initiatives with long follow-up periods are [12] needed to demonstrate the real

therapeutic potential of TMS in PD.

4.2. Therapeutic applications of tDCS in PD

tDCS has been tested to promote motor learning in healthy adults and stroke patients [83, 84];

this technique has also been explored as a treatment of migraines, aphasia, multiple sclerosis,

epilepsia, tinnitus, schizophrenia, and dystonia with unclear or insufficient beneficial evidence

for recommendation [85]. According to recent evidence-based guidelines for the therapeutic

use of tDCS (including studies published before the end of the bibliographic search on Sep-

tember 1, 2016), only some types of chronic pain, fibromyalgia, depression, and craving have

shown to benefit from the neuromodulation, with possible or probable recommendation

levels. tDCS for PD has no formal recommendation; however, “no recommendation” means

the absence of sufficient evidence to date, but not the evidence for an absence of effect [83].

Also to be noted, studies that have not been replicated were not included for analysis in this

evidence-based review. tDCS seems to induce some beneficial effects in motor symptoms in

PD, but studies are needed to replicate these results [86].

A Cochrane review by Elsner et al. [87], found no evidence of effect as measured by UPDRS

global change in two studies and low quality evidence on motor impairment as measured by

means of UPDRS Part III when real stimulation was compared vs. sham [63, 88]. Two studies

specifically investigated the impact of tDCS on quantitative gait parameters [63, 89] and

showed no significant changes in walking speed. There have been no reported studies explor-

ing the efficacy of tDCS on tremor. The reduction of OFF-time and ON-time hampered by

dyskinesias was analyzed in one study conducted on 25 subjects, resulting in no significant

benefit [63]. In addition, health-related quality-of-life variables on both physical and mental
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domains were investigated, again with no significant effect [63]. As concluded by Elsner et al.,

“the methodological quality of these studies needs to be improved with particular respect to

the risk of allocation concealment, blinding of personnel and intention to treat analysis” [87].

The importance of non-motor features in PD has been increasingly recognized. A particularly

active area is the application of tDCS to enhance cognitive function. Cognitive impairment

represents a highly disabling non-motor symptom in patients with PD, and several studies in

patients with Alzheimer’s disease suggest that tDCS could improve memory performance [90,

91]. A few trials have been expressly designed to investigate the therapeutic potential of tDCS

on cognitive function in patients with PD with mostly (but not exclusively) using

neuromodulation of DLPFC [92–94]. Furthermore, fatigue is a frequently under-recognized

non-motor symptom in patients with PD. So far, tDCS over DLPFC has been demonstrated to

improve fatigue in other neurological conditions, including MS [95–97]. It seems therefore

plausible that analogous stimulation settings could provide similar benefits in patients with

PD, although this hypothesis remains to be confirmed through appropriately designed clinical

trials (ClinicalTrials.gov identifier: NCT03189472).

5. Non-invasive brain stimulation challenges

The major limiting factors to the extensive clinical application of NIBS technologies are inher-

ent to methodological properties of trials. The body of currently available data mainly rests on

small-sized studies carried out with exploratory designs. As such, these studies are known to

be prone to the risk of type I and type II statistical errors. Usually, a type I error leads to

establish a supposed effect or relationship when, in fact, the null hypothesis is true. Con-

versely, a type II error leads to erroneous acceptance of the null hypothesis when this is, in

fact, false. The best way to control for these errors is to design appropriately sized studies

through power calculations based on the estimated magnitude of effects. Alternatively, adap-

tive designs can be conducted to allow for a flexible increase of the sample along with the trial

implementation. This strategy, however, can further complicate the final interpretation of data.

A second order of methodological limitation is represented by unavoidable differences in

stimulation parameters between trials (i.e., stimulation location, frequencies, coil geometry,

number of pulses, number of sessions, specific population, follow-up time, electrode montage,

sponge sizes, etc.). These differences result in a commonly limited comparability between

studies. At minimum, it is imperative for all NIBS trials to exhaustively disclose the followed

stimulation protocol in all its components, thus maximizing comparability and reproducibility.

Further, stimulation parameters should be chosen and refined on the basis of biologically

plausible hypotheses, and experimental assumptions should be modeled on the pathophysiol-

ogy of the targeted phenomena. Random target stimulation and “trawl fishing” experimental

designs are likely to be inconclusive or to result in poor cost/effectiveness. Negative studies

should be adequately reported and acknowledged to improve publication bias and expand

knowledge among the scientific community. A clear description of placebo- or sham-controlled

method should always be provided and all potential limitations of blinding procedure

disclosed. For example, the use of non-realistic sham coils in a cross-over design can
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compromise the blinding of the study. Measures to assess adequate masking/blinding pro-

cedures should be incorporated into the trial, for example through the administration of

specific questionnaires. Most of the original trials published in the literature lack double-blind

controlled designs. This limitation has been conveniently weaning off over the past decade as a

growing number of properly controlled NIBS trials flourished. Interestingly, newly designed

coils can now allow for triple blinded designs where the subject, the investigator, and the

technician are unaware whether real or sham stimulation is delivered. The use of appropriate

and comprehensive clinical outcome to assess efficacy constitutes another significant chal-

lenge. A broad spectrum of symptoms could be potentially affected by NIBS. In order to

capture clinically meaningful effects, quality-of-life scales and other tools exploring subjective

improvements on ADLs should be incorporated to assess NIBS potential beyond the simple

motor effect as quantified by UPDRS-III. Standardization of outcomes can also facilitate fur-

ther meta-analysis. Finally, knowledge about NIBS and its therapeutic potential on movement

disorders could be boosted by collaborations across involved laboratories and multicenter

initiatives. In parallel, adequate training of personnel to refine operator’s expertise and skills

should be provided in a standardized fashion across academic centers [19].

6. Conclusions

To summarize, clinical effects of NIBS can be attributed to complex and likely interconnected

phenomena, including the normalization of cortical excitability, the modulation of connectivity

between neuronal networks and the induction of neuroplastic phenomena. The substantially

safe, reproducible, and non-invasive nature of NIBS makes these techniques of appealing

interest for the study and treatment of various neurological and psychiatric disorders, includ-

ing PD. For TMS, the pooled evidence suggests that rTMS improves motor symptoms of PD.

Overall, HF rTMS over M1 and LF rTMS over SMA appears effective. The motor improvement

in large multicenter clinical trials is around the minimal clinically important change of motor

UPDRS. There are controversial findings in a few small studies for dyskinesias. There is

insufficient data regarding the effects of rTMS for improving health-related quality-of-life,

disability and activities of daily living. These data would help to better determine the clinical

relevance for motor improvements. The currently available evidence supporting the use of

tDCS neuromodulation in patients with PD is limited to small, single-center studies exploring

different symptoms of the disease mainly through heterogeneous experimental methodolo-

gies. There is need for appropriately designed, directly comparable and well-powered trials to

better characterize the therapeutic potential of this technique in this specific population.

Despite these limitations, tDCS still holds much promise for a potential therapy as it is a

relatively inexpensive, portable, and easy to perform technology.
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