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Abstract

The Ginzburg-Landau equation has been applied widely in many fields. It describes the
amplitude evolution of instability waves in a large variety of dissipative systems in fluid
mechanics, which are close to criticality. In this chapter, we develop a local discontinuous
Galerkin method to solve the nonlinear Ginzburg-Landau equation. The nonlinear
Ginzburg-Landau problem has been expressed as a system of low-order differential equa-

tions. Moreover, we prove stability and optimal order of convergence O h
Nþ1

� �

for

Ginzburg-Landau equation where h and N are the space step size and polynomial degree,
respectively. The numerical experiments confirm the theoretical results of the method.

Keywords: Ginzburg-Landau equation, discontinuous Galerkin method, stability,
error estimates

1. Introduction

The Ginzburg-Landau equation has arisen as a suitable model in physics community, which

describes a vast variety of phenomena from nonlinear waves to second-order phase transi-

tions, from superconductivity, superfluidity, and Bose-Einstein condensation to liquid crystals

and strings in field theory [1]. The Taylor-Couette flow, Bénard convection [1] and plane

Poiseuille flow [2] are such examples where the Ginzburg-Landau equation is derived as a

wave envelop or amplitude equation governing wave-packet solutions. In this chapter, we

develop a nodal discontinuous Galerkin method to solve the nonlinear Ginzburg-Landau

equation

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



∂u

∂t
� νþ iηð ÞΔuþ κþ iζð Þ uj j2u� γu ¼ 0, (1)

and periodic boundary conditions and η, ζ,γ are real constants, ν,κ > 0. Notice that the

assumption of periodic boundary conditions is for simplicity only and is not essential: the

method as well as the analysis can be easily adapted for nonperiodic boundary conditions.

The various kinds of numerical methods can be found for simulating solutions of the nonlinear

Ginzburg-Landau problems [3–11]. The local discontinuous Galerkin (LDG) method is famous

for high accuracy properties and extreme flexibility [12–20]. To the best of our knowledge,

however, the LDG method, which is an important approach to solve partial differential equa-

tions, has not been considered for the nonlinear Ginzburg-Landau equation. Compared with

finite difference methods, it has the advantage of greatly facilitating the handling of compli-

cated geometries and elements of various shapes and types as well as the treatment of bound-

ary conditions. The higher order of convergence can be achieved without many iterations.

The outline of this chapter is as follows. In Section 2, we derive the discontinuous Galerkin

formulation for the nonlinear Ginzburg-Landau equation. In Section 3, we prove a theoretical

result of L2 stability for the nonlinear case as well as an error estimate for the linear case.

Section 4 presents some numerical examples to illustrate the efficiency of the scheme. A few

concluding remarks are given in Section 5.

2. LDG scheme for Ginzburg-Landau equation

In order to construct the LDG method, we rewrite the second derivative as first-order deriva-

tives to recover the equation to a low-order system. However, for the first-order system, central

fluxes are used. We introduce variables r, s and set

r ¼
∂

∂x
s, s ¼

∂

∂x
u, (2)

then, the Ginzburg-Landau problem can be rewritten as

∂u

∂t
� νþ iηð Þrþ κþ iζð Þ uj j2u� γu ¼ 0,

r ¼
∂

∂x
s, s ¼

∂

∂x
u:

(3)

We consider problem posed on the physical domain Ω with boundary ∂Ω and assume that a

nonoverlapping element Dk such that

Ω ¼ ∪

K

k¼1
Dk

: (4)

Now we introduce the broken Sobolev space for any real number r

Differential Equations - Theory and Current Research118



Hr
Ωð Þ ¼ fv∈L2 Ωð Þ : ∀k ¼ 1; 2; :…K; vjDk ∈Hr Dk

� �

g: (5)

We define the local inner product and L2 Dk
� �

norm

u; vð ÞDk ¼

ð

Dk

uvdx, ∥u∥2
Dk ¼ u; uð ÞDk , (6)

as well as the global broken inner product and norm

u; vð Þ
Ω
¼

X

K

k¼1

u; vð ÞDk , ∥u∥2
L2 Ωð Þ

¼
X

K

k¼1

u; uð ÞDk : (7)

We define the jumps along a normal, n̂, as

u½ � ¼ n̂
�
u� þ n̂

þ
uþ: (8)

The numerical traces (u,s) are defined on interelement faces as the central fluxes

u∗ ¼ uf g ¼
uþ þ u�

2
, s∗ ¼ sf g ¼

sþ þ s�

2
: (9)

Let us discretize the computational domain Ω into K nonoverlapping elements, Dk ¼

xk�1
2
; xkþ1

2

h i

, Δxk ¼ xkþ1
2
� xk�1

2
and k ¼ 1,…, K. We assume uh, rh, sh ∈VN

k be the approximation

of u, r, s respectively, where the approximation space is defined as

VN
k ¼ v : vk ∈P

N Dk
� �

; ∀Dk ∈Ω
� �

, (10)

where PN Dk
� �

denotes the set of polynomials of degree up to N defined on the element Dk. We

define local discontinuous Galerkin scheme as follows: find uh, rh, sh ∈VN
k , such that for all test

functions ϑ,ϕ,φ∈VN
k ,

∂uh
∂t

;ϑ
� �

Dk � νþ iηð Þ rh;ϑð ÞDk þ κþ iζð Þ uhj j2uh;ϑ
� �

Dk
� γ uh;ϑð ÞDk ¼ 0,

rh;ϕ
� �

Dk ¼ ∂

∂x
sh;ϕ

� �

Dk ,

sh;φð Þ
Dk ¼ ∂

∂x
uh;φ

� �

Dk :

(11)

Applying integration by parts to (11), and replacing the fluxes at the interfaces by the

corresponding numerical fluxes, we obtain

∂uh
∂t

;ϑ
� �

Dk � νþ iηð Þ rh;ϑð ÞDk þ κþ iζð Þ uhj j2uh;ϑ
� �

Dk
� γ uh;ϑð ÞDk ¼ 0,

rh;ϕ
� �

Dk ¼ � sh;ϕx

� �

Dk þ s∗hϕ
�

� �

kþ1
2
� s∗hϕ

þ
� �

k�1
2
,

sh;φð Þ
Dk ¼ � uh;φx

� �

Dk þ u∗hφ
�

� �

kþ1
2
� u∗hφ

þ
� �

k�1
2
,

(12)

we can rewrite (12) as
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∂uh
∂t ;ϑ

� �

Dk � νþ iηð Þ rh;ϑð ÞDk þ κþ iζð Þ uhj j2uh;ϑ
� �

Dk
� γ uh;ϑð ÞDk ¼ 0,

rh;ϕ
� �

Dk ¼ � sh;ϕx

� �

Dk þ n̂:s∗h;ϕ
� �

∂Dk ,

sh;φð ÞDk ¼ � uh;φx

� �

Dk þ n̂:u∗h;φ
� �

∂Dk :

(13)

where n̂ is simply a scalar and takes the value of +1 and �1 at the right and the left interface,

respectively.

3. Stability and error estimates

In this section, we discuss stability and accuracy of the proposed scheme, for the Ginzburg-

Landau problem.

3.1. Stability analysis

In order to carry out the analysis of the LDG scheme, we have the following results.

Theorem 3.1. (L2 stability). The solution given by the LDG method defined by (13) satisfies

∥uh x;Tð Þ∥Ω ≤ e�2γT∥u0 xð Þ∥Ω

for any T > 0.

Proof. Set ϑ;ϕ;φ
� �

¼ uh; νuh; νshð Þ in (13) and consider the integration by parts formula

u; ∂r
∂x

� �

Dk þ r; ∂u
∂x

� �

Dk ¼ ½ur�
x
kþ1

2
x
k�1

2

, we get

uhð Þt; uh
� �

Dk þ sh; shð ÞDk

¼ �ν rh; uhð ÞDk þ νþ iηð Þ rh; uhð ÞDk � κþ iζð Þ uhj j2uh; uh

� �

Dk

þγ uh; uhð ÞDk þ ν n̂:s∗h; uh
� �

∂Dk þ ν n̂:u∗h; sh
� �

∂Dk � ν n̂:sh; uhð Þ
∂Dk :

(14)

Taking the real part of the resulting equation, we obtain

uhð Þt; uh
� �

Dk þ sh; shð ÞDk ¼� κ uhj j2uh; uh

� �

Dk
þ γ uh; uhð ÞDk

þ ν n̂:s∗h; uh
� �

∂Dk þ ν n̂:u∗h; sh
� �

∂Dk � ν n̂:sh; uhð Þ
∂Dk :

(15)

Removing the positive term κ uhj j2uh; uh

� �

Dk
, we obtain

uhð Þt; uh
� �

Dk þ sh; shð ÞDk ≤γ∥uh∥
2
L2 Dkð Þ þ ν n̂:s∗h; uh

� �

∂Dk þ ν n̂:u∗h; sh
� �

∂Dk � ν n̂:sh; uhð Þ
∂Dk : (16)

Summing over all elements (16), we easily obtain

Differential Equations - Theory and Current Research120



uhð Þt; uh
� �

L2 Ωð Þ
þ sh; shð ÞL2 Ωð Þ ≤γ∥uh∥

2
Ω

: (17)

Employing Gronwall’s inequality, we obtain

∥uh x;Tð Þ∥Ω ≤ e�2γT∥u0 xð Þ∥Ω: □

3.2. Error estimates

We consider the linear Ginzburg-Landau equation

∂u

∂t
� νþ iηð ÞΔuþ κþ iζð Þu� γu ¼ 0: (18)

It is easy to verify that the exact solution of the above (18) satisfies

ut;ϑð Þ
Dk � νþ iηð Þ r;ϑð Þ

Dk þ κþ iζð Þ u;ϑð Þ
Dk � γ u;ϑð Þ

Dk ¼ 0,

r;ϕ
� �

Dk ¼ � s;ϕ
x

� �

Dk þ n̂:s∗;ϕ
� �

∂Dk ,

s;φð Þ
Dk ¼ � u;φ

x

� �

Dk þ n̂:u∗;φð Þ
∂Dk :

(19)

Subtracting (19) from the linear Ginzburg-Landau Eq. (13), we have the following error equation

u� uhð Þt;ϑ
� �

Dk þ s� sh;ϕx

� �

Dk þ u� uh;φx

� �

Dk þ κþ iζð Þ u� uh;ϑð ÞDk

�γ u� uh;ϑð ÞDk þ r� rh;ϕ
� �

Dk þ s� sh;φð Þ
Dk � n̂: s� shð Þ∗;ϕ

� �

∂Dk

� νþ iηð Þ r� rh;ϑð ÞDk � n̂: u� uhð Þ∗;φð Þ
∂Dk ¼ 0:

(20)

For the error estimate, we define special projections P� and Pþ into Vk
h. For all the elements,

Dk, k ¼ 1, 2,…, K are defined to satisfy

P
þu� u; vð ÞDk ¼ 0, ∀v∈Pk

N Dk
� �

, P
þu xk�1

2

� �

¼ u xk�1
2

� �

,

P
�u� u; vð ÞDk ¼ 0, ∀v∈Pk�1

N Dk
� �

, P
�u xkþ1

2

� �

¼ u xkþ1
2

� �

:

(21)

Denoting

π ¼ P
�u� uh, πe ¼ P

�u� u, ε ¼ P
þr� rh, εe ¼ P

þr� r,

τ ¼ P
þs� sh, τe ¼ P

þs� s:
(22)

For the abovementioned special projections, we have, by the standard approximation theory

[21], that

∥Pþu :ð Þ � u :ð Þ∥L2 Ωhð Þ ≤Ch
Nþ1

,

∥P�u :ð Þ � u :ð Þ∥L2 Ωhð Þ ≤Ch
Nþ1

,
(23)

where here and below C is a positive constant (which may have a different value in each

occurrence) depending solely on u and its derivatives but not of h.
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Theorem 3.2. Let u be the exact solution of the problem (18), and let uh be the numerical solution of the

semi-discrete LDG scheme (13). Then for small enough h, we have the following error estimates:

∥u :; tð Þ � uh :; tð Þ∥L2 Ωhð Þ ≤Ch
Nþ1, (24)

where the constant C is dependent upon T and some norms of the solutions.

Proof. From the Galerkin orthogonality (20), we get

π� πeð Þt;ϑ
� �

Dk þ τ� τe;ϕx

� �

Dk þ π� πe
;φx

� �

Dk þ κþ iζð Þ π� πe
;ϑð ÞDk � γ π� πe

;ϑð ÞDk

þ ε� εe;ϕ
� �

Dk þ τ� τe;φð ÞDk þ ϕ� ϕe
; β

� �

Dk � n̂: τ� τeð Þ∗;ϕ
� �

∂Dk � νþ iηð Þ

� ε� εe;ϑð ÞDk � n̂: π� πeð Þ∗;φð Þ
∂Dk ¼ 0:

(25)

Taking the real part of the resulting equation, we obtain

π� πeð Þt;ϑ
� �

Dk þ τ� τe;ϕx

� �

Dk þ π� πe
;φx

� �

Dk þ κ π� πe
;ϑð ÞDk

�γ π� πe
;ϑð ÞDk þ ε� εe;ϕ

� �

Dk þ τ� τe;φð ÞDk � n̂: τ� τeð Þ∗;ϕ
� �

∂Dk

�ν ε� εe;ϑð ÞDk � n̂: π� πeð Þ∗;φð Þ
∂Dk ¼ 0:

(26)

We take the test functions

ϑ ¼ π, ϕ ¼ νπ, φ ¼ ντ, (27)

we obtain

π� πeð Þt;π
� �

Dk þ ν τ� τe;πxð ÞDk þ ν π� πe
; τxð ÞDk

þκ π� πe
;πð ÞDk � γ π� πe

;πð ÞDk þ ν ε� εe;πð ÞDk

þν τ� τe; τð ÞDk � ν n̂: τ� τeð Þ∗;πð Þ
∂Dk � ν ε� εe;πð ÞDk � ν n̂: π� πeð Þ∗; τð Þ

∂Dk ¼ 0:

(28)

Summing over k, simplify by integration by parts and (9), we get

πt;πð Þ
Ω
þ ν τ; τð Þ

Ω
¼ ν τe;πxð Þ

Ω
þ ν πe

; τxð Þ
Ω
þ πe

t ;πð Þ
Ω
� γ πe

;πð Þ
Ω
þ κ πe

;πð Þ
Ω

þν τe; τð Þ
Ω
þ γ π;πð Þ

Ω
� κ π;πð Þ

Ω
� ν

X

K

k¼1

n̂: πeð Þ∗; τð Þ
∂Dk � ν

X

K

k¼1

n̂: τeð Þ∗;πð Þ
∂Dk ,

(29)

we can rewrite (29) as

πt;πð Þ
Ω
þ ν τ; τð Þ

Ω
¼ I þ II þ III, (30)

where

I ¼ ν τe;πxð Þ
Ω
þ ν πe

; τxð Þ
Ω
, (31)

II ¼ πe
t ;π

� �

Ω
� γ πe

;πð Þ
Ω
þ κ πe

;πð Þ
Ω
þ ν τe; τð Þ

Ω

�ν
X

K

k¼1

n̂: πeð Þ∗; τð Þ
∂Dk � ν

X

K

k¼1

n̂: τeð Þ∗;πð Þ
∂Dk ,

(32)
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III ¼ γ π;πð Þ
Ω
� κ π;πð Þ

Ω
: (33)

Using the definitions of the projections P,S (21) in (31), we get

I ¼ 0: (34)

From the approximation results (23) and Young’s inequality in (32), we obtain

II ≤ c1∥π∥
2
L2 Ωð Þ

þ c2∥τ∥
2
L2 Ωð Þ

þ Ch
2Nþ2

: (35)

and

III ≤ c1∥π∥
2
L2 Ωð Þ

: (36)

Combining (34), (35), (36) and (30), we obtain

πt;πð Þ
Ω
þ ν τ; τð Þ

Ω
≤ c1∥π∥

2
L2 Ωð Þ

þ c2∥τ∥
2
L2 Ωð Þ

þ Ch
2Nþ2

, (37)

provided c2 is sufficiently small such that c2 ≤ ν, we obtain that

πt;πð Þ
Ω
≤ c1∥π∥

2
L2 Ωð Þ

þ Ch
2Nþ2

: (38)

From the Gronwall’s lemma and standard approximation theory, the desired result follows. ⃞.

4. Numerical examples

In this section, we present several numerical examples to illustrate the previous theoretical

results. We use the high-order Runge-Kutta time discretizations [22], when the polynomials

are of degree N, a higher order accurate Runge-Kutta (RK) method must be used in order to

guarantee that the scheme is stable. In this chapter, we use a fourth-order non-total variation

diminishing (TVD) Runge-Kutta scheme [23]. Numerical experiments demonstrate its numerical

stability

∂uh

∂t
¼ F uh; tð Þ, (39)

where uh is the vector of unknowns, we can use the standard fourth-order four-stage explicit

RK method (ERK)

k1 ¼ F un
h
; tn

� �

,

k2 ¼ F un
h
þ
1

2
Δtk1

; tn þ
1

2
Δt

� 	

,

k3 ¼ F un
h þ

1

2
Δtk2

; tn þ
1

2
Δt

� 	

,

k4 ¼ F un
h þ Δtk3

; tn þ Δt
� �

,

unþ1
h

¼ un
h þ

1

6
k1 þ 2k2 þ 2k3 þ k4
� �

,

(40)
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to advance from un
h to unþ1

h , separated by the time step, Δt. In our examples, the condition

Δt ≤CΔxαmin 0 < C < 1ð Þ is used to ensure stability.

Example 4.1 We consider the following linear Ginzburg-Landau equation

∂u

∂t
� νþ iηð ÞΔuþ κþ iζð Þu ¼ 0, x∈ �20; 20½ �, t∈ 0; 0:5ð �, u x; 0ð Þ ¼ u0 xð Þ, (41)

with

η ¼ 1

2
,κ ¼ � ν 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 4ν2
p

� 1
� �

2 2þ 9ν2ð Þ , ζ ¼ �1,γ ¼ 0: (42)

The exact solution u x; tð Þ ¼ a xð Þeidln a xð Þð Þ�iωt where

a xð Þ ¼ Fsech xð Þ, F ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

d
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 4ν2
p

�2κ

s

, d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 4ν2
p

� 1

2ν
,ω ¼ � d 1þ 4ν2

� �

2ν
: (43)

The convergence rates and the numerical L2 error are listed in Figure 1 for several different

values of ν, confirming optimal O hNþ1
� �

order of convergence across.

Figure 1. The rate of convergence for the solving the nonlinear Ginzburg-Landau equation in Example 4.2.
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Example 4.2 We consider the nonlinear Ginzburg-Landau Eq. (1) with initial condition,

u x; 0ð Þ ¼ e�x2 , (44)

with parameters ν ¼ 1,κ ¼ 1, η ¼ 1, ζ ¼ 2, x∈ �10; 10½ �. We consider cases with N = 2 and

K = 40 and solve the equation for several different values of γ. The numerical solution uh x; tð Þ

for γ ¼ 2, 1, 0, � 1, � 2 is shown in Figures 2 and 3. The parameter γ will affect the wave

shape. From these figures, it is obvious that the solution decays rapidly with time evolution

especially for γ < 0 and the parameter γ dramatically affects the wave shape.

Figure 2. Numerical results for the nonlinear Ginzburg-Landau equation in Example 4.2.
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5. Conclusions

In this chapter, we developed and analyzed a local discontinuous Galerkin method for solving

the nonlinear Ginzburg-Landau equation and have proven the stability of this method.

Numerical experiments confirm that the optimal order of convergence is recovered. As a last

example, the Ginzburg-Landau equation with initial condition is solved for different values of

γ and results show that the parameter γ dramatically affects the wave shape. In addition, the

solution decays rapidly with time evolution especially for γ<0.
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Figure 3. Numerical results for the nonlinear Ginzburg-Landau equation with γ = �2 in Example 4.2.
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