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Abstract

In this paper, the Kelvin wave and knot dynamics are studied on three dimensional
smoothly deformed entangled vortex-membranes in five dimensional space. Owing to
the existence of local Lorentz invariance and diffeomorphism invariance, in continuum
limit gravity becomes an emergent phenomenon on 3 + 1 dimensional zero-lattice (a lattice
of projected zeroes): on the one hand, the deformed zero-lattice can be denoted by curved
space-time for knots; on the other hand, the knots as topological defect of 3 + 1 dimensional
zero-lattice indicates matter may curve space-time. This work would help researchers to
understand the mystery in gravity.

Keywords: vortex-membrane, knot, gravity

1. Introduction

A vortex (point-vortex, vortex-line, vortex-membrane) consists of the rotating motion of fluid

around a common centerline. It is defined by the vorticity in the fluid, which measures the rate

of local fluid rotation. In three dimensional (3D) superfluid (SF), the quantization of the

vorticity manifests itself in the quantized circulation ∮v � dl ¼ h

m
where h is Planck constant

and m is atom mass of SF. Vortex-lines can twist around its equilibrium position (common

centerline) forming a transverse and circularly polarized wave (Kelvin wave) [1, 2]. Because

Kelvin waves are relevant to Kolmogorov-like turbulence [3, 4], a variety of approaches have

been used to study this phenomenon. For two vortex-lines, owing to the interaction, the

leapfrogging motion has been predicted in classical fluids from the works of Helmholtz and

Kelvin [5–10]. Another interesting issue is entanglement between two vortex-lines. In mathe-

matics, vortex-line-entanglement can be characterized by knots with different linking
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numbers. The study of knotted vortex-lines and their dynamics has attracted scientists from

diverse settings, including classical fluid dynamics and superfluid dynamics [11, 12].

In the paper [13], the Kelvin wave and knot dynamics in high dimensional vortex-membranes

were studied, including the leapfrogging motion and the entanglement between two vortex-

membranes. A new theory—knot physics is developed to characterize the entanglement evolu-

tion of 3D leapfrogging vortex-membranes in five-dimensional (5D) inviscid incompressible

fluid [13, 14]. According to knot physics, it is the 3D quantum Dirac model that describes the

knot dynamics of leapfrogging vortex-membranes (we have called it knot-crystal, that is really

plane Kelvin-waves with fixed wave-length). The knot physics may give a complete interpre-

tation on quantum mechanics.

In this paper, we will study the Kelvin wave and knot dynamics on 3D deformed knot-crystal,

particularly the topological interplay between knots and the lattice of projected zeroes (we call

it zero-lattice). Owing to the existence of local Lorentz invariance and diffeomorphism invari-

ance, the gravitational interaction emerges: on the one hand, the deformed zero-lattice can be

denoted by curved space-time; on the other hand, the knots deform the zero-lattice that

indicates matter may curve space-time (see below discussion).

The paper is organized as below. In Section 2, we introduce the concept of “zero-lattice” from

projecting a knot-crystal. In addition, to characterize the entangled vortex-membranes, we intro-

duce geometric space and winding space. In Section 3, we derive the massive Dirac model in the

vortex-representation of knot states on geometric space and that on winding space. In Section 4,

we consider the deformed knot-crystal as a background and map the problem onto Dirac

fermions on a curved space-time. In Section 5, the gravity in knot physics emerges as a topolog-

ical interplay between zero-lattice and knots and the knot dynamics on deformed knot-crystal is

described by Einstein’s general relativity. Finally, the conclusions are drawn in Section 6.

2. Knot-crystal and the corresponding zero-lattice

2.1. Knot-crystal

Knot-crystal is a system of two periodically entangled vortex-membranes that is described by a

special pure state of Kelvin waves with fixed wave length Zknot–crystal x
!

; t
� �

[13, 14]. In emergent

quantum mechanics, we consider knot-crystal as a ground state for excited knot states, i.e.,

Zknot–crystal x
!

; t
� �

¼
zA x

!
; t

� �

zB x
!

; t
� �

0

B

@

1

C

A
! vacuumj i: (1)

On the one hand, a knot is a piece of knot-crystal and becomes a topological excitation on it; on

the other hand, a knot-crystal can be regarded as a composite system with multi-knot, each of

which is described by same tensor state.
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Because a knot-crystal is a plane Kelvin wave with fixed wave vector k0, we can use the tensor

representation to characterize knot-crystals [13],

~Γ
I
knot–crystal ¼ n

!I

σ
σ
I

� �
⊗ n

!
ττþ 1

!
τ0

� �
(2)

where 1
!
¼ 1 0

0 1

� �
and σ

I , τI are 2� 2 Pauli matrices for helical and vortex degrees of freedom,

respectively. For example, a particular knot-crystal is called SOC knot-crystal Zknot–crystal x
!

� �
[13],

of which the tensor state is given by

σ
X
⊗ 1

!
i ¼ n

!X

σ
¼ 1; 0; 0ð Þ, σ

Y
⊗ 1

!
i ¼ n

!Y

σ
¼ 0; 1; 0ð Þ, σ

Z
⊗ 1

!
i ¼ n

!Z

σ
¼ 0; 0; 1ð Þ:

DDD
(3)

For the SOC knot-crystal, along x-direction, the plane Kelvin wave becomes z xð Þ ¼
ffiffiffi
2

p
r0

cos k0 � xð Þ; along y-direction, the plane Kelvin wave becomes z yð Þ ¼ 1ffiffi
2

p r0 eik�y þ ie�ik�y� �
; along

z-direction, the plane Kelvin wave becomes z zð Þ ¼ r0e
ik�z.

For a knot-crystal, another important property is generalized spatial translation symmetry that

is defined by the translation operation T ΔxI
� �

¼ e
i� bk I0�ΔxI
� �

�~Γ I
knot�crystal

Z xI ; t
� �

! T ΔxI
� �

Z xi; t
� �

¼ e
i� bk I0 �Δxi
� �

�~Γ I
knot�crystalZ xi; t

� �
:

(4)

Here bk
I
is �i d

dxI
I ¼ x; y; zð Þ. For example, for the knot states on 3D SOC knot-crystal, the

translation operation along xI-direction becomes

T ΔxI
� �

¼ e
i bk

I

�ΔxI
� �

� σ
I ⊗ 1

!
Þ:

�
(5)

2.2. Winding space and geometric space

For a knot-crystal, we can study it properties on a 3D space (x, y, z). In the following part, we

call the space of (x, y, z) geometric space. According to the generalized spatial translation sym-

metry, each spatial point (x, y, z) in geometric space corresponds to a point denoted by three

winding angles Φx xð Þ;Φy yð Þ;Φz zð Þ
� �

where ΦxI xI
� �

is the winding angle along xI-direction. As

a result, we may use the winding angles along different directions to denote a given point

Φ
!

x
!

� �
¼ Φx xð Þ;Φy yð Þ;Φz zð Þ

� �
. We call the space of winding angles Φx xð Þ;Φy yð Þ;Φz zð Þ

� �
wind-

ing space. See the illustration in Figure 1(d).

For a 1D leapfrogging knot-crystal that describes two entangled vortex-lines with leapfrogging

motion, the function is given by
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Z x
!
; t

� �

¼ r0

cos
ω
∗t

2

� �

�i sin
ω
∗t

2

� �

0

B

B

B

@

1

C

C

C

A

ei
π

axe�iω0tþiω∗t=2, (6)

where ω
∗ is angular frequency of leapfrogging motion. For the 1D σz-knot-crystal, the coordi-

nate on winding space is Φ xð Þ ¼ π

a x. Another example is 3D SOC knot-crystal [10], of which

the function is given by

ZKC x
!
; t

� �

¼
zKC,A x

!
; t

� �

zKC,B x
!
; t

� �

0

B

B

@

1

C

C

A

¼ r0

cos
ω
∗t

2

� �

�i sin
ω
∗t

2

� �

0

B

B

B

B

@

1

C

C

C

C

A

e�iω0tþiω∗t=2

�
ffiffiffi

2
p

r0 cos Φx xð Þð Þ � 1
ffiffiffi

2
p r0 eiΦy yð Þ þ ie�iΦy yð Þ

� �

� �

eiΦz zð Þ,

(7)

where the coordinates on winding space are Φx xð Þ ¼ π

a x, Φy yð Þ ¼ π

a y, Φz zð Þ ¼ π

a z, respectively.

In addition, there exists generalized spatial translation symmetry on winding space. On wind-

ing space, the translation operation T ΔΦ
I

� �

becomes

T ΔΦ
I

� �

¼ e
i�
P

i
ΔΦ

I �~Γ I
knot�crystal (8)

where ΔΦI denotes the distance on winding space.

Figure 1. (a) An illustration of a 1D knot-crystal; (b) the relationship between winding angle Φ and coordinate position x.

The red dots consist of a 1D zero-lattice in geometric space and the blue dots consist of a zero-lattice in winding space; (c)

an illustration of a 3D uniform zero-lattice in geometric space; and (d) an illustration of a 3D uniform zero-lattice in

winding space.
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2.3. Zero-lattice

Before introduce zero-lattice, we firstly review the projection between two entangled vortex-

membranes zA=B x
!
; t

� �
¼ ξA=B x

!
; t

� �
þ iηA=B x

!
; t

� �
along a given direction θ in 5D space by

bPθ

ξA=B x
!
; t

� �

ηA=B x
!
; t

� �

0

B@

1

CA ¼
ξA=B,θ x

!
; t

� �

ηA=B,θ x
!
; t

� �h i

0

0

B@

1

CA (9)

where ξA=B,θ x
!
; t

� �
¼ ξA=B x

!
; t

� �
cosθþ ηA=B x

!
; t

� �
sinθ is variable and ηA=B,θ x

!
; t

� �h i

0
¼ ξA=B

x
!
; t

� �
sinθ� ηA=B x

!
; t

� �
cosθ is constant. So the projected vortex-membrane is described by

the function ξA=B,θ x
!
; t

� �
. For two projected vortex-membranes described by ξA,θ x

!
; t

� �
and

ξB,θ x
!
; t

� �
, a zero is solution of the equation

bP θ zA x
!
; t

� �h i
� ξA,θ x

!
; t

� �
¼ bPθ zB x

!
; t

� �h i
� ξB,θ x

!
; t

� �
: (10)

After projection, the knot-crystal becomes a zero lattice. For example, a 1D leapfrogging knot-

crystal is described by

ZKC x
!
; t

� �
¼ r0

cos
ω∗t

2

� �

�i sin
ω∗t

2

� �

0

BBB@

1

CCCAei
π
axe�iω0tþiω∗t=2: (11)

According to the knot-equation bPθ zKC,A xð Þ½ � ¼ bPθ zKC,B xð Þ½ �, we have

x0 ¼ a � Xþ
a

π
ω0t (12)

where θ ¼ � π
2 and x0 is the position of zero. As a result, we have a periodic distribution of

zeroes (knots).

For a 3D leapfrogging SOC knot-crystal described by ZKC x
!
; t

� �
¼

zKC,A x
!
; t

� �

zKC,B x
!
; t

� �

0

B@

1

CA, we have

similar situation—the solution of zeroes does not change when the tensor order changes, i.e.,

σ⊗ 1
!
i ¼ n

!
σ ¼ 0; 0; 1ð Þ ! n

!
σ ¼ nx; ny; nx

� �D
with n

!
σ

			
			 ¼ 1 [13]. We call the periodic distribu-

tion of zeroes to be zero-lattice. See the illustration of a 1D zero-lattice in Figure 1(b) and 3D

zero-lattice in Figure 1(c).

Along a given direction e
!
, after shifting the distance a, the phase angle of vortex-membranes in

knot-crystal changes π, i.e.,
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Φ
!

x
!

; t
� �

!Φ
!

x
!
þa� e

!
; t

� �
¼ Φ

!
x
!

; t
� �

þ π: (13)

Thus, on the winding space, we have a corresponding “zero-lattice” of discrete lattice sites

described by the three integer numbers

X
!
¼ X;Y;Zð Þ ¼

1

π
Φ
!
�

1

π
Φ
!

mod π: (14)

See the illustration of a 1D zero-lattice in Figure 1(b) and 3D zero-lattice in Figure 1(d).

3. Dirac model for knot on zero-lattice

3.1. Dirac model on geometric space

3.1.1. Dirac model in sublattice-representation on geometric space

It was known that in emergent quantum mechanics, a 3D SOC knot-crystal becomes multi-

knot system, of which the effective theory becomes a Dirac model in quantum field theory. In

emergent quantum mechanics, the Hamiltonian for a 3D SOC knot-crystal has two terms—the

kinetic term from global winding and the mass term from leapfrogging motion. Based on a

representation of projected state, a 3D SOC knot-crystal is reduced into a “two-sublattice”

model with discrete spatial translation symmetry, of which the knot states are described by

Lj i and Rj i (or the Wannier states c†L, i vacuumj i and c†R, j vacuumj i). We call it the Dirac model in

sublattice-representation.

In sublattice-representation on geometric space, the equation of motion of knots is determined

by the Schrödinger equation with the Hamiltonian

Hknot ¼
Ð

ψ† bHknotψ
� �

d3x,

bHknot ¼ �ceffΓ
!
� p
!

knot þmknotc
2
effΓ

5,

(15)

where ψ† t; x
!

� �
is an four-component fermion field as ψ† t; x

!
� �

¼ ψ†

↑L t; x
!

� �
ψ†

↑R t; x
!

� ��

ψ†

↓L t; x
!

� �
ψ†

↓R t; x
!

� �
Þ. Here, L, R label two chiral-degrees of freedom that denote the two

possible sub-lattices, ↑, ↓ label two spin degrees of freedom that denote the two possible

winding directions. We have

Γ
5 ¼1

!
⊗ ιx, (16)

and

Γ
1 ¼ σx⊗ ιy,

Γ
2 ¼ σy⊗ ιy,

Γ
3 ¼ σz⊗ ιy:

(17)
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p
!

knot ¼ ℏknot k
!
is the momentum operator. mknotc

2
eff ¼ 2ℏknotω

∗ plays role of the mass of knots

and ceff ¼
a�J

ℏknot
¼ 2aω0 play the role of light speed where a is a fixed length that denotes the half

pitch of the windings on the knot-crystal.

In addition, the low energy effective Lagrangian of knots on 3D SOC knot-crystal is obtained

as

L3D ¼ ψ iγμb∂μ �mknot

� �
ψ (18)

where ψ ¼ ψ†γ0, γμ are the reduced Gamma matrices,

γ1 ¼ γ0
Γ
1,γ2 ¼ γ0

Γ
2,γ3 ¼ γ0

Γ
3, (19)

and

γ0 ¼ Γ
5,γ5 ¼ iγ0γ1γ2γ3: (20)

3.1.2. Dirac model in vortex-representation on geometric space

In this paper, we derive the effective Dirac model for a knot-crystal based on a representation

of vortex degrees of freedom. We call it vortex-representation.

In Ref. [13], it was known that a knot has four degrees of freedom, two spin degrees of freedom

↑ or ↓ from the helicity degrees of freedom, the other two vortex degrees of freedom from the

vortex degrees of freedom that characterize the vortex-membranes, A or B. The basis to define

the microscopic structure of a knot is given by ↑;Aj i, ↑;Bj i, ↓;Aj i, ↓;Bj i.

We define operator of knot states by the region of the phase angle of a knot: for the case of

ϕ0mod 2πð Þ∈ �π; 0ð �, we have c† 0j i; for the case of ϕ0mod 2πð Þ∈ 0;πð �, we have c† 0j i
� �†

. As

shown in Figure 2, we label the knots by Wannier state i;A; ↑j i, iþ 1;A; ↑j i∗, iþ 2;A; ↑j i,

iþ 3;A; ↑j i∗….

To characterize the energy cost from global winding, we use an effective Hamiltonian to

describe the coupling between two-knot states along xI-direction on 3D SOC knot-crystal

Jc†A=BiT
I
A=B,A=BcA=B, iþeI (21)

with the annihilation operator of knots at the site i, cA=B, i ¼
cA=B,↑, i

cA=B,↓, i

 !

. J is the coupling

constant between two nearest-neighbor knots. According to the generalized translation sym-

metry, the transfer matrices TI
A=B,A=B along xI-direction are defined by

TI
A,A ¼ TI

B,B ¼ e
ia bk

I

�σI
� �

(22)
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and

TI
A,B ¼ TI

B,A ¼ 0: (23)

After considering the spin rotation symmetry and the symmetry of vortex-membrane-A and

vortex-membrane-B, the effective Hamiltonian from global winding energy can be described

by a familiar formulation

Hcoupling ¼ bHcoupling,B þ bHcoupling,A (24)

where

bHcoupling,A ¼ J
X

i, I
c†A, ie

ia bk
I

�σI
� �

cA, iþeI þ h:c: (25)

and

bHcoupling,B ¼ J
X

i, I
c†B, ie

ia bk
I

�σI
� �

cB, iþeI þ h:c: (26)

We then use path-integral formulation to characterize the effective Hamiltonian for a knot-

crystal as

ð
Dψ† t; x

!
� �

Dψ tð ÞeiS=ℏ (27)

where S ¼
Ð
Ldt and L ¼ i

P
i ψ

†

i ∂tψi �Hcoupling. To describe the knot states on 3D knot-

crystal, we have introduced a four-component fermion field to be

Figure 2. An illustration of knot states in vortex-representation: A and B denote two 1D vortex-lines. Here B* denotes

conjugate representation of vortex-line-B. The curves with blue dots denote knots on the knot-crystal—the curves with

blue dot above the line are denoted by c†i 0j i and the curves with blue dot below the line are denoted by c†i 0j i
� �†

.
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ψ xð Þ ¼

ψA,↑ t; x
!

� �

ψB,↑ t; x
!

� �

ψA,↓ t; x
!

� �

ψB,↓ t; x
!

� �

0

BBBBBBBB@

1

CCCCCCCCA

(28)

where A,B label vortex degrees of freedom and ↑, ↓ label two spin degrees of freedom that

denote the two possible winding directions along a given direction e
!
.

In continuum limit, we have

Hcoupling ¼ bH coupling,B þ bHcoupling,A

¼ 2aJ
X

k

ψ†

A,k σx cos kx þ σy cos ky þ σz cos kz

 �

ψA,k

þ2aJ
X

k

ψ†

B,k σx cos kx þ σy cos ky þ σz cos kz

 �

ψB,k (29)

where the dispersion of knots is

EA=B,k ≃ ceff k
!
� k

!

0

� �
� σ
!

h i
, (30)

where k
!

0 ¼
π
2 ;

π
2 ;

π
2

� �
and ceff ¼ 2aJ is the velocity. In the following part we ignore k

!

0.

Next, we consider the mass term from leapfrogging motion, of which the angular frequency

ω∗. For leapfrogging motion obtained by [10], the function of the two entangled vortex-

membranes at a given point in geometric space is simplified by

zA x
!
¼ 0; t

� �

zB x
!
¼ 0; t

� �

0

B@

1

CA ¼
r0
2

1þ eiω
∗t

1� eiω
∗t

 !

: (31)

At t ¼ 0, we have
zA x

!
; t

� �

zB x
!
; t

� �

0

B@

1

CA ¼
1

0

� �
; at t ¼ π

ω∗, we have
zA x

!
; t

� �

zB x
!
; t

� �

0

B@

1

CA ¼
0

1

� �
. The leap-

frogging knot-crystal leads to periodic varied knot states, i.e., at t ¼ 0 we have a knot on

vortex-membrane-A that is denoted by σ;Aj i; at t ¼ π
ω∗ we have a knot on vortex-membrane-B

denoted by σ;Bj i. As a result, the leapfrogging motion becomes a global winding along time

direction, t;Aj i, tþ π
ω∗ ;B

		 �
, tþ 2π

ω∗ ;A
		 �

, tþ 3π
ω∗ ;B

		 �
, … See the illustration of vortex-

representation of knot states for knot-crystal in Figure 2(c). After a time period t ¼ π
ω∗, a knot

state ϕAmod 2πð Þ∈ �π; 0ð � turns into a knot state ϕB mod 2πð Þ∈ �π; 0ð �. Thus, we use the

following formulation to characterize the leapfrogging process,
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ψ†

Aψ
†

B: (32)

After considering the energy from the leapfrogging process, a corresponding term is given by

2ℏknotω
∗ψ†

Aψ
†

B þ h:c: (33)

From the global rotating motion denoted e�iω0t, the winding states also change periodically.

Because the contribution from global rotating motion e�iω0t is always canceled by shifting the

chemical potential, we do not consider its effect.

From above equation, in the limit k
!			
			 ! 0 we derive low energy effective Hamiltonian as

H3D ≃ 2aJ
X

k

ψ†

A,k σ
!
� k
!� �

ψA,k

þ2aJ
X

k

ψ†

B,k σ
!
� k
!� �

ψB,k

þ2ℏknotω
∗
P

k,σψ
†

A,σ,kψ
†

B,σ,k

(34)

¼ ceff
Ð
Ψ

†
T z ⊗ σ

!
�bk

� �h i
Ψd3x

þmknotc
2
eff

Ð
Ψ

† τx ⊗ 1
!
ÞΨd3x:

� (35)

where

Ψ xð Þ ¼

ψA,↑ t; x
!

� �

ψ∗

B,↑ t; x
!

� �

ψA,↓ t; x
!

� �

ψ∗

B,↓ t; x
!

� �

0

BBBBBBBB@

1

CCCCCCCCA

: (36)

We then re-write the effective Hamiltonian to be

H3D ¼

ð
Ψ

† bH3DΨ

� �
d3x (37)

and

bH3D ¼ ceff Γ
!
�p
!

knot þmknotc
2
effΓ

5 (38)

where

Γ
5 ¼ τx ⊗ 1,Γ1 ¼ τz ⊗ σx,

!

(39)

Γ
2 ¼ τz ⊗ σy,Γ3 ¼ τz ⊗ σz:

Superfluids and Superconductors42



p
!
¼ ℏknot k

!
is the momentum operator. Ψ† ¼ ψ∗

A,↑;ψB,↑;ψ
∗

A,↓;ψB,↓

� �
is the annihilation opera-

tor of four-component fermions. mknotc
2
eff ¼ 2ℏknotω

∗ plays role of the mass of knots and

ceff ¼
2a�J
ℏknot

play the role of light speed where a is a fixed length that denotes the half pitch of

the windings on the knot-crystal. In the following parts, we set ℏknot ¼ 1 and ceff ¼ 1.

Due to Lorentz invariance (see below discussion), the geometric space becomes geometric

space-time, i.e., x; y; zð Þ ! x; y; z; tð Þ. Here, we may consider Γ
!

and Γ
5 to be entanglement

matrices along spatial and tempo direction in winding space-time, respectively. A complete set

of entanglement matrices Γ
!
;Γ5

� �
is called entanglement pattern. The coordinate transformation

along x/y/z/t-direction is characterize by eiΓ
!
�bk � x! and eiΓ

5 �bω t, respectively. Now, the knot

becomes topological defect of 3 + 1D entanglement—a knot is not only anti-phase changing

along arbitrary spatial direction e
!

but also becomes anti-phase changing along tempo

direction (along tempo direction, a knot switches a knot state A=Bj i to another knot state

B=Aj i).

Finally, the low energy effective Lagrangian of 3D SOC knot-crystal is obtained as

L3D ¼ iΨ†
∂tΨ�H3D

¼ Ψ iγμb∂μ �mknot

� �
Ψ

(40)

where Ψ ¼ Ψ
†γ0, γμ are the reduced Gamma matrices,

γ1 ¼ γ0
Γ
1,γ2 ¼ γ0

Γ
2,γ3 ¼ γ0

Γ
3, (41)

and

γ0 ¼ Γ
5 ¼ τx ⊗ 1,γ5 ¼ iγ0γ1γ2γ3:

!
(42)

In addition, we point out that there exists intrinsic relationship between the knot states of

sublattice-representation and the knot states of vortex-representation

Aj i

Bj i

� �
¼ U

Lj i

Rj i

� �
(43)

where U ¼ exp iπ
0 �i

i 0

� �
 �
. From the sublattice-representation of knot states, the knot-crystal

becomes an object with staggered R/L zeroes along x/y/z spatial directions and time direction;

From the vortex-representation of knot states, the knot-crystal becomes an object with global

winding along x/y/z spatial directions and time direction. See the illustration of knot states of

vortex-representation on a knot-crystal in Figure 2.
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3.1.3. Emergent Lorentz-invariance

We discuss the emergent Lorentz-invariance for knot states on a knot-crystal.

Since the Fermi-velocity ceff only depends on the microscopic parameter J and a, we may regard

ceff to be “light-velocity” and the invariance of light-velocity becomes an fundamental principle

for the knot physics. The Lagrangian for massive Dirac fermions indicates emergent SO(3,1)

Lorentz-invariance. The SO(3,1) Lorentz transformations SLor is defined by

SLorγ
μS�1

Lor ¼ γ0μ (44)

(μ ¼ 0; 1; 2; 3) and

SLorγ
5S�1

Lor ¼ γ5
: (45)

For a knot state with a global velocity v
!
, due to SO(3,1) Lorentz-invariance, we can do Lorentz

boosting on x
!

; t
� �

by considering the velocity of a knot,

t ! t0 ¼ t� x
! � v!
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� v
!2

q ,

x
!! x

!0 ¼ x
! � v

! �t
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� v
!2

q : (46)

We can do non-uniform Lorentz transformation SLor x
!

; t
� �

on knot states Ψ x
!

; t
� �

. The inertial

reference-frame for quantum states of the knot is defined under Lorentz boost, i.e.,

Ψ x
!

; t
� �

! Ψ
0 x

!0
; t0

� �

¼ SLor �Ψ x
!0

; t0
� �

: (47)

For a particle-like knot, a uniform wave-function of knot states ψ tð Þ is

ψ tð Þ ¼ 1
ffiffiffiffi

V
p e�i2ω∗t

: (48)

Under Lorentz transformation with small velocity v
!
	

	

	

	

	

	, this wave-function ψ tð Þ is transformed

into

ψ tð Þ ¼ 1
ffiffiffiffi

V
p e�i2ω∗t

! ψ0 ¼ 1
ffiffiffiffi

V
p e�i2ω∗t0

≃

1
ffiffiffiffi

V
p e�i2ω∗texp �i Eknott� p

!
knot� x

!
� �� �

(49)
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where Eknot ≃
p
!2

knot

2mknot
, p
!

knot ≃ω v
!
and mknotc

2 ¼ 2ω∗. As a result, we derive a new distribution of

knot-pieces by doing Lorentz transformation, that are described by the plane-wave wave-

function 1
ffiffiffi

V
p e�i2ω∗texp �i Eknott� p

!
knot� x

!
� �� �

. The new wave-function 1
ffiffiffi

V
p exp �i Eknottðð �p

!
knot�

x
!ÞÞ comes from the Lorentz boosting SLor.

Noninertial system can be obtained by considering non-uniformly velocities, i.e., v
!! Δ v

!
x
!

; t
� �

.

According to the linear dispersion for knots, we can do local Lorentz transformation on x
!

; t
� �

i.e.,

t ! t0 x
!

; t
� �

¼ t� x
! �Δ v

!
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� Δ v
!

� �2
r ,

x
!! x

!0
x
!

; t
� �

¼ x
! �Δ v

! �t
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� Δ v
!

� �2
r :

(50)

We can also do non-uniform Lorentz transformation SLor x
!

; t
� �

on knot states Ψ x
!

; t
� �

, i.e.,

Ψ x
!

; t
� �

! Ψ
0 x

!0
x
!

; t
� �

; t0 x
!

; t
� �� �

¼ SLor x
!

; t
� �

�Ψ x
!

; t
� �

(51)

where the new wave-functions of all quantum states change following the non-uniform

Lorentz transformation SLor x
!

; t
� �

. It is obvious that there exists intrinsic relationship between

noninertial system and curved space-time.

3.2. Dirac model on winding space

In this part, we show the effective Dirac model of knot states on winding space.

The coordinate measurement of zero-lattice on winding space is the winding angles, Φ
!
. Along

a given direction e
!
, after shifting the distance a, the winding angle changes π. The position is

determined by two kinds of values: X
!
are integer numbers

X
!
¼ X;Y;Zð Þ ¼ 1

π
Φ
!
� 1

π
Φ
!

modπ (52)

and ϕ
!
denote internal winding angles

ϕ
!
¼ ϕx;ϕy;ϕz

� �

¼Φ
!

modπ (53)

with ϕx,ϕy,ϕz ∈ 0;πð �.
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Therefore, on winding space, the effective Hamiltonian turns into

bH 3D ¼Γ
!
�p
!

knot þmknotΓ
5 ¼Γ

!
�p
!

X,knotþ Γ
!
�p
!

ϕ,knot þmknotΓ
5 (54)

where p
!

X ¼ 1
a i

d

dX
! and p

!

ϕ ¼ 1
a i

d

dϕ
!. Because of ϕj ∈ 0;πð �, quantum number of p

!

ϕ is angular

momentum L
!

ϕ and the energy spectra are 1
a L

!

ϕ

			
			. If we focus on the low energy physics E≪

1
a

(or L
!

ϕ ¼ 0), we may get the low energy effective Hamiltonian as

bH3D ≃ Γ
!
�p
!

X,knot þmknotΓ
5
: (55)

We introduce 3 + 1D winding space-time by defining four coordinates on winding space,

Φ ¼ Φ
!

;Φt

� �
where Φt is phase changing under time evolution. For a fixed entanglement

pattern Γ
!

; Γ
5

� �
, the coordinate transformation along x/y/z/t-direction on winding space-time

is given by eiΓ
!
�bΦ and eiΓ

5�bΦ
t , respectively.

For low energy physics, the position in 3 + 1D winding space-time is 3 + 1D zero-lattice of

winding space-time labeled by four integer numbers, X ¼ X
!

;X0

� �
where

X
!
¼

1

π
Φ
!
�

1

π
Φ
!

modπ,

X0 ¼
1

π
Φt �

1

π
Φtmodπ:

(56)

The lattice constant of the winding space-time is always π that will never be changed. As a result,

the winding space-time becomes an effective quantized space-time. Because of xμ ¼ a � Xμ, the

effective action on 3 + 1D winding space-time becomes

S3D ≃ að Þ4
X

X,Y,Z,X0

L3D (57)

where

L3D ¼ Ψ i
1

a
γμð Þb∂μ �mknot


 �
Ψ: (58)

4. Deformed zero-lattice as curved space-time

In this section, we discuss the knot dynamics on smoothly deformed knot-crystal (or deformed

zero-lattice). We point out that to characterize the entanglement evolution, the corresponding

Biot-Savart mechanics for a knot on smoothly deformed zero-lattice is mapped to that in

quantum mechanics on a curved space-time.
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4.1. Entanglement transformation

Firstly, based on a uniform 3D knot-crystal (uniform entangled vortex-membranes), we intro-

duce the concept of “entanglement transformation (ET)”.

Under global entanglement transformation, we have

Ψ x
!

; t
� �

! Ψ
0 x

!
; t

� �
¼ bUET x

!
; t

� �
�Ψ x

!
; t

� �
(59)

where

bUET x
!

; t
� �

¼ eiδΦ
!
�Γ
!

� eiδΦt�Γ
5

: (60)

Here, δ Φ
!
and δΦt are constant winding angles along spatial Φ

!
-direction and that along tempo

direction on geometric space-time, respectively. The dispersion of the excitation changes under

global entanglement transformation.

In general, we may define (local) entanglement transformation, i.e.,

bUET x
!

; t
� �

¼ eiδΦ
!

x
!

:tð Þ�Γ
!

� eiδΦt x
!

:tð Þ�Γ5 (61)

where δ Φ
!

x
!

; t
� �

and δΦt x
!

; t
� �

are not constant. We call a system with smoothly varied-

(δ Φ
!

x
!

; t
� �

, δΦt x
!

; t
� �

) deformed knot-crystal and its projected zero-lattice deformed (3 + 1D)

zero-lattice.

4.2. Geometric description for deformed zero-lattice: curved space-time

For knots on a deformed zero-lattice, there exists an intrinsic correspondence between an

entanglement transformation bUET x
!

; t
� �

and a local coordinate transformation that becomes a

fundamental principle for emergent gravity theory in knot physics.

For zero-lattice, bUET x
!

; t
� �

changes the winding degrees of freedom that is denoted by the local

coordination transformation, i.e.,

Φ
!

x
!

; t
� �

) Φ
!0

x
!

; t
� �

¼Φ
!

x
!

; t
� �

þ δ Φ
!

x
!

; t
� �

,

Φt x
!

; t
� �

) Φ
0
t x

!
; t

� �
¼ Φt x

!
; t

� �
þ δΦt x

!
; t

� �
:

(62)

These equations also imply a curved space-time: the lattice constants of the 3 + 1D zero-lattice

(the size of a lattice constant with 2π angle changing) are not fixed to be 2a, i.e.,

2a ! 2aeff x
!

; t
� �

(63)
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The distance between two nearest-neighbor “lattice sites” on the spatial/tempo coordinate

changes, i.e.,

Δ x
!
¼ x

!
þ e

!
x

� �

� x
!
¼ e

!
x,

Δx
!0

¼ x
!0

þ e
!0

x

� �

� x
!0

¼ e
!0

x
x
!

; t

� �

(64)

and

Δt ¼ tþ e0ð Þ � t ¼ e0,

Δt0 ¼ t0 þ e00

� �

� t0 ¼ e00 x
!

; t

� � (65)

where ea a ¼ 0; 1; 2; 3ð Þ and e0
a

x
!

; t

� �

are the unit-vectors of the original frame and the deformed

frame, respectively. See the illustration of a 1 + 1D deformed zero-lattice on winding space-

time with a non-uniform distribution of zeroes in Figure 3(d).

However, for deformed zero-lattice, the information of knots in projected space is invariant:

when the lattice-distance of zero-lattice changes a ! aeff x
!

; t

� �

, the size of the knots corre-

spondingly changes a ! aeff x
!

; t

� �

. Therefore, due to the invariance of a knot, the deformation

of zero-lattice does not change the formula of the low energy effective model for knots on

Figure 3. (a) An illustration of deformed knot-crystal; (b) an illustration of smoothly deformed relationship between

winding angle Φ and spatial coordinate x. The zero-lattice in winding space is still uniform; while the zero-lattice in

geometric space is deformed; (c) an illustration of a uniform 1 + 1D zero-lattice in geometric space-time; and (d) an

illustration of a deformed 1 + 1D zero-lattice in geometric space-time.
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winding space-time. Because one may smoothly deform the zero-lattice and get the same low

energy effective model for knots onwinding space-time, there exists diffeomorphism invariance, i.e.,

Knot–invariance on winding space–time

) Diffeomorphism invariance:

(66)

Therefore, from the view of mathematics, the physics on winding space-time is never changed! The

invariance of the effective model for knots on winding space-time indicates the diffeomorphism

invariance

Szero�lattice � að Þ4
X

X,Y,Z,X0

Ψ i
1

a
γμb∂

X

μ
�mknot


 �
Ψ: (67)

On the other hand, the condition of very smoothly entanglement transformation guarantees a

(local) Lorentz invariance in long wave-length limit. Under local Lorentz invariance, the knot-

pieces of a given knot are determined by local Lorentz transformations.

According to the local coordinate transformation, the deformed zero-lattice becomes a curved

space-time for the knots. In continuum limit Δk≪ að Þ�1 and Δω≪ω0, the diffeomorphism

invariance and (local) Lorentz invariance emerge together. E. Witten had made a strong claim

about emergent gravity, “whatever we do, we are not going to start with a conventional theory of non-

gravitational fields in Minkowski space-time and generate Einstein gravity as an emergent phenome-

non.” He pointed out that gravity could be emergent only if the notion on the space-time on

which diffeomorphism invariance is simultaneously emergent. For the emergent quantum

gravity in knot physics, diffeomorphism invariance and Lorentz invariance are simultaneously

emergent. In particular, the diffeomorphism invariance comes from information invariance of

knots on winding space-time—when the lattice-distance of zero-lattice changes, the size of the

knots correspondingly changes.

To characterize the deformed 3 + 1D zero-lattice x
!0

x
!

; t
� �

; t0 x
!

; t
� �� �

, we introduce a geometric

description. In addition to the existence of a set of vierbein fields ea, the space metric is defined

by ηabe
a
αe

b
β ¼ gαβ where η is the internal space metric tensor. The geometry fields (vierbein fields

ea x
!

; t
� �

and spin connections ωab x
!

; t
� �

) are determined by the non-uniform local coordinates

x
!0

x
!

; t
� �

; t0 x
!

; t
� �� �

. Furthermore, one needs to introduce spin connections ωab x
!

; t
� �

and the

Riemann curvature two-form as

Ra
b ¼ dωa

b þ ωa
c ∧ω

c
b

¼
1

2
Ra
bμνdx

μ
∧ dxν,

(68)

where Ra
bμν � eaαe

β

bR
α
βμν are the components of the usual Riemann tensor projection on the tangent

space. The deformation of the zero-lattice is characterized by
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Rab ¼ dωab þ ωac
∧ωcb: (69)

So the low energy physics for knots on the deformed zero-lattice turns into that for Dirac

fermions on curved space-time

Scurved�ST ¼
ð

ffiffiffiffiffiffiffi�g
p

Ψ e
μ
a γ

a ib∂μ þ iωμ

� �
�mknot

� �
Ψd4x (70)

where ωμ ¼ ω0i
μγ

0i=2;ω
ij
μγ

ij=2
� �

i; j ¼ 1; 2; 3ð Þ and γab ¼ � 1
4 γa; ; γb

 �

a; b ¼ 0; 1; 2; 3ð Þ [15].

This model described by Scurved�ST is invariant under local (non-compact) SO(3,1) Lorentz

transformation S x
!
; t

� �
¼ eθab x

!
;tð Þγab as

Ψ x
!
; t

� �
! Ψ

0 x
!
; t

� �
¼ S x

!
; t

� �
Ψ x

!
; t

� �
,

γμ ! γμ x
!
; t

� �� �0
¼ S x

!
; t

� �
γμ S x

!
; t

� �� ��1
,

ωμ ! ω0
μ x

!
; t

� �
¼ S x

!
; t

� �
ωμ x

!
; t

� �
S x

!
; t

� �� ��1

þS x
!
; t

� �
∂μ S x

!
; t

� �� ��1
:

(71)

γ5 is invariant under local SO(3,1) Lorentz symmetry as

γ5 ! γ5
� �0 ¼ S x

!
; t

� �
γ5 S x

!
; t

� �� ��1

¼ γ5:

(72)

In general, an SO(3,1) Lorentz transformation S x
!
; t

� �
is a combination of spin rotation trans-

formation bR x
!
; t

� �
¼ bRspin x

!
; t

� �
� bRspace x

!
; t

� �
and Lorentz boosting SLor x

!
; t

� �
.

In physics, under a Lorentz transformation, a distribution of knot-pieces changes into another

distribution of knot-pieces. For this reason, the velocity ceff and the total number of zeroes

Nknot are invariant,

ceff ! c0eff � ceff (73)

and

Nknot ! N0
knot � Nknot: (74)

4.3. Gauge description for deformed zero-lattice

4.3.1. Deformed entanglement matrices and deformed entanglement pattern

The deformation of the zero-lattice leads to deformation of entanglement pattern, i.e.,
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Γ
!

;Γ
5

� �
! Γ

!0

xð Þ; Γ
5

� �0
xð Þ

� �
(75)

where

Γ
!0

xð Þ ¼ bUET xð Þ Γ
! bUET xð Þ�1, Γ

5
� �0

xð Þ ¼ bUET x
!

; t
� �

Γ
5 bUET xð Þ�1

: (76)

x denotes the space-time position of a site of zero-lattice, x
!

; t
� �

. Each entanglement matrix

becomes a unit SO(4) vector-field on each lattice site. The deformed zero-lattice induced by

local entanglement transformation bUET xð Þ is characterized by four SO(4) vector-fields (four

entanglement matrices) Γ
!0

xð Þ; Γ
5

� �0
xð Þ

� �
. See the illustration of a 2D deformed zero-lattice in

Figure 4(d), in which the arrows denote deformed entanglement matrix Γ
5

� �0
xð Þ.

4.3.2. Gauge description for deformed tempo entanglement matrix

Firstly, we study the unit SO(4) vector-field of deformed tempo entanglement matrix Γ
5

� �0
xð Þ.

To characterize Γ
5

� �0
xð Þ, the reduced Gamma matrices γμ is defined as

Figure 4. (a) An illustration of the effect of an extra knot on a 1D knot-crystal along spatial direction; (b) an illustration of

the effect of an extra knot on a 1D knot-crystal along tempo direction. Here A∗/B∗ denotes conjugate representation of

vortex-line-A/B; (c) the entanglement pattern for a uniform knot-crystal. The arrows denote the directions of entangle-

ment matrices; and (d) the entanglement pattern for a knot-crystal with an extra knot at center. The purple spot denotes

the knot. The red arrows that denote local tangential entanglement matrices have vortex-like configuration on 2D

projected space.
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γ1 ¼ γ0
Γ
1,γ2 ¼ γ0

Γ
2,γ3 ¼ γ0

Γ
3, (77)

and

γ0 ¼ Γ
5 ¼ τx⊗ 1,γ5 ¼ iγ0γ1γ2γ3:

!
(78)

Under this definition (γ0 ¼ Γ
5), the effect of deformed zero-lattice from spatial entanglement

transformation eiΓ
1�ΔΦx, eiΓ

2 �ΔΦy , eiΓ
3�ΔΦz can be studied due to

Γ
5 ! Γ

5
� �0

xð Þ ¼ bUx=y=z
ET x

!
; t

� �
Γ
5 bUx=y=z

ET xð Þ�1 6¼ Γ
5: (79)

However, the effect of deformed zero-lattice from tempo entanglement transformation eiδΦt �Γ
5

cannot be well defined due to

Γ
5 ! Γ

5
� �0

xð Þ ¼ bU t
ET x

!
; t

� �
Γ
5 bU t

ET xð Þ�1 ¼ Γ
5: (80)

We introduce an SO(4) transformation bU x
!
; t

� �
that is a combination of spin rotation transfor-

mation bR xð Þ and spatial entanglement transformation (entanglement transformation along x/y/

z-direction) bUx=y=z
ET xð Þ ¼ eiδΦ

!
xð Þ�Γ

!

, i.e.,

bU xð Þ ¼ bR xð Þ⊕ bUx=y=z
ET xð Þ: (81)

Here, ⊕ denotes operation combination. Under a non-uniform SO(4) transformation bU xð Þ, we

have

γ0 ! bU xð Þγ0 bU xð Þ
� ��1

¼ γ0
xð Þ

� �0
¼

X
a
γana xð Þ (82)

where n ¼ n1; n2; n3ϕ0
0

� �
¼ n

!
;ϕ0

0

� �
is a unit SO(4) vector-field. For the deformed zero-lattice,

according to γ0
xð Þ

� �0
6¼ γ0, the entanglement matrix Γ

5 ¼ γ0 along tempo direction is varied,

Γ
5 ! Γ

5
� �0

xð Þ 6¼ Γ
5.

In general, the SO(4) transformation is defined by bU xð Þ ¼ eΦab xð Þγab
γab ¼ � 1

4 γa;γb

 �� �

. Under

the SO(4) transformation, we have

γμ ! γμ
xð Þð Þ0 ¼ bU xð Þγμ bU xð Þ

� ��1
,

Aμ ! A0
μ x

!
; t

� �
¼ bU x

!
; t

� �
Aμ xð Þ bU xð Þ

� ��1

þbU xð Þ∂μ bU xð Þ
� ��1

:

(83)

In particular, γ5 is invariant under the SO(4) transformation as
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γ
5 ! γ

5
� �0

¼ bU xð Þγ5 bU xð Þ
� ��1

¼ γ
5
: (84)

The correspondence between index of γa and index of space-time xa is

γ1
⇔ x,γ2

⇔ y,

γ3
⇔ z,γ0

⇔ t:
(85)

We denote this correspondence to be

1; 2; 3; 0ð ÞET⇔ 1; 2; 3; 0ð ÞST (86)

where 1; 2; 3; 0ð ÞET denotes the index order of γa and 1; 2; 3; 0ð ÞST denotes the index order of

space-time xa.

As a result, we can introduce an auxiliary gauge field Aab
μ

xð Þ and use a gauge description to

characterize the deformation of the zero-lattice. The auxiliary gauge field Aab
μ

xð Þ is written into

two parts [15]: SO(3) parts

Aij
xð Þ ¼ tr γ

ij bU xð Þ
� �

d bU xð Þ
� ��1

� �
(87)

and SO(4)/SO(3) parts

Ai0
xð Þ ¼ tr γ

i0 bU xð Þ
� �

d bU xð Þ
� ��1

Þ

¼ γ
0d γ

i
xð Þ

� �0
¼ �γ

id γ
0
xð Þ

� �0
:

(88)

The total field strength F ij
xð Þ of i, j ¼ 1; 2; 3 components can be divided into two parts

F
ij
xð Þ ¼ Fij þ Ai0

∧Aj0
: (89)

According to pure gauge condition, we have Maurer-Cartan equation,

F
ij
xð Þ ¼ Fij þ Ai0

∧Aj0 � 0 (90)

or

Fij ¼ dAij þ Aik
∧Akj

� �Ai0
∧Aj0

:

(91)

Finally, we emphasize the equivalence between γ0i and Γ
i, i.e., γ0i

⇔Γ
i.

4.3.3. Gauge description for deformed spatial entanglement matrix

Next, we study the unit SO(4) vector-field of deformed spatial entanglement matrix Γ
i

� �0
xð Þ. To

characterize Γ
i

� �0
xð Þ, the reduced Gamma matrices γμ is defined as
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γ1 ¼ γ0
Γ
j,γ2 ¼ γ0

Γ
k,γ3 ¼ γ0

Γ
5, (92)

and

γ0 ¼ Γ
i ¼ τz⊗ σi,

γ5 ¼ iγ0γ1γ2γ3:
(93)

Here, Γi, Γj, and Γ
k are three orthotropic spatial entanglement matrices. Under this definition

(γ0 ¼ Γ
i), the effect of deformed zero-lattice from partial spatial/tempo entanglement transfor-

mation eiΓ
j�ΔΦj , eiΓ

k�ΔΦk , eiΓ
5�ΔΦt can be studied due to

Γ
i ! Γ

i
� �0

xð Þ ¼ bUxj=xk=t

ET x
!
; t

� �
Γ
i bUxj=xk=t

ET xð Þ�1 6¼ Γ
i: (94)

However, the effect of deformed zero-lattice from spatial entanglement transformation eiδΦt �Γ
5

cannot be well defined due to

Γ
i ! Γ

i
� �0

xð Þ ¼ bUxi
ET x

!
; t

� �
Γ
i bUxi

ET xð Þ�1 ¼ Γ
i: (95)

We use similar approach to introduce the gauge description. We can also define the reduced

Gamma matrices ~γμ as

~γ1 ¼ ~γ0
Γ
2, ~γ2 ¼ ~γ0

Γ
3, ~γ3 ¼ ~γ0

Γ
5, (96)

and

~γ0 ¼ Γ
i ¼ τz⊗ σx,

~γ5 ¼ i~γ0~γ1~γ2~γ3:
(97)

The correspondence between index of ~γa and index of space-time xa is

~γ1
⇔ y, ~γ2

⇔ z,

~γ3
⇔ t, ~γ0

⇔ x:
(98)

We denote this correspondence to be

1; 2; 3; 0ð ÞET⇔ 2; 3; 0; 1ð ÞST: (99)

Now, the SO(4) transformation ~U x
!
; t

� �
¼ eΦab x

!
;tð Þ~γab

~γab ¼ � 1
4
~γa; ; ~γb

 �� �

is not a combination

of spin rotation symmetry and entanglement transformation along x/y/z-direction. However,

for the case of a or b to be 0, ~U x
!
; t

� �
¼ eΦa0 x

!
;tð Þ~γa0

denotes the entanglement transformation

along y/z/t-direction. The unit SO(4) vector-field on each lattice site becomes
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~U xð Þ~γ0 ~U xð ÞÞ
�1

¼ ~γ0 xð Þ
� �0

¼
X

a
~γa
~na xð Þ

�

(100)

where ~n ¼ ~n1
; ; ~n2

; ; ~n3
;

~ϕ
0

0

� �

is a unit vector-field. The auxiliary gauge field ~Aab xð Þ are defined

by

~Aab xð Þ ¼ tr ~γij ~U xð ÞÞd ~U xð ÞÞ
�1

� �

:

��

(101)

According to pure gauge condition, we also have the following Maurer-Cartan equation,

~Fij ¼ d~Aij þ ~A ik
∧
~Akj � �~A i0

∧
~A j0

: (102)

Finally, we emphasize the equivalence between ~γ0i and Γ
a, i.e., ~γ01

⇔ Γ
2, ~γ02

⇔Γ
3, ~γ03

⇔Γ
5.

4.3.4. Hidden SO(4) invariant for gauge description

In addition, there exists a hidden global SO(4) invariant for entanglement matrices along

different directions in 3 + 1D (winding) space-time Γ
!

; Γ
5

� �

! Γ
!

0

; Γ
5

� �
0

� �

. To show the hidden

SO(4) invariant, we define the reduced Gamma matrices ~γμ as

~γ1 ¼ ~γ0
Γ
2, ~γ2 ¼ ~γ0

Γ
3, ~γ3 ¼ ~γ0

Γ
5,

~γ0 ¼ αΓ1 þ βΓ2 þ γΓ3 þ δΓ5,

~γ5 ¼ i~γ0
~γ1

~γ2
~γ3

(103)

with α2 þ β2 þ γ2 þ δ2 ¼ 1. Here, α, β, γ, δ are constant.

Under this description, we can study the entanglement deformation along orthotropic spatial/

tempo directions to x0 ¼ αxþ βyþ γzþ δt.

4.4. Relationship between geometric description and gauge description for deformed

zero-lattice

Due to the generalized spatial translation symmetry there exists an intrinsic relationship

between gauge description for entanglement deformation between two vortex-membranes

and geometric description for global coordinate transformation of the same deformed zero-

lattice.

On the one hand, to characterize the changes of the positions of zeroes, we must consider a

curved space-time by using geometric description, x ¼ x
!

; t
� �

! x0 ¼ x
!0

; t0
� �

. On the other

hand, we need to consider a varied vector-field
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γ0
xð Þ

� �0
¼ bU xð Þγ0 bU xð Þ

� ��1
¼

X
a
γana xð Þ (104)

by using gauge description. There exists intrinsic relationship between the geometry fields

ea xð Þ a ¼ 1; 2; 3; 0ð Þ and the auxiliary gauge fields Aa0
xð Þ.

For a non-uniform zero-lattice, we have

Φ
!

x
!

; t
� �

) Φ
!0

x
!

; t
� �

¼Φ
!

x
!

; t
� �

þ δ Φ
!

x
!

; t
� �

,

Φt x
!

; t
� �

) Φ
0
t x

!
; t

� �
¼ Φt x

!
; t

� �
þ δΦt x

!
; t

� �
:

(105)

On deformed zero-lattice, the “lattice distances” become dynamic vector fields. We define the

vierbein fields ea xð Þ that are supposed to transform homogeneously under the local symmetry,

and to behave as ordinary vectors under local entanglement transformation along xa-direction,

ea xð Þ ¼ dxa xð Þ ¼
a

π
dΦa

xð Þ: (106)

For the smoothly deformed vector-fields ni xð Þ≪ 1, within the representation of Γ5 ¼ γ0 we

have

dΦi
xð Þ

2π
¼ ni xð Þ ¼ tr γ0dγi

xð Þ

 �

¼ Ai0
xð Þ, i ¼ 1; 2; 3:

(107)

Thus, the relationship between ei xð Þ and Ai0
xð Þ is obtained as

ei xð Þ � 2að ÞAi0
xð Þ: (108)

According to this relationship, the changing of entanglement of the vortex-membranes curves

the 3D space.

On the other hand, within the representation of Γi ¼ ~γ0 we have

dΦa
xð Þ

2π
¼ ~na

xð Þ ¼ tr ~γ0d~γa
xð Þ


 �

¼ ~Ai0
xð Þ, i ¼ j, k, 0,

(109)

and

e0 xð Þ ¼ dt xð Þ ¼
a

π
dΦt xð Þ ¼ 2að Þ~A30

xð Þ: (110)

According to this relationship, the changing of entanglement of the vortex-membranes curves

the 4D space-time.
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In addition, we point out that for different representation of reduced Gamma matrix, there

exists intrinsic relationships between the gauge fields A xð Þ and ~A xð Þ. After considering these

relationships, we have a complete description of the deformed zero-lattice on the geometric

space-time,

5. Emergent gravity

Gravity is a natural phenomenon by which all objects attract one another including galaxies,

stars, human-being and even elementary particles. Hundreds of years ago, Newton discovered

the inverse-square law of universal gravitation, F ¼ GMm
r2

where G is the Newton constant, r is

the distance, and M and m are the masses for two objects. One hundred years ago, the

establishment of general relativity by Einstein is a milestone to learn the underlying physics

of gravity that provides a unified description of gravity as a geometric property of space-time.

From Einstein’s equations Rμν �
1
2Rgμν ¼ 8πGTμν, the gravitational force is really an effect of

curved space-time. Here Rμν is the 2nd rank Ricci tensor, R is the curvature scalar, gμν is the

metric tensor, and Tμν is the energy-momentum tensor of matter.

In this section, we point out that there exists emergent gravity for knots on zero-lattice.

5.1. Knots as topological defects

5.1.1. Knot as SO(4)/SO(3) topological defect in 3 + 1D space-time

A knot corresponds to an elementary object of a knot-crystal; a knot-crystal can be regarded as

composite system of multi-knot. For example, for 1D knot, people divide the knot-crystal into

N identical pieces, each of which is just a knot.

From point view of information, each knot corresponds to a zero between two vortex-

membranes along the given direction. For a knot, there must exist a zero point, at which

ξA xð Þ is equal to ξB xð Þ. The position of the zero is determined by a local solution of the zero-

equation, Fθ xð Þ ¼ 0 or ξA,θ xð Þ ¼ ξB,θ xð Þ.

From point view of geometry, a knot (an anti-knot) removes (or adds) a projected zero of zero-

lattice that corresponds to removes (or adds) half of “lattice unit” on the zero-lattice according to

Δxi ¼ �aeff x
!

; t
� �

≃ � a: (111)

As a result, a knot looks like a special type of edge dislocation on 3 + 1D zero-lattice. The zero-

lattice is deformed and becomes mismatch with an additional knot.

From point view of entanglement, a knot becomes topological defect of 3 + 1D winding space-

time: along x-direction, knot is anti-phase changing denoted by eiΓ
1�ΔΦx, ΔΦx ¼ π; along

y-direction, knot is anti-phase changing denoted by eiΓ
2 �ΔΦy, ΔΦy ¼ π; along z-direction, knot
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is anti-phase changing denoted by eiΓ
3�ΔΦz, ΔΦz ¼ π; along t-direction, knot is anti-phase

changing denoted by eiΓ
5�ΔΦt, ΔΦt ¼ π. Figure 4(a) and (b) shows an illustration a 1D knot.

In mathematics, to generate a knot at x0; y0; z0; t0
� �

, we do global topological operation on the

knot-crystal, i.e.,

eiΓ
1 �ΔΦx xð Þ 0j i (112)

with ΔΦx ¼ 0, x < x0 and ΔΦx ¼ π, x ≥ x0;

eiΓ
2�ΔΦy xð Þ 0j i (113)

with ΔΦy ¼ 0, y < y0 and ΔΦy ¼ π, y ≥ y0;

eiΓ
3�ΔΦz xð Þ 0j i (114)

with ΔΦz ¼ 0, z < z0 and ΔΦz ¼ π, z ≥ x0;

eiΓ
5�ΔΦt xð Þ 0j i (115)

with ΔΦt ¼ 0, t < t0 and ΔΦt ¼ π, t ≥ t0. As a result, due to the rotation symmetry in 3 + 1D

space-time, a knot becomes SO(4)/SO(3) topological defect. Along arbitrary direction, the local

entanglement matrices around a knot at center are switched on the tangential sub-space-time.

5.1.2. Knot as SO(3)/SO(2) magnetic monopole in 3D space

To characterize the topological property of a knot on the 3 + 1D zero-lattice, we use gauge

description. We firstly study the tempo entanglement deformation and define Γ
5 ¼ γ0. Under

this gauge description, we can only study the effect of a knot on three spatial zero-lattice.

When there exists a knot, the periodic boundary condition of knot states along arbitrary

direction is changed into anti-periodic boundary condition,

ΔΦx ¼ π,ΔΦy ¼ π,ΔΦz ¼ π: (116)

Consequently, along given direction (for example x-direction), the local entanglement matrices

on the tangential sub-space are switched by eiΓ
1�ΔΦx

ΔΦx ¼ πð Þ. Along x-direction, in the limit

of x ! �∞, we have the local entanglement matrices on the tangential sub-space as Γ2 and Γ
3;

in the limit of x ! ∞, we have the local entanglement matrices on the tangential sub-space as

eiΓ
1 �ΔΦx

Γ
2

� �

e�iΓ1�ΔΦx ¼ �Γ
2 and eiΓ

1�ΔΦx
Γ
3

� �

e�iΓ1�ΔΦx ¼ �Γ
3.

Because we have similar result along xi-direction for the system with an extra knot, the system

has generalized spatial rotation symmetry. Due to the generalized spatial rotation symmetry,

when moving around the knot, the local tangential entanglement matrices (we may use indices

j, k to denote the sub space) must rotate synchronously. See the red arrows that denote local
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tangential entanglement matrices in Figure 4(c) and (d). In Figure 4(d), local tangential entan-

glement matrices induced by an extra (unified) knot shows vortex-like topological configura-

tion in projected 2D space (for example, x-y plane). As a result, local tangential entanglement

matrices induced by an extra knot can be exactly mapped onto that of an orientable sphere

with fixed chirality.

To characterize the topological property of 3 + 1D zero-lattice with an extra (unified) knot, we

apply gauge description and write down the following constraint

∭ rFdV ¼
1

4π

ðð

ejkeijkF
jk
jk � dSi (117)

where

Fij ¼ dAij þ Aik
∧Akj

� �Ai0
∧Aj0

(118)

and rF ¼
ffiffiffiffiffiffiffi

�g
p

ψ†ψ. The upper indices of F
jk
jk label the local entanglement matrices on the

tangential sub-space and the lower indices of F
jk
jk denote the spatial direction. The non-zero

Gaussian integrate 1
4π

ÐÐ

ejkeijkF
jk
jk � dSi just indicates the local entanglement matrices on the

tangential sub-space Ai0
∧Aj0 to be the local frame of an orientable sphere with fixed chirality.

As a result, the entanglement pattern with an extra 3D knot is topologically deformed and the

3D knot becomes SO(3)/SO(2) magnetic monopole. From the point view of gauge description, a

knot traps a “magnetic charge” of the auxiliary gauge field, i.e.,

NF ¼
ð

ffiffiffiffiffiffiffi

�g
p

Ψ
†
Ψd3x ¼ qm (119)

where qm ¼ 1
4π

ÐÐ

ejkeijkF
jk
jk � dSi is the “magnetic” charge of auxiliary gauge field Ajk. For single

knot NF ¼ 1, the “magnetic” charge is qm ¼ 1.

5.1.3. Knot as SO(3)/SO(2) magnetic monopole in 2 + 1D space-time

Next, we study the spatial entanglement deformation and define Γ
i ¼ ~γ0. Under this gauge

description, we can only study the effect of a knot on 2D spatial zero-lattice and 1D tempo

zero-lattice.

In the 2 + 1D space-time, a knot also leads to π-phase changing,

ΔΦi ¼ π,ΔΦj ¼ π,ΔΦt ¼ π: (120)

Due to the spatial-tempo rotation symmetry, the knot also becomes SO(3)/SO(2) magnetic

monopole and traps a “magnetic charge” of the auxiliary gauge field ~A jk, i.e.,
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NF ¼
ð

ffiffiffiffiffiffiffi�g
p

Ψ
†
Ψd3x ¼ ~qm (121)

where ~qm is the “magnetic” charge of auxiliary gauge field ~A ij. Remember that the correspon-

dence between index of ~γi and index of space-time xi is ~γ1
⇔ y, ~γ2

⇔ z, ~γ3
⇔ t.

To characterize the induced magnetic charge, we write down another constraint

∭ rFdV ¼ 1

4π

ðð
eijeijk

~F
ij
jk � dSi (122)

where

~Fij ¼ d~A ij þ ~A ij
∧
~A ij

� �~Ai0
∧
~A j0:

(123)

The upper indices of ~Fij ¼ d~Fij þ ~Fik
∧ ~Fkj denote the local entanglement matrices on the tangen-

tial sub-space-time and the lower indices of ~F
ij
jk denote the spatial direction. Therefore, according

to above equation, the 2 + 1D zero-lattice is globally deformed by an extra knot.

In general, due to the hidden SO(4) invariant, for other gauge descriptions ~γ0 ¼ αΓ1 þ βΓ2 þ γΓ3

þδΓ5, a knot also play the role of SO(3)/SO(2) magnetic monopole and traps a “magnetic charge”

of the corresponding auxiliary gauge field.

5.2. Einstein-Hilbert action as topological mutual BF term for knots

It is known that for a given gauge description, a knot is an SO(3)/SO(2) magnetic monopole

and traps a “magnetic charge” of the corresponding auxiliary gauge field. For a complete basis

of entanglement pattern, we must use four orthotropic SO(4) rotors Γ
1

� �0
xð Þ; Γ

2
� �0

xð Þ; Γ
3

� �0
xð Þ;

�

Γ
5ð Þ0 xð ÞÞ and four different gauge descriptions to characterize the deformation of a knot (an SO(4)/

SO(3) topological defect) on a 3 + 1D zero-lattice.

Firstly, we use Lagrangian approach to characterize the deformation of a knot (an SO(3)/SO(2)

topological defect) on a 3D spatial zero-lattice, NF ¼ qm. The topological constraint in Eq. (117)

can be re-written into

i

4
tr

ffiffiffiffiffiffiffi�g
p

Ψγi γ0i=2
� �

Ψ ¼ ejkeijk
1

4π
bD iF

jk
jk (124)

or

i

4
tr

ffiffiffiffiffiffiffi�g
p

Ψϖ
0i
0 γ

i γ0i=2
� �

Ψ ¼ ie0ijke0ijkϖ
0i
0

1

4π
bD iF

jk
jk (125)

where bD i ¼ ib∂i þ iωi is covariant derivative in 3 + 1D space-time. ϖ0i is a field that plays the

role of Lagrangian multiplier. The upper index i of ϖ0i denotes the local radial entanglement
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matrix around a knot, along which the entanglement matrix does not change. Thus, we use

the dual field ϖ
0i to enforce the topological constraint in Eq. (117). That is, to denote the

upper index of Fjk that is the local tangential entanglement matrices, we set antisymmetric

property of upper index of ϖ0i and that of Fjk. Because ϖ0i and ω0i have the same SO(3,1)

generator γ0i=2
� �

, due to SO(3,1) Lorentz invariance we can do Lorentz transformation and

absorb the dual field ϖ0i into ω0i, i.e., ω0i ! ω0i
� �0

¼ ω0i þ ϖ0i. As a result, the dual field ϖ0i is

replaced by ω0i.

In the path-integral formulation, to enforce such topological constraint, we may add a topo-

logical mutual BF term SMBF in the action that is

SMBF1 ¼ �
1

4π

ð

e0ijk e0νλκR
0i
0νF

jk
λκd

4x

¼ �
1

4π

ð

e0ijkR
0i
∧ Fjk

(126)

where

R0i ¼ dω0i þ ω0j
∧ωji: (127)

From Fjk � �Aj0
∧Ak0 and ei ∧ ej ¼ 2að Þ2Aj0

∧Ak0. The induced topological mutual BF term

SMBF1 is linear in the conventional strength in R0i and Fjk. This term is becomes

SMBF1 ¼
1

4π 2að Þ2

ð

e0ijkR
0i
∧ ej ∧ ek: (128)

Next, we use Lagrangian approach to characterize the deformation of a knot (an SO(3)/SO(2)

topological defect) on 2 + 1D space-time, NF ¼ ~qm. Using the similar approach, we derive

another topological mutual BF term SMBF2 in the action that is

SMBF2 ¼ �
1

4π

ð

e0ijk e0νλκ
~R 0i

0ν
~F
jk
λκd

4x ¼ �
1

4π

ð

e0ijk
~R0i

∧ ~Fjk (129)

where ~R0i ¼ d~ω0i þ ~ω0j
∧ ~ω ji. From ~Fk0 � �~Akj

∧
~Aj0 and ~e i ∧~ej ¼ 2að Þ2 ~A j0

∧
~Ak0, this term

becomes

SMBF2 ¼
1

4π 2að Þ2

ð

eijk0
~R0i

∧~e j ∧~ek: (130)

The upper index of ~R0i denotes entanglement transformation along given direction in winding

space-time. We unify the index order of space-time into 1; 2; 3; 0ð ÞST and reorganize the upper

index. The topological mutual BF term becomes 1
4π 2að Þ2

Ð

eijk0R
ij
∧ ek ∧ e0. In Ref. [16–19], a topo-

logical description of Einstein-Hilbert action is proposed by S. W. MacDowell and F. Mansouri.

The topological mutual BF term proposed in this paper is quite different from the MacDowell-

Mansouri action.
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According to the diffeomorphism invariance of winding space-time, there exists symmetry

between the entanglement transformation along different directions. Therefore, with the help

of a complete set of definition of reduced Gamma matrices γμ, there exist other topological

mutual BF terms SMBF, i. For the total topological mutual BF term SMBF ¼
P

i SMBF, i that char-

acterizes the deformation of a knot (an SO(4)/SO(3) topological defect) on a 3 + 1D zero-lattice,

the upper index of the topological mutual BF term Rij
∧ ek ∧ el must be symmetric, i.e.,

i, j, k, l ¼ 1; 2; 3; 0.

By considering the SO(3,1) Lorentz invariance, the topological mutual BF term SMBF turns into

the Einstein-Hilbert action SEH as

SMBF ¼ SEH ¼ 1

16π að Þ2
ð
eijklR

ij
∧ ek ∧ el

¼ 1

16πG

ð
ffiffiffiffiffiffiffi�g

p
Rd4x

(131)

where G is the induced Newton constant which is G ¼ a2. The role of the Planck length is

played by lp ¼ a, that is the “lattice” constant on the 3 + 1D zero-lattice.

Finally, from above discussion, we derived an effective theory of knots on deformed zero-

lattice in continuum limit as

S ¼ Szero�lattice þ SEH

¼
ð ffiffiffiffiffiffiffiffiffiffiffiffiffi

�g xð Þ
q

Ψ e
μ
a γ

a bDμ �mknot

� �
Ψd4x:

þ 1

16πG

ð
ffiffiffiffiffiffiffi�g

p
Rd4x

(132)

where bDμ ¼ ib∂μ þ iωμ. The variation of the action S via the metric δgμν gives the Einstein’s

equations

Rμν �
1

2
Rgμν ¼ 8πGTμν: (133)

As a result, in continuum limit a knot-crystal becomes a space-time background like smooth

manifold with emergent Lorentz invariance, of which the effective gravity theory turns into

topological field theory.

For emergent gravity in knot physics, an important property is topological interplay between

zero-lattice and knots. From the Einstein-Hilbert action, we found that the key property is

duality between Riemann curvature Rij and strength of auxiliary gauge field Fkl: the deformation

of entanglement pattern leads to the deformation of space-time.

In addition, there exist a natural energy cutoff ℏω0 and a natural length cutoff a. In high energy

limit (Δω � ω0) or in short range limit (Δx � a), without well-defined 3 + 1D zero-lattice, there

does not exist emergent gravity at all.
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6. Discussion and conclusion

In this paper, we pointed out that owing to the existence of local Lorentz invariance and

diffeomorphism invariance there exists emergent gravity for knots on 3 + 1D zero-lattice. In

knot physics, the emergent gravity theory is really a topological theory of entanglement

deformation. For emergent gravity theory in knot physics, a topological interplay between

3 + 1D zero-lattice and the knots appears: on the one hand, the deformation of the 3 + 1D zero-

lattice leads to the changes of knot-motions that can be denoted by curved space-time; on the

other hand, the knots trapping topological defects deform the 3 + 1D zero-lattice that indicates

matter may curve space-time. The Einstein-Hilbert action SEH becomes a topological mutual

BF term SMBF that exactly reproduces the low energy physics of the general relativity. In

Table 1, we emphasize the relationship between modern physics and knot physics.

In addition, this work would help researchers to understand the mystery in gravity. In modern

physics, matter and space-time are two different fundamental objects and matter may move in

(flat or curved) space-time. In knot physics, the most important physics idea for gravity is the

unification of matter and space-time, i.e.,

Matter knotsð Þ⇔ Space–time zero–latticeð Þ: (134)

One can see that matter (knots) and space-time (zero-lattice) together with motion of matter

are unified into a simple phenomenon—entangled vortex-membranes and matter (knots)

curves space-time (3 + 1D zero-lattice) via a topological way.

In the end of the paper, we address the possible physical realization of a 1D knot-crystal based

on quantized vortex-lines in 4He superfluid. Because the emergent gravity in knot physics is

topological interplay between zero-lattice and knots, there is no Einstein gravity on a 1D knot-

crystal based on entangled vortex-lines in 4He superfluid. However, the curved space-time

could be simulated.

Firstly, we consider two straight vortex-lines in 4He superfluid between opposite points on the

system. Then, we rotate one vortex line around another by a rotating velocity ω0. Now, the

Modern physics Knot physics

Matter Knot: a topological defect of 3 + 1 D zero-lattice

Motion Changing of the distribution of knot-pieces

Mass Angular frequency for leapfrogging motion

Inertial reference system A knot under Lorentz boosting

Coordinate translation Entanglement transformation

Space-time 3 + 1D zero-lattice of projected entangled vortex-membranes

Curved space-time Deformed 3 + 1D zero-lattice

Gravity Topological interplay between 3 + 1D zero-lattice and knots

Table 1. The relationship between modern physics and knot physics.
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winding vortex-line becomes a helical one described by r0e
ik0�x�iω0tþiϕ0 with ω0 ≃

κ
4π ln

1
k0a0

� �

k
2
0.

As a result, a knot-crystal is realized. For 4He superfluid, κ ¼ h=m is the discreteness of the

circulation owing to its quantum nature [2]. h is Planck constant and m is atom mass of SF. So

κ ¼ h=m is about 10�3 cm2/s. The length of the half pitch of the windings a ¼ π
k0
is set to be 10�5

cm, and the distance between two vortex lines r0 is set to be 10�6 cm. We then estimate the

effective light speed ceff that is defined by ceff ¼
κk0
2π ln 1

k0a0
�

1
2

� �

(a0 denotes the vortex filament

radius which is much smaller than any other characteristic size in the system). The effective

light speed ceff is about 4 m/s. A non-uniform winding length leads to an effective curved

1 + 1D space-time.

However, at finite temperature, there exist mutual friction and phonon radiation for Kelvin

waves on quantized vortex-lines in 4He superfluid. After considering these dissipation effects,

the Kelvin waves are subject to Kolmogorov-like turbulence (even in quantum fluid [3, 4]).
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