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Abstract

Olfaction is one of the most conserved senses across species. It plays a crucial role in 
animals’ and humans’ life by influencing food intake, reproduction and social behavior. 
The olfactory system is composed of a peripheral neuroepithelium and a central olfactory 
nerve and is one of the few central nervous system (CNS) structures with direct access 
to the external environment without passage through the Blood Brain Barrier (BBB). 
This makes this nerve system of importance for understanding how exogenous stimuli 
may contribute to neuronal damage as well as for diagnostic and therapeutic purposes. 
Interestingly, olfactory activity physiologically declines with aging, but its alteration can 
be further impaired by various neurological conditions. For example, in progressive neu-
rodegenerative disorders, such as Alzheimer’s disease (AD), olfaction is the first sense to 
be impaired before the onset of cognitive symptoms, suggesting that olfactory transmis-
sion may characterize early neural network imbalances. In this work, we will explore 
the main olfactory anatomical structures, the cytoarchitecture, the neurogenesis, several 
pathological conditions characterized by olfactory deficit and the potential use of this 
sense to diagnose and treat CNS pathologies.

Keywords: olfaction, olfactory system, olfactory dysfunction, Alzheimer’s disease, 
chronic inflammation, cancer, traumatic brain injury, neurological disorders, olfactory 
tests, nasal biopsies, diagnosis, therapeutic target

1. Introduction

Olfaction is among the most preserved senses across species based on its fundamental role for 
survival. In fact, this sense influences vital activities such as feeding, reproductive and social 
behavior.

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



The variety of functions modulated by olfaction relies on the direct connectivity of the olfac-

tory tract to the piriform cortex, entorhinal cortex, hippocampus and amygdala regulating 
innate and acquired olfactory perception, memory, fear and alertness (Figure 1). In mammals, 
the major components of the olfactory system consist of the olfactory neuroepithelium (OE), 
the primary olfactory area, the olfactory bulb (OB) and its cortical projections, considered as 
secondary olfactory network areas (Figure 1) [1]. The olfactory network is, besides the visual 
system, the only nerve tract with direct access to the external environment without passage 
through the BBB and represents a viable and non-invasive source of CNS-derived biomarkers. 
Furthermore, chemosensory transduction manifests itself through the sense of smell, which is 
readily testable [2]. The olfactory system starts developing at mid gestation [3–5] and is mainly 

unchanged in all vertebrates [6, 7]. After birth, olfaction is essential in assisting the development 
of locomotor activities and spatial orientation as demonstrated in both rodents and humans 

[8–11]. These evidences underlie how the onset of olfactory deficits may induce a wide range of 
(reversible or irreversible) impairments with potential life-threatening consequences. The most 
common alterations consist in either an exaggerated sense of smell “hyperosmia,” a reduced 
sense of smell “hyposmia” or the absence of smell “anosmia”. Hyperosmia is often co-symp-

tomatic to schizophrenia and manic disorders [12, 13], whereas hyposmia occurs naturally with 
aging [14] and is exacerbated in progressive neurodegenerative disorders, such as Alzheimer’s 
disease (AD) and Parkinson’s disease (PD) [14–17]. In addition, olfaction can be also completely 

Figure 1. Olfactory system anatomy in the mammalian brain. Drawing of the primary (I) and secondary (II) network 
areas of the olfactory system and its corticofugal (continuous lines) and centrifugal (dotted lines) connections. The 
pseudostratified neuroepithelium located in the upper olfactory mucosa is displayed with its major cell types, epithelial 
cells (EC), globose basal cells (GBC), sustentacular cells (SUS), olfactory sensory neurons (OSNs). The OSNs project their 
apical dendritic cilia in the nasal cavity and their axons towards the brain to form the olfactory nerve layer (ONL, blue 
highlight), by passing through small foramina in the cribriform plate (CP). In the olfactory bulb, the ONL terminals 
synapse with excitatory mitral cells (MC; positive charge) and tufted cells (TC, not represented) in the glomerular layer 
(GL). Inhibitory periglomerular cells (PGCs; negative charge), dopaminergic PGCs (DA, positive charge) and inhibitory 
granular cells (GC, negative charge) modulate the activity of MC and TC through dendrodendritic synapses. MC axonal 
projections assemble to form the lateral olfactory tract (LOT, yellow highlight) projecting to the piriform cortex, entorhinal 
cortex, amygdala and hippocampus, representing the olfactory cortex (II). Cholinergic terminals (ACh, orange) from 
the horizontal limb of the diagonal band of Broca (HDB), serotoninergic efferents (5-HT, light blue) from the raphe 
nuclei, and noradrenergic fibers (NA, green) from the locus coeruleus innervate the olfactory bulb and olfactory cortex. 
Dopaminergic neurons of the ventral tegmental area (VTA, red) modulate the activity of the olfactory cortex. Cx: cortex.
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lost after trauma [16, 18, 19] or certain types of cancer [20–23]. Furthermore, the early olfac-

tory deficit in AD [24] has been shown to be a strong predictor of the progression of dementia 
[25–28]. Diagnosis of this sense remains underlooked and there is no consensus on the use 
of olfactory tests to assess/categorize neurological dysfunctions [29]. Interestingly, the stud-

ies testing olfaction in Tau and APP mouse models of AD, or 𝛼-synuclein models have shown 

that this sense is significantly altered [30–32]. Moreover, recent studies raise the possibility that 
endogenous [33–37] (PrP, Aβ, Tau, α-synuclein) and microbial [38, 39] amyloid-like peptides 
are accumulated in the nasal neuroepithelium and may propagate via retrograde transport to 
higher brain structures [40]. This might explain why Aβ, Tau, α-synuclein depositions are first 
observable in the olfactory bulb and olfactory tract, as their accumulation is associated to fibril-
lary tangle dysgenesis [41] and correlate with Braak staging progression [42].

Despite the strong evidence indicating that olfactory transmission deficit is an early predictor of 
neurodegenerative processes, the poor understanding of the molecular and cellular mechanisms 
underlying olfactory activity in the primary as well as secondary olfactory network areas has 
marred the use of olfaction and olfactory testing as bona fide targets in clinical setting. In this 
chapter, we elaborate on the anatomical and physiological properties of the olfactory system, 
its development by sampling the vast literature of olfaction in mammals. We then expand on 
the role of olfaction in humans and smell deficits as readout of neurological diseases as well as 
other pathologies. With this work we aim to provide further support for considering the olfac-

tory system as source of physiological and biological biomarker(s) based on its direct connection 
with the brain and emphasize the use of this easily accessible sensory system as an ideally suited 
functio-anatomical window for monitoring brain health as well as for therapeutic targeting.

2. Olfactory system anatomy

In vertebrates the olfactory network is activated when an odorant, inhaled through the airways, 
binds to a specific receptor expressed on specialized neurons, known as olfactory sensory neu-

rons (OSNs) or olfactory receptor neurons (ORNs), embedded in the upper olfactory mucosa. 
Every OSN expresses a specific odorant receptor (OR), which is activated only when a unique 
ligand (odor molecule) binds to it [43]. In 1991, Buck and Axel identified 18 genes encoding ORs 
[44] and for such discovery they were awarded the Nobel Prize in 2004. Few years later, more 
than 1000 OR genes were discovered in rodents [45] but only 378 OR were found in humans [46]. 

The OSN are characterized by their unique and exclusive ORs expression. The sorted olfactory 
signal is then transmitted from the OSNs’ axons, bundling as the olfactory nerve layer (ONL) in 
direction of specific glomeruli located in the OB [47]. Furthermore, innervation of the OB by the 
OSN axons is spatially segregated along the dorsomedial and lateroventral axis (zone I, II, III, 
and IV) respecting the spatial positioning of these neurons in the neuroepithelium. This “glo-

merular convergence” allows OSN projections to be widely dispersed across the bulb, while 
maintaining specificity for classes of odorant chemicals. For example, the dorsomedial zone I 
has convergence of OSN axons detecting n-fatty acids or n-aliphatic aldehydes but not alkanes 
[47–49]. The chemical and anatomical organization of ONL inputs defines the discrete odorant 
map of the OB, which is further relayed to the connecting mitral (MC) and tufted cells (TC) via 
axodendritic synapses [48]. Mitral and tufted principal neurons, constituting the  output from 
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the OB to the cortex, are finely tuned through dendrodendritic synapses mostly from peri-
glomerular (PGC) and granular (GC) interneurons. These GABAergic and dopaminergic (DA) 
neurons are continuously replaced at least in rodents [50–52] and are essential for modulating 
mitral and tufted cells’ firing rates and increasing/decreasing their synchronous firing activity 
in presence/absence of an odorant [53–55]. Further, cholinergic, serotoninergic and noradren-

ergic afferents, originating respectively from the horizontal limb of the diagonal band of Broca 
(HDB) [56], raphe nuclei [57] and locus coeruleus [58], modulate the response of the PGC, MC 
and GC (Figure 1). These centrifugal afferents innervate the bulb in its integrity and appear to 
be involved in the early deficit observed in AD and PD [59]. From the bulb, axonal projections 
of the relay MC, form the lateral olfactory tract (LOT) and innervate higher brain areas (Figure 

1). Neuroimaging studies reveal that the higher olfactory areas encompasse different cerebral 
structures, which are mainly divided in primary and secondary olfactory regions [60, 61]. The 

first network area comprises the piriform and entorhinal cortices, the amygdala and hippocam-

pus, whereas the second neuronal hub includes the thalamus, the orbitofrontal cortex, cingulate 
and insula [60, 62, 63]. In these higher brain areas, the signal is integrated and loses spatial 
resolution [64]. This decomposition effect has been explained by the combinatorial cortical net-
work ideally suited for decoding of incoming spatially segregated signals [65]. Overall, based 
on the heterogeneity of brain structures implicated in the modulation and processing of olfac-

tory stimuli, the olfactory deficit phenotype and the degree of severity of olfactory impairment 
may vary substantially.

3. Adult neurogenesis in the olfactory system

In all mammals, including humans, neurogenesis is maintained in the neuroepithelium 
through the presence of neural stem cells located close to the basal lamina. In adult rodents 
two type of cells populate the stem cell niche, globose basal cells (GBC), representing the neu-

ral stem cells population and horizontal basal cells (HBC), with ependymal cell characteristics 
functioning as supporting neurogenic cells. Conversely, in humans there is no distinction 
between GBC and HBC, with the first appearing as the only population occupying the niche 
[66]. GBCs comprise transit amplifying Mash1 positive progenitors and Ngn-1 expressing 
Intermediate Neural Progenitors (INPs), ultimately differentiating into OSN [67, 68]. Besides 
the neurogenic lineage, GBC give also rise to SUS, a glial-like cell type intercalated between 
OSNs in the epithelium [69, 70] (Figure 1). The sustained regenerative capacity of the neuro-

epithelium can compensate for the vulnerability of the OSNs and SUSs, which are in direct 
contact with the airways of the nasal cavity exposed to exogenous species, such as micro-

organisms and possible neurotoxic particles. The interaction between potentially dangerous 
sources and the cells of the neuroepithelium requires a continuous cell turnover in order to 

maintain the network functionality. Furthermore, the stem cells of the neuroepithelium repre-

sent a source of human neuronal precursors that may be employed for in-vitro pharmacology 
studies, diagnostic and regenerative therapies [71, 72].

In rodents, neurogenesis takes also place in the OB, where both GC and PGC are constantly 
replaced via the migration of neuronal precursors from the lateral ventricles walls to the ros-

tral migratory stream (RMS), to reach their final destination areas: the periglomerular cell layer 
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and granule cell layer [73]. It has been long debated whether OB neurogenesis occurs also in 
humans. Despite the presence of glia cells in the adult human SVZ, potentially representing a 
quiescent stem cells’ population, doublecortin positive migrating neurons are observed in the 
RMS only until the 6th month of age postnatally [74]. Overall, the events promoting the renewal 
and replacement of the OB interneurons support the cellular turnover of the OB and its evoked 
odorant activity. This may have an essential role in the regulation of physiological functions in 
rodents, such as recognition of pheromones and food intake, or in favoring the distribution of 
infectious substances, entering into the brain via the nostrils and reaching the OE/OB compart-
ment. On the other hand, the lack of OB neurogenesis in humans might be explained on one 
side by the reduction of olfactory diversity, since they present less turnover in the CNS net-
works compared to rodents, and by the compensatory use through other senses (vision, hearing, 
somatosensation, gustation) requiring less adaptive integration from the renewing interneurons.

4. Signaling transduction in olfaction

Olfactory transduction begins at the level of the cilia of the OSN protruding in the nasal cavity 
and through cascading amplification mechanisms reducing the threshold for odorant mol-
ecules detection. Each olfactory sensory neuron has about 12 ciliary branches, which increase 
the binding probability of the odorant molecules to the receptors compensating for the seques-

tration of the molecules in the nasal mucous covering the nasal neuroepithelium. Discrete 
odorants interact with specific olfactory receptors and activate a sequence of intracellular 
events leading to ionotropic channel activation and excitatory transmission through the ONL 
to the brain. In rodents, there are about 1000 genes encoding for different ORs. Each olfactory 
sensory neuron expresses only one type of OR through a monoallelic stochastic gene selec-

tion process occurring during the maturation of the OSN [43]. The ORs are G-protein coupled 
transmembrane receptors characterized by seven hydrophobic domains, whose diversity 
determines the heterogeneity and specificity of the response [75]. Upon binding to the odor 
molecule, a G⍺ olf protein, associated to the OR, is activated and converts guanosine 5′-diphos-

phate (GDP) to guanosine 5′-triphosphate (GTP). Further, by detachment of the beta/gamma 
subunits it activates the adenylate cyclase (AC) transmembrane protein converting ATP into 
a c-AMP [76]. This secondary messenger, c-AMP, has a high diffusion speed (20 𝜇m/s) [77] 

and is rapidly sensed by the surrounding ionotropic Ca2+/Na+ gated channels (CNG) allow-

ing Ca2+/Na+ inflow [78]. The rise in Ca2+ activates the Cl(Ca) channels, which extrude Cl-ions, 
potentiating by about 90% the depolarizing inward current [79, 80]. Intracellular ciliary Ca2+ 

influences the sensitivity of the CGN to c-AMP determining its desensitization or adaptation 
when exposure to an odor is prolonged or when the interval between exposures is short [81]. 

This mechanism needs to be taken into account when planning an olfactory testing paradigm 
in rodent and humans. Finally, unrelated odorants switch off CNG channels in a phenomenon 
called masking, which preserves the specificity of signal transduction to the OB [82]. These 

cascading events expand the signal transduction time from 1 millisecond to the order of 100 
millisecond [83] producing a molar non-linear amplification of the signal and contributing to 
the signal persistence. The excitatory signal from the ONL axons is then transferred to the api-
cal dendrites of MC through glutamatergic synapses [84] and modulated through presynaptic 
and postsynaptic inputs of DAergic and GABAergic afferents of PGC and juxtaglomerular 
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interneurons spanning one or more glomeruli and regulating the spatiodynamic resolution 
of the odors evoked responses [85, 86]. Further, firing synchronization and signal amplifica-

tion is achieved by dendrodendritic inhibitory synapses between GC and MC located in the 
external plexiform layer [87, 88]. The fine-tuned excitatory signal is relayed through the LOT 
to the cortical and neocortical structures, where an odor-evoked depression, by presynaptic 
metabotropic glutamate receptor (mGluR) II/III activation, contributes to signal adaptation 
and attenuation, typical of the cortical sensory responsiveness [89, 90]. Despite the physiology 
of olfactory transmission has been well characterized in rodents, much less is known about the 
physiology of this system in humans.

5. Olfaction in early life, adulthood, aging and mortality

Olfaction is among the most preserved senses throughout species and plays a vital role in 
daily life, being fundamental for feeding, reproductive and social behavior. Several studies 
described that in mammals, including humans, the sense of smell is developed during the first 
weeks of fetal life [9, 22, 91, 92]. Both in rats and humans, it has been shown that the odor of 
the amniotic fluid and the milk from the mother are perceived and memorized by the fetus, 
which, after birth, is capable to recognize and distinguish them from those of a surrogate 
mother [8, 10]. Moreover, experiments of olfactory stimulation in rat pups just after birth (0, 1, 
2 hours) show an increase in locomotor activity compared to the unexposed pups [9].

In humans, clinical observations conducted on infants revealed their capability in locating the 
mother’s breast without assistance [93, 94], suggesting that the maternal breast odor is the 
driving force guiding their orientation and providing a sense of protection [9]. For instance, 
during hospitalization, the maternal contact and odor have a beneficial effect on relaxing the 
neonate when crying. These aspects constitute the “non-verbal communication”, which plays 
a fundamental role during the early neonatal phase to build and reinforce the mum-infant 
bonds [10]. Infants familiarize with odorants during pregnancy through mum’s diet, through 
a chemosensory transmission mother-infant [92]. Thus, in the critical period of early postnatal 
development, when vision is still poor, olfaction is employed as one of the first senses besides 
touch to make contact with the external world. Even if with adulthood, olfaction becomes less 
relevant for survival, particularly in modern humans, it underlies strong odor-cued memories 
and emotions. These associative processes triggered by odor perception depend on the output 
of the LOT to the hippocampus and amygdala and have been essential for animals to locate 
food [95], for the selection of mating candidates [96] and to identify predators [97, 98]. One 

of the most striking examples of olfactory sensitivity for foraging is the ability of the brown 
bear to sniff odors from more than 10 miles away, therefore representing a significant threat 
to campers and hikers carrying food in natural reserves. Studies indicate that the acuity and 
high sensitivity to odors of larger canid depends on the extended olfactory surface areas of the 
turbinates rather than the relative size of the olfactory system to the brain [99]. Furthermore, 
the smell-based mate selection is most prominent in females and appear to be dependent on 

the HLA variants inherited by the father [100, 101], triggering an emotional and behavioral 
response aimed at reproductive activity and species’ preservation. Finally, the “smell of dan-

ger” has been employed in odor-based fear conditioning to test amygdala’s function as well 
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as hippocampal plasticity [102, 103]. Interestingly, fox or cat urine is widely used in testing 
passive olfactory avoidance in rodents despite these laboratory animals never encountered a 

predator [104]. This suggests that odor-cued memories are ingrained in the DNA and research 
demonstrated that are the result of heritable epigenetic modifications [105]. Furthermore, stud-

ies in humans showed that most odor-cued memories are formed in the first decade of life 
[106] and appear stronger than the ones evoked by words or visual cues reflecting accurately 
one’s autobiography throughout life [107, 108]. Finally, olfactory acuity is particularly devel-
oped in occupational workers such as sommelier, perfumers and chefs, which can perceive 
hedonic odors among a mix to deliver unique pleasant and palatable combinations [109, 110]. It 

remains unclear whether odor protheticity depends on the plasticity of the neuroepithelium or 

the distribution of the olfactory receptive elements. With aging, humans of both genders pro-

gressively lose their olfactory acuity and the ability to identify an odor: more than 50% of indi-
viduals aged 65–82 suffer from olfactory deficit [14, 111, 112]. Several factors account for the 

dysfunction including chronic damage to the neuroepithelium by neurotoxins and misfolded 
proteins [113], depletion of ciliary ORs, neuroinflammation and reduced vascularization [114]. 

As a result of the OSN damage with age, bulbar atrophy [115] and glomerular degeneration 
are associated to neurofibrillary tangle (NFT) depositions and olfactory processing and percep-

tion deficits [117]. Olfactory dysfunction (OD) in the elderly represents a source of discomfort 
and can pose a serious risk to safety [118]. Last, olfactory deficit has been shown to be an early 
predictor of mortality in old age [119]. This body of data indicates that olfaction is one of the 

primary form of environmental communication in mammals [120].

6. Olfactory dysfunctions

The olfactory activity is mainly composed of two hierarchical independent processes, where 
the first, defined as “peripheral”, is based on the acuity or capability to perceive an odorant, 
while the second, named as “central”, is involved on the memory or ability to identify an 
odor [61, 121]. Alteration in peripheral processes is linked to deficits occurring at the olfac-

tory neuroepithelium, specifically at the levels of the OSN. On the other hand, damages to 
central processes can be attributed to deficits in the OB compartment and in higher cerebral 
regions, such as cortical and limbic system structures. This observation is supported by studies 
showing impaired odor identification with unaffected threshold activity in subjects present-
ing injures in the orbitofrontal cortex or the dorsomedial thalamic nucleus [122]. The integrity 
of olfactory perception, normosmia, can be impaired by alterations which can be divided in 
two main categories indicating a (1) quantitative or (2) qualitative impairment of the sense of 
smell. The first category is composed by anosmia, hyposmia or microsmia and hyperosmia, 
whereas the second one is represented by dysosmia, subdivided in parosmia and phantosmia 
or olfactory hallucination. These categories and their definition are summarized in Table 1. 

Apart from normosmia, which represents the physiological condition of the sense of smell, all 
the other cases can be determined by a wide spectrum of causes. In order to assess olfaction 

in humans, several tests are nowadays available to monitor the sensitivity of the olfactory 
system aiming to detect at an early stage the presence of different disorders. A test, which is 
commonly adopted to evaluate the olfactory responsiveness, is the University of Pennsylvania 
Smell Identification Test (UPSIT), developed by Doty and colleagues in 1984 [29]. This scratch 
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and smell test enables the evaluation of the general smell function, e.g. odor identification 
and odor detection, assigning a final score which reflects the individual ability to recognize 
by exclusion several odors. The original tests includes 40 booklets with 4 odor per booklet, 
although shorter mini-UPSIT (Brief Smell Identification Test – BSIT) of 12, 15 and 16 odors 

Figure 2. Breakdown of affected regions and potential mechanisms in olfactory deficiencies and window for diagnostic/
treatment. Related processes, diseases and possible therapeutic approaches centered on the olfactory neuroepithelium 
(A), olfactory bulb (B) and olfactory cortex (C). Abbreviations: EC, epithelial cells; GBC, globose basal cells; SUS, 
sustentacular cells; OSN, olfactory sensory neuron; GC, granule cell; PGC, periglomerular cell; PGC (DA), periglomerular 
dopaminergic cells; ONL, olfactory nerve layer; CP, cribriform plate; GL, glomerular layer; MC, mitral cell; LOT, lateral 
olfactory tract; ACh, acetylcholine; DA, dopamine; 5-HT, 5-hydroxytryptamine; NA, noradrenaline; NFT, neurofibrillary 
tangles; AD, Alzheimer’s disease; PD, Parkinson’s disease; HD, Huntington’s disease; ALS, Amyotropic lateral sclerosis; 
ASD, autistic spectrum disorders.

Physiological olfactory condition

Normosmia: normal olfactory function

Quantitative olfactory dysfunctions

Anosmia: total loss of smell

Hyposmia: decreased sense of smell

Hyperosmia: increased sense of smell

Qualitative olfactory dysfunctions

Dysosmia: qualitative alteration of the sense of smell. It includes:

(1) Parosmia: odor distortion

(2) Phantosmia: odor perception without the presence of the source

Table 1. Classification of the olfactory conditions.
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have been used before [123–125] and they seem to be a viable solution for testing olfaction 
on human subjects limiting desensitization mechanisms intrinsic to olfactory transduction. 
On the other hand, a “forced-choice phenyl ethyl alcohol odor detection threshold test” [26], 
also called as the Snap and Sniff® Threshold Test, allows for rapid and reliable determina-

tions of olfactory detection thresholds. Subjects are exposed to concentrations of phenyl ethyl 
alcohol, ranging from 10−2 to 10−9 log vol/vol in half-log concentration steps, along with blanks 
for forced-choice testing [126]. This test controls for a subject’s response bias or criterion for 
responding independently of the subject’s actual sensory sensitivity. Both tests can be self-
administered and are equipped with a score card making olfactory testing accessible and con-

venient for both clinical and personal use.

Hereafter, we describe some human pathologies which can lead to olfactory dysfunctions 
(Figure 2).

7. Systemic diseases

7.1. Chronic inflammation

Many pathological events are characterized by a persistent inflammatory response, as observed 
in patients suffering from sinonasal diseases, such as acute or chronic rhinosinusitis, allergic or 
non-allergic rhinitis [127–129] (Table 2). In addition to nasal congestion and altered mucus secre-

tion, these conditions represent a common cause of olfactory impairment [127, 128, 130–132]. 

For instance, it has been reported that between 14 and 30% of the patients affected by chronic 
rhinosinusitis (CRS) show olfactory dysfunction [129, 132–134]. The inflammatory event under-

lying sinonasal pathologies can be divided in two processes: the inflammatory mechanism itself 
and the conductive (or transport) component [127–129, 135], which compromises the proper 
diffusion of odorants towards the olfactory neuroepithelium [136–138]. The functionality of the 

nasal epithelium is affected since the topical inflammation reduces the airflow and subsequently 
the binding of the odor molecules to the ORs expressed on their cilia. The synthesis of pro-
inflammatory factors can induce the loss or impairment of the ORs, which are then unable of 
signal transmission due to a reduced detection threshold [129, 135]. Several studies suggest that 

Pathology Olfactory impairment References

Chronic inflammation (Chronic Rhinosinusitis) Anosmia, hyposmia 127–129, 133, 134

Cancer (Head–neck cancer) Hyposmia, dysosmia 20, 146, 156, 157

Traumatic brain injury Reversible anosmia, reversible 
hyposmia, reversible parosmia

19, 176–179, 184, 185

Neuropsychiatric disorders (Schizophrenia and 
ASD)

Hyposmia, hyperosmia, dysosmia 60, 61, 189–193, 196–198, 
219, 220

Neurodegenerative diseases (Alzheimer’s, 
Parkinson’s and Huntington’s disease)

Hyposmia 17, 24–26, 226–228,  
236–240

Table 2. Summary of the diseases described in this chapter and their observed olfactory alterations.
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the relation between CRS and olfactory dysfunction could be multifactorial, since several events 
can trigger olfactory disbalance in chronic rhinosinusitis cases, such as the different degree of 
the inflammatory response [131, 132, 137] or the medical or surgical intervention in patients 
suffering from this pathology [129, 132]. Moreover, it has been described that CRS patients with 
anosmia present an altered mucus composition, which affects olfactory epithelium neurogene-

sis [139]. To evaluate and monitor the entity of olfactory loss in CRS subjects various tests can be 
carried out [140, 141] and also the detection of biomarkers, such as neuron-specific enolase [142] 

could provide further support in predicting the development of such disorder. All together, 
these evidence indicate that a constant inflammatory status of the nasal mucosa, in presence of 
rhinitis, sinusitis and rhinosinusitis can lead to a variable spectrum of olfactory dysfunctions 
whose severity depends from the inflammatory degree itself. The chronic inflammation in CRS 
and the absence of the BBB between the primary and secondary olfactory areas poses a serious 
risk for the propagation of neuroinflammatory species leading to neurodegenerative events. 
Indeed, a recent report indicates that patients with a history of chronic sinusitis are more prone 
to develop dementia [143] or stroke [144, 145]. This supports the notion that peripheral sinus 

inflammation should be promptly treated with pharmacological and surgical approaches, to 
contain the symptoms of nasal obstruction and prevent the neuroinflammatory spread.

7.2. Cancer

Studies on head and neck cancer (HNC) reported that different symptoms associated to the 
treatment, such as radiotherapy and chemotherapy, can include smell and taste dysfunction [20] 

(Table 2). The impairment in these senses can appear early in HNC patients and progressively 
become more severe in the long-term period [146]. Laryngeal cancer patients which are best 
treated by total laryngectomy, based on removal of the nasal neuroepithelium, suffer from hypos-

mia and gustatory alteration [21, 147]. In normal conditions the olfactory receptors are not con-

sidered as potential contributors in cancerogenesis, but their physiological capability in binding 
to organic compounds and the subsequent signal transduction essential for survival or migratory 
events could support their involvement in fostering cancer cells [148–150]. Interestingly, it has 
been described that some ORs are present in other tissues and organs not related to the “olfactory 
circuit”, such as muscle [151], kidney [152] and lung [22]. Former studies demonstrated that one 
OR is implicated in the pathobiology of prostate cancer cell migration and proliferation, mak-

ing this protein a possible parameter to monitor the patient’s clinical condition [150, 153, 154]. 

Recently, Ranzani and colleagues investigated the characteristics of olfactory receptors in cancer 
cell lineage and tumors. Interestingly, they found that several ORs are expressed in different 
tumorigenic cell lines and tumors, e.g. the OR2C3 has been observed both in diverse cancer lines 
and melanomas, suggesting that this receptor might participate to the development of this tumor 
[23, 155]. Numerous studies showed that more than 70% of cancer cases show taste and smell 
dysfunctions [156]. Most of these alterations are reported after cancer treatment [157], whereas 
changes in these senses in pre-treatment phase are not clarified. The reasons could be attributed 
to multiple events, like (1) mechanical interference, due to tumor obstruction of the chemore-

ceptor sites; (2) neurological origin, where cancer affects signal transmission; and (3) metabolic, 
related to a higher urea concentration in the saliva associated to tissue catabolism [23, 158].

Another fundamental aspect which connects cancer and olfaction is the employment of this 
sense in early detection of this pathology. In particular, canine olfaction and lately electronic 
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noses (e-noses) represent a promising, non-invasive manner to screen tumors [159–161]. The 

high sensitivity of dogs in odorants perception render them suitable for this clinical purpose, in 
fact they are used to distinguish healthy controls and cancer subjects upon exposure of biologi-
cal samples, whereas the electronic noses present chemo-sensory components able to identify 
specific biomarkers in exhaled breath [161]. Both canines and e-noses can detect volatile organic 
compounds (VOCs) in biological specimens. It is well recognized that dogs can perceive spe-

cific VOCs in several samples, such as urine, expired breath, blood and stool [162–166]. For 
instance, diverse VOCs have been identified in the breath of individuals affected by lung, ovar-

ian, prostate, bladder and colorectal tumor [167–170]. The use of electronic noses is increasing 
as differently from dogs, do not require training and maintenance, are relatively inexpensive 

and easy to handle. These new devices can analyze volatile molecules present in expired air 
via gas chromatography and chemosensory apparatus [171–175]. Notably, both canine olfac-

tion and e-noses represent two powerful systems in detecting several kinds of tumors during 
their asymptomatic stages allowing an earlier and potentially more effective therapy. Overall, 
it appears that olfactory deficits are involved in the clinical phase of cancer progression, and 
atypical odor identification can be employed to diagnose mutagenic processes early on.

8. Central nervous system disorders

8.1. Trauma

Traumatic brain injury (TBI) constitutes one of most frequent causes of olfactory dysfunction, 
affecting both genders [19, 176–178] (Table 2). One of the first medical reports about OD, in 
1864, described a post-traumatic total loss of smell and a more dated description of anosmia 
was reported in 1837 after head trauma (HT) from a horse riding accident [179]. Depending on 
the severity of the trauma, the degree of olfactory impairment can show a quite diverse clinical 
outcome ranging from microsmia to anosmia [178, 180–182], which can be in both cases par-

tially recovered [181, 182]. Subjects affected by parosmia show a gradual recovery of olfactory 
ability following a medium-long term period after the accident [178, 181]. The severity of the 

trauma depends also from the cranial region interested, i.e. frontal injury is associated with a 
lower olfactory disability compared to the temporal and occipital lobes [181], although there is 
contradictory evidence on the latter [179]. After head injury, MRI analysis revealed a reduction 
in olfactory bulb volume as compared to control subjects [178, 181]. The reason why after HT 
the sense of smell is often permanently lost is due to the failed regeneration of the olfactory 
neuroepithelium, which directly impacts the signal transmission to the OB. In particular, the 
axonal re-growth of the OSNs is influenced by the injury degree [183], since it can severely 
compromise the ONL over its whole length [181]. A crucial aspect, which is widely debated, 
is the olfactory function recovery after a traumatic brain injury (TBI), which distinguishes the 
post-TBI hyposmia as mild, medium and severe [178]. Several studies indicate a proportional 

cause–effect event between trauma severity and olfactory impairment [184, 185], whereas 
other works suggest that the TBI entity is not directly correlated with the degree of olfac-

tory dysfunction [179, 180]. The trauma can also have indirect consequences on the olfactory 

system performance, affecting cortical and subcortical areas, which are involved in the physi-
ological olfactory responsiveness. In clinical trials, it has been observed that administration  
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of therapeutics, such as steroids, might improve the olfactory activity in trauma subjects [186–

188]. By favoring the re-absorption of the edema or removal of the hematoma in the affected 
area, steroids can increase or restore the sense of smell [188]. Overall, these observations indi-
cate that hyposmia is one of the subtlest sensory changes after trauma, which may phenotypi-
cally signal regenerative processes in these patients.

8.2. Schizophrenia and autism

A substantial number of studies indicates a correlation between schizophrenia and olfactory 
impairment (Table 2). There are several aspects of olfaction that can be assessed to character-

ize the schizophrenia-spectrum disorders (SSD). In particular, subjects affected by this neu-

ropsychiatric disease present alterations in performing correctly diverse olfactory tasks, such 
as odor sensitivity, identification and discrimination, when exposed to different odorants [60, 
61, 189–192]. Due to the disbalance in olfactory activity, it has been suggested to consider this 
deficit as a parameter to identify SSD. Moreover, the negative symptoms which characterize 
this illness have been related to the dysfunction in olfactory accuracy [193]. Nevertheless, 
there are controversial reports describing an alteration in the sense of smell in schizophrenia-
associated disorders [190, 194] and others showing the absence of olfactory changes between 
psychotic patients and healthy controls [193, 195, 196]. Starting from this discrepancy, Auster 
and colleagues addressed whether the presence of olfactory deficits could represent a reliable 
marker for subjects potentially susceptible to develop schizophrenia. They investigated this 
aspect comparing the smell functionality in four different groups: (1) schizophrenic individu-

als, (2) persons with different mental disorders than schizophrenia, (3) subjects affected by 
schizotypy and (4) healthy controls [193]. To achieve their goal, they modified a common 
olfaction test, the “Sniffin’ Sticks” [193, 197], in order to expand its efficiency for free recall 
tests in addition to olfaction ability and discrimination. They observed that schizophrenic 
people appear to have a reduced assortment of pleasant odors compared to healthy subjects 
and they report smells as less good over the controls [193, 196, 198], being in line with other 
reports [66, 193, 196, 198, 199]. Functional and structural alterations of the olfactory circuitry 
have been observed in schizophrenic patients using fMRI analysis [200] and electro olfacto-

gram (EOG) measuring olfactory evoked potentials (EP) [194, 201]. At the biomarker level, 
cell culture preparations from nasal epithelium showed an alteration in G protein-coupled 
receptors (GPCRs) cascade, likely affecting the olfactory processing observed in this psychi-
atric disorder [202]. Another study reported that schizophrenic subjects are characterized by 
aberrant neuronal differentiation in the nasal neuroepithelium [203] suggesting that neuro-

developmental deficits may underlie the olfactory dysfunction. Indeed, prenatal or perinatal 
inflammation [204, 205] affect brain development and may cause the excitatory/inhibitory 
(E/I) disbalance characteristic of schizophrenia. Works in mice have demonstrated that 
NMDA hypofunction has a characteristic temporal and spatial resolution that explains the 
onset of schizophrenia: in early postnatal life, NMDA dysfunction occurs first in GABAergic 
interneurons, leading to excitatory derepression. As a compensatory mechanism, a progres-

sive homeostatic downregulation of glutamatergic of NMDA transmission, results in NMDA 
hypofunction of cortical excitatory networks in the adult [206]. Based on the composition of 
the olfactory bulb, with a major inhibitory component and mitral cells representing the only 
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excitatory neurons, it is conceivable that olfactory transmission defect can arise early on due 
to the interference of feedforward inhibition of PGC and GC onto mitral cells, necessary for 
olfactory signal sorting/scaling [207–209]. The connection between neurodevelopmental defi-

cits, E/I imbalance and olfactory deficits in adult life is captured by the numerous studies indi-
cating that the developmental molecule Reelin [210], regulating synaptic plasticity, behavior 
[211–213] and olfaction [30], is reduced in a subset of interneurons in the prefrontal cortex of 
schizophrenic patients [214]. Interestingly, Reelin deficiency has also been reported in AD 
[215–217], suggesting common mechanisms between schizophrenia and progressive neuro-

degeneration. E/I imbalance also alters dopaminergic transmission. In the setting of local and 
corticofugal dopaminergic innervation to the bulb, it is expected that olfactory signal trans-

mission may be also affected, as previously demonstrated in rats treated with inhibitors of D2 
receptor [218]. This body of studies supports the notion that olfactory impairment may be an 

early indicator of E/I imbalance.

Only recently the attention has been pointed on the possibility of olfactory deterioration in autism 
spectrum disorders (ASD), comprising autism (stricto sensu) and Asperger syndrome [219, 220] 

(Table 2). ASD individuals reported an unpleasant strong perception of odors and Galle and col-
leagues demonstrated that depending on the olfactory tasks performed, a difference in autistic, 
Asperger and control subjects could be recognized. In particular, the olfactory identification was 
affected in autistic individuals compared to the other groups [219]. Furthermore, studies using 
rodent models indicate the olfactory bulb among the brain regions critical for ASD pathogenesis 
[221–223]. Moreover, the OR2L13G-protein locus, initializing neuronal response to odorants, 
was shown to be differentially methylated in ASDs suggesting a possible rationale for olfactory 
dysfunction in these pathologies.

Developmental NMDA hypofunction is also reported in ASD [224, 225]. In both schizophre-

nia and ASD, E/I imbalances at bulbar and cortical level likely underlie the olfactory transmis-

sion alterations.

8.3. Progressive neurodegenerative disorders

Olfactory activity progressively decreases with aging [14] and its decline is even accelerated with 

chronic neurodegenerative disorders, such as Alzheimer’s disease (AD) [25, 26], Parkinson’s dis-

ease (PD) [17, 24] and Huntington’s disease (HD) [226, 227] (Table 2). Olfactory dysfunction in 

PD is very prominent (90% of the cases) [228] and the extent of the impairment is comparable to 

the one observed in early onset AD and other progressive neurodegenerative disorders. Indeed, 
in the initial stages of AD the olfactory function is the first to be affected [24], so this sense could 
represent an early predictor of the disease. Olfactory dysfunction observed in progressive neuro-

degenerative diseases could underlie impairments in either the olfactory neuroepithelium, OBs, 
LOT or olfactory cortices [42]. Interestingly, it has been reported that proteinaceous aggregates, 
like Amyloid-β [33], phosphorylated Tau [34, 35, 229], α-synuclein [230, 231], which are charac-

teristic of AD, PD and HD, are deposited in first instance in the olfactory mucosa where they are 
thought to exert a bactericidal action [232]. The aberrant accumulation of misfolded proteins can 

trigger several side effects, causing a transduction deficit and inflammatory responses attempt-
ing to reduce/avoid the microbial diffusion into the brain. Based on the absence of the BBB in 
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the olfactory tract, cells and misfolded proteins can be easily propagated within the brain and 
subsequently affect other olfactory system components, as olfactory cortices and connected areas 
(hippocampus and amygdala) [233]. All these cerebral structures and their related functions are 
damaged in AD, and to a lesser extent in normal aging [42]. Interestingly, OB and olfactory tract 
axonal atrophy has been already detected in MCI which might progressively evolve in AD [234]. 

In the initial Braak stages, the OB undergoes axonal atrophy [235] and in the majority of defi-

nite AD cases the olfactory impairment correlate with cortical AD pathology [236–240]. These 

observations implicate an early critical involvement of the olfactory system in neurodegenera-

tive disorders.

Several molecular mechanisms contributing to AD pathobiology have been demonstrated to 
interfere with olfaction:

1. Amyloid-β, which is overexpressed in AD and contributes to the amyloidogenic pathway, 
has physiological functions, ranging from metal ion sequestration, synaptic plasticity modu-

lation, and antimicrobial activity [33]. The amyloid peptide shares some aspects with a high-

ly conserved antimicrobial proteins (AMPs) family [232]. Based on their ability to form oli-
gomers and fibrils to surround harmful microbial agents, toxic substances and even aberrant 
cells, the AMPs produced by the OSNs represent the first and only defensive barrier of the 
CNS against pathogens. Furthermore, beside its endogenous production, Aβ may also have 
a microbial origin, aggravating the neurodegenerative process [39, 241]. The gastrointestinal 
(GI) compartment represents the principal source of the human microbiome and is tightly 
connected with the CNS through the GI tract-CNS axis, which interconnects these structures 
via immune system molecules, cytokines, hormones and nervous signals [39, 242–244]. Inter-

estingly, the microorganisms residing in the GI tract can synthesize several peptides includ-

ing lipopolysaccharides (LPS) and amyloids [241, 242, 245, 246]. These evidence indicate that 

a mutual benefit host-microbiome is also related to the production of these amyloid exudates 
within a “homeostatic range”, that, when disbalanced, could likely contribute to the etiol-
ogy of chronic neurodegenerative diseases [247–250]. Therefore, the impairment observed in 
amyloid turnover and clearance during neurodegenerative pathologies could be attributed 
to the combination of “human Aβ burden” and the additional microbial Aβ peptides. This 
growing amyloid load in the OE and GI tract, can cause chronic inflammation which on the 
long run may affect BBB integrity and functionality [38, 39, 247, 251–253]. Overall, the depo-

sition of insoluble Amyloid-β causes several side effects as (i) olfactory transduction deficit 
due to interference with OSN surface receptors, (ii) inflammatory responses attempting to 
reduce/prevent the microbial diffusion and (iii) seeding activity into the brain.

2. ApoE4 carriers have a higher incidence of olfactory deficit and are at risk for develop-

ing AD [254]. Moreover, ApoE4 blocks OE cultures neurite outgrowth in contrast to the 
trophic role of ApoE2 and ApoE3 [255].

3. Reports show SOD upregulation in OE and OB in AD patients compared to healthy con-

trols [256] as well as an increase in oxidative response in AD neuroepithelium [255].

4. Along with network hyperactivity in the early stages of dementia, a reduction of calcium 
binding proteins has been observed in OSNs [257].
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5. Imbalances in Acetylcholine (ACh) [258, 259], Dopamine (DA) [260–262], Serotonin (5-HT) 
[57, 263], and Norepinephrine (NA) [264] of the centrifugal afferents to the bulb or olfactory 
cortex affect olfactory transmission but can also influence microglia activation and neuro-

inflammatory processes [265, 266].

6. Transient overexpression of hAPP impacts the glomeruli structure and axonal projections 
towards the corresponding target [267], which is partially rescued by switching off the 
synthesis of hAPP.

7. Dystrophic axon terminals favor amyloid deposition in AD and other disorders [116].

8. Progressive reduction in neuronal signaling components such as Reelin [268, 269] and 

Notch [270, 271] in AD may influence olfactory transmission as shown in rodent models 
[30, 272].

Despite the non-specificity of olfactory dysfunction in neurodegenerative diseases, this defi-

cit is apparent in the pre-symptomatic phase [273, 274]. The underlying mechanisms are still 
poorly understood and only few studies have analyzed olfactory behavior in animal models 
of AD (Tg2576 [36], hTau [36]) and PD (PinkKO [275], α-Syn [276, 277], Bac Tg [278], VMAT2 
[279]). Taken the susceptibility of the olfactory system to early molecular changes occurring in 
dementia, olfactory functions could be employed to predict/monitor the onset of the cognitive 
symptoms in AD as well its progression.

9. Olfactory route for diagnostic and therapeutics

The advantage of nasal biopsies in investigating specific olfactory disorders and also related 
neurodegenerative pathologies is still debated. Several studies suggest that this surgical pro-

cedure might not be specific enough to be routinely adopted in identifying primary events 
which anticipate neurodegenerative diseases [280]. Nevertheless, both the accessibility and 
heterogeneous cytoarchitecture of the olfactory neuroepithelium, make this specimen valu-

able for molecular diagnosis of neurological diseases [281]. Furthermore, the increasing pre-

cision and accuracy in obtaining nasal biopsies through laser surgery render this procedure 
safe, fast and with no major consequences, due to the constant neurogenesis occurring in the 
OE [282]. Nasal biopsies can be employed to detect aberrant misfolded proteins (Aβ, p-Tau, 
α-Syn, PrP, etc.,), produced by the OSNs, reflecting early neural network imbalances in the 
asymptomatic phase of different neurological pathologies. Furthermore, the stem cells popu-

lation residing in the olfactory mucosa is a relevant source of biological material for diagnos-

ing genetic modification related to neurological diseases, performing in-vitro pharmacology 
assays and possibly regenerative therapies after trauma. Thus, nasal mucosa biopsies consti-
tute a useful tool in recognizing susceptible subjects with early subclinical neurodegenerative 
processes and introduce them well in advance to therapeutics or new medical trials. Sampling 
of the mucosa has been previously employed in the diagnosis of genetic variants in schizo-

phrenia [71] and as experimental tool to investigate mechanisms underlying a variety of neu-

rological disorders (ranging from schizophrenia, ASD, Rett syndrome, bipolar disorders to 
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Alzheimer’s disease) [71]. Finally, nasal secretions may be also a valuable liquid biopsy to 
perform longitudinal monitoring of pathological profiles in the progression of AD [283, 284]. 

Besides the accessibility of the olfactory system for diagnosing brain health, intranasal (IN) 
drug delivery offers great potential for brain targeting through by-passing the BBB [285]. IN 

delivery is currently approved for systemic drugs for a wide range of indications, including 
hormone replacement therapy, osteoporosis, migraine, prostate cancer, and influenza vaccine 
[286]. Approved CNS applications include IN administration of opioids for chronic cancer 
pain (fentanyl, buprenorphine and morphine) [287] based on their small molecular weight 
(200–400 Daltons) and their rapid onset. Repurposing of IN insulin, approved for Diabetes I, 
is being investigated for the treatment of Insulin hypometabolism in dementia [288]. So far, 
the clinical studies have demonstrated that IN insulin can revert the cognitive symptoms and 
reduce the amyloid load in both MCI [289] and early stage AD [290, 291] (https://clinicaltri-
als.gov/). Nevertheless, the little understanding of the absorbance mechanisms through the 
nasal route and the biodistribution variability based on nasal secretion and local inflamma-

tory processes are slowing down the development of intranasal CNS drug. Recent preclinical 
studies in rodents have underlined the potential of IN administration for CNS diseases, as this 
route shows superior pharmacodynamics [292], allows up to 20 folds higher drug bioavail-
ability [293] and rapid transport through the rostral migratory stream to limbic structures 
[294]. Nevertheless, more clinical studies are needed to develop IN applications that have 

prognostic and diagnostic value.

10. Conclusions

Olfaction is one of the most essential senses in mammals throughout life and appears to be a 
relevant readout for both peripheral and central neural processes. The research in the past 30 

years has used mouse models to cast light on important cellular and molecular mechanisms 
governing odor specification in the olfactory neuroepithelium and olfactory bulb and signal 
encoding in the cerebral cortex. During the same period, a bulk of clinical studies reported a 
strong association between many neurological diseases and olfactory deficits, suggesting that 
olfactory activity can sentinel subtle changes in key brain areas connected to the olfactory 
system. Nevertheless, the processes underlying this quite ubiquitous phenotypical dysfunc-

tion are poorly understood. Indeed, despite the clinical evidence from patients, relevant clini-
cal models of neurological diseases have been rarely tested to unravel the basis of olfactory 
alteration. We believe that this field needs to close the gap between bench-side and bed-side 
research to devise better diagnostic and therapeutic strategies, which can exploit the acces-

sibility and non-invasiveness of this cranial nerve.
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