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Abstract

Global system analysis (GSA) was applied to parameter estimation of dynamic process
models. First, the posterior distribution of the model parameters was estimated by quasi-
Monte Carlo (QMC) simulations or uncertainty analysis. The expected variance of the
estimated parameters by GSA was in general smaller than those were obtained by local
search for the maximum likelihood. Second, sensitivity analysis was performed as an
alternative application of GSA for the same mathematical models and testing data. The
total effect index should serve as a quantitative measure of the robustness of each esti-
mated parameter. Two process models were studied to demonstrate effectiveness of the
proposed methodology based on GSA: a bio-reactor and a catalytic reactor. Parallelised
computation allowed for sampling as many as 500,000 combinations of the model param-
eters in reasonable amount of time.

Keywords: parameter estimation, global system analysis, quasi-Monte Carlo, sensitivity
analysis, high-performance computation

1. Introduction

We try to interpret, understand, and extract knowledge by analysing the data obtained from

measurements, experiments and recording the behaviour of various processes that we encoun-

ter in the industries and real life.

Parameter estimation of dynamic process models is investigated in this study. To validate a

mathematical process model, we need to match the model prediction with the measurement or

the experiment data.

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



We assume that we can construct a certain mathematical or a first principle model to represent

a chemical or biochemical process by a set of algebraic (either linear or nonlinear) and differ-

ential (either ordinary or partial) equations, that is, differential algebraic equations (DAEs).

The Bayesian statistics provides an ideal framework for the estimation of the mathematical

parameters of predictive models, which is inherently stochastic in that all models make imper-

fect predictions because of the process variance, observation errors, model selection uncer-

tainties, and so on.

The uncertainty of the estimated parameters must be evaluated in terms of accuracy or posterior

distribution in the Bayesian statistics context.

Although maximum likelihood estimation (MLE) has been the standard tool for solving the

parameter estimation problems, some shortcomings have been recognised in terms of its

properties and the conventional solution algorithms for the MLE (see [1]):

1. Gradient-based methods (GBM) may miss the global optimum or true MLE because of the

nature of such solvers that are based on local search mechanisms.

2. The confidence region for the parameters can be very large when the curvature of the

likelihood function at an optimal point is extrapolated without knowing the global distri-

bution of the likelihood function around the point estimate.

3. If the model equations contain singularities or structural redundancy, correlations among

the estimated parameter may be observed.

Global system analysis (GSA) is designed to provide advanced features compared with the

conventional analytical methods such as GBM and MLE. GSA is not precisely the same theoret-

ical framework as Bayesian method; however, we can apply GSA as a version of computa-

tional Bayesian methodology to estimate model parameters.

First, GSA is a global search procedure as opposed to GBM such as Newton’s method where

we must start the search with some initial guess so that the solution can be trapped by a local

optimal point that is not necessarily the global optimum.

Second, the Bayesian Cramer-Rao (BCR) bounds offer tighter lower bounds than the conven-

tional Cramer-Rao lower bound that is based on Fisher information. GSA can calculate BCR

with assumption of a prior that can be uniform (non-informative) or any probability distribu-

tion such as Gaussian.

Third, the posterior distribution of the estimated model parameters obtained by GSA correctly

reflects the non-linearity of the process. Some process kinetics equations such as Arrhenius

equation present structural correlation, for example, between pre-exponent factors and activa-

tion energies. Even in such a case, GSA can correctly capture the interdependency among the

parameters so that the posterior distribution of the parameters accuracy is evaluated properly.

Since GSA algorithm is deterministic, one can decide the required number of samples prior to

numerical simulation depending on the required accuracy or convergence. The computation

can also be parallelised so that the actual CPU time can be significantly accelerated. This is a
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clear advantage over Markov Chain Monte Carlo (MCMC) sampling where we need to mon-

itor the convergence to make sure the sample distribution approached the intended conver-

gence criterion.

GSA is applied to parameter estimation taking the likelihood function as the response to the

factors, which are in fact model parameters that are considered stochastic variables in the

Bayesian statistics framework. The parameter search space may be either non-informative or

informative in GSA: low discrepancy sequence (LDS) such as Sobol sequence is considered

non-informative; or normal (Gaussian) distribution may also be assumed to perform sampling

in the multidimensional parameter space (more distribution functions such as gamma or

inverse-gamma will be available in the GSA tool that was used for this study).

Posterior of the model parameters can be calculated simply by integrating the sampled likeli-

hood (response) over the entire parameter space (factors). We can then calculate posterior mean

and variance as well as maximum a posterior (MAP) estimate.

Sensitivity analysis can also be performed by sampling in the hyper-dimensional space just

like in the case of uncertainty analysis. The factor sensitivity table gives information about the

influence of each parameter on the response, which is the likelihood function of the model

postulated for the investigation.

If the process model contains some singularity or correlations among the parameters, the

parameter estimation work gets very difficult, if not theoretically impossible. Although a

number of different procedures have been proposed for re-parameterisation of the process

models, since such manipulations are not essential in the physical significance of the processes

of interest, the estimated parameters that are reformulated would not be very useful to under-

stand the fundamental principles of the actual processes.

Since GSA is computational resource intensive, parallelisation should be considered to make

the analysis tractable. Recent advance in the software technology made it possible to run

relatively large GSA with as many as 500,000 samples executed even on a common laptop PC

with a multi-core CPU

2. Parameter estimation by global system analysis

GSA helps to investigate the global behaviour of any system models. In contrast to simulation,

in which specific values are assigned to system inputs and the values of key outputs are

reported, in GSA, it is possible to specify a range of input values of interest and therefore

obtain a range of outputs.

GSA can perform three types of analysis:

• Scenario or parametric

• Uncertainty

• Sensitivity

Dynamic Process Model Parameter Estimation by Global System Analysis
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The purpose of each type of analysis differs widely as follows:

• Scenario or parametric sensitivity analysis is a series of simulations where the values of

one or more factors are varied over a grid to investigate the resulting changes in one or

more responses. It allows an assessment of the impact of different factors on each

response.

• Uncertainty analysis propagates the uncertainty in the factors to the responses. The values

returned represent the actual uncertainty associated with the responses.

• Sensitivity analysis provides metrics which indicate how factors and their uncertainty

influence responses. However, the values obtained do not represent actual sensitivities.

When the likelihood function is taken as the objective or the only output from the system

whereas the model parameters are given as inputs, GSA can be utilised as a global search and

uncertainty evaluation for the model parameter estimation. The uncertainty analysis was used

to identify the parameter point estimates and confidence intervals. In addition, the sensitivity

analysis was performed to quantify the influence of each parameter on the output or predic-

tion of the process models that are investigated.

2.1. Parameter estimation

Bayesian approach to the model parameter estimation can be presented as Eq. 1.

π θjyð Þ∝L yjθð Þp θð Þ (1)

where p θð Þ designates a prior distribution of the model parameters, L yjθð Þ is the likelihood

with which one observes response y byijk
� �

, and π θjyð Þ is the posterior.

When certain a priori knowledge is available about the process, it can be incorporated in the

Bayesian framework as a prior. In this study, however, we assumed a flat or homogeneous

prior over the parameter search space.

The MAP estimate is defined by the parameter that maximises the posterior probability given

as Eq. 2.

θMAP ¼ argmax
θ

π θjyð Þð Þ (2)

The system responses are parameterised by a set of parameters in the following equation,

where θ∗ denotes true parameters that characterise the system. We assume additive errors that

are i.i.d, that is, independent and identically distributed following a normal distribution.

byijk ¼ gj xi;θ
∗ð Þ þ εijk i ¼ 1; 2;…;NEð Þ (3)

The probability f with which one observes measurement byijk is formulated as Eq. 4.
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f byijkjθ; σ2ijk
� �

¼

2πσ2ijk

� ��1=2
exp �

byijk � gj xi;θð Þ
� �2

2σ2ijk

0

B@

1

CA
(4)

The log-likelihood LL θð Þ is defined as the logarithm of likelihood L θð Þ � L yjθð Þ ¼
Q

ijk f byijk
�

jθ; σ2ijkÞ that is a function of parameters θ θ1;⋯;θq

� �
.

LL θð Þ � � logL θð Þ

¼ � log
YNE

i¼1

YNV i

j¼1

YNMij

k¼1

f byijkjθ; σ
2
ijk

� �
2

4

3

5 ¼
n

2
log 2πð Þ

þ
1

2

XNE

i¼1

XNV i

j¼1

XNMij

k¼1

log σ
2
ijk

� �
þ

byijk � gj xi;θð Þ
� �2

σ2ijk

2

64

3

75

(5)

where f byijkjθ; σ2ijk
� �

, likelihood of measurement byijk in normal (Gaussian) error with mean θ

and variance σ
2
ijk; gj xið Þ, simulated model response of variable j in experiment i; LL θð Þ �

� log L yjθð Þ, logarithmic likelihood function; n, number of measurements taken during all

experiments; NE, number of experiments performed; NMij, number of measurements of the j-

th variable in experiment i; NV i, number of variables measured in the i-th experiment; q,

number of model parameters; xi, operating conditions of the i-th experiment; byijk, k-th mea-

sured value of variable j in experiment i; ε2ijk, variance of the k-th measurement of variable j in

experiment i; θ ¼ θ θ1;⋯;θq

� �
, model parameters to be estimated; and σ

2
ijk, variance of the k-th

measurement of variable j in experiment i.

The MLE is defined by the parameter that minimises the log-likelihood function:

θMLE ¼ argmin
θ

LL θð Þð Þ (6)

2.2. Global system analysis

GSA is based on drawing samples from the system under study; that is, taking different values

for each factor and calculating the corresponding response values. One of the features and

basic principles underlying GSA is that extracting random samples from a system permits the

estimation of its mean value

Considering the atypical surface shown in Figure 1 below on the left, Figure 2 on the right

indicates what its average value will be for a number of random sample points. The dispersion

of the values is due to the fact that this process is repeated 100 times for each number of

samples, each time generating a different random set of sample points. This is indicative of

how accurate the results will be for different numbers of samples

Dynamic Process Model Parameter Estimation by Global System Analysis
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It is clear that by increasing the number of points, values gradually become closer to the true

mean value of the surface. Increasing the number of sample points will generally lead to more

accurate results.

2.3. Uncertainty analysis

An uncertainty analysis can be used to determine what effect the uncertainty in the factors has

on the uncertainty in the responses. This type of analysis can be accomplished using the Monte

Figure 1. Response surface for two inputs.

Figure 2. Spread of averages for different number of samples.
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Carlo method. The Monte Carlo method performs multiple model evaluations (simulations)

with deterministic and/or probabilistic factors. The results of these evaluations are then used to

determine the uncertainty in the responses. This method is appropriate for any type of model,

regardless of complexity.

Pseudo-random sampling generates a more realistic random sample, that is, resembling a

sample drawn from a distribution. This method should be used to represent realistic sampling,

for example, a clinical trial in which 200 people are sampled from the general population.

Quasi-random (Sobol) sampling (Figure 3) allows for better coverage of space compared to

pseudo-random sampling (Figure 4). Sobol sampling is recommended unless a more realistic

random behaviour is required.

Figure 3. Quasi-random (Sobol) sampling.

Figure 4. Pseudo-random sampling.
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2.4. Sensitivity analysis

Sensitivity analysis can be used to determine which factor contributes the most to the

uncertainty in a response. In GSA, the calculated sensitivity measures are sensitivity indices

rather than mathematical sensitivities (derivatives). For example, consider the following

equation

y ¼ x1
2 þ 3x2 (7)

where all variables are algebraic and both x1 and x2 are assumed to have values between 0 and

10. Their mathematical sensitivities are given by:

∂y

∂x1
¼ 2x1 (8)

∂y

∂x2
¼ 3 (9)

where y, xi, algebraic variables; and
∂y
∂xi
, partial derivative of y with respect to xi.

These mathematical sensitivities are informative at the point where they are computed, but are

limited when the factors are uncertain, and the model is of unknown linearity, as they do not

provide for an exploration of the rest of the input factor space. In contrast, GSA calculates

sensitivity measures that are averages over the entire space of interest. Two different indices

are available: elementary effects and variance-based indices, which provide relative metrics.

In both cases, indices for the first order and total effect are calculated. According to Sobol [2, 3],

any function expressed either as follows:

y ¼ f u1;…; unf

� �

(10)

where f , function; nf , number of factors; ui, factor i; and y, response.

or as a combination of different functions:

y ¼ f 0 þ
X

nf

i¼1

f i uið Þ þ
X

nf

i<j

f ij ui; uj
� �

þ⋯þ f 1,2,…,nf
u1; u2;…;unf

� �

(11)

where f i, first-order function; f ij, second-order function; and f 1,2,…,nf
, nf th order function.

The first-order effect of factor ui is fi. In contrast, the total effect is the sum of all functions of all

orders where ui appears as an argument

Elementary effects are an efficient method for larger, more complex models with a large number

of factors. This method requires a limited number of samples. However, it is not as accurate as

the variance-based method and should only be used to identify the most important factors.

New Insights into Bayesian Inference48



For elementary effects, the sensitivity indices are calculated based on the following approximation.

EEi, j ¼
yj u1;…; ui þ Δ; unð Þ � yj u1;…; ui; unð Þ

Δ
∀i∈ 1;…;nf g (12)

where EEi, j, elementary effect for factor i for sample j; ui, factor i; yj, response of sample j; and

Δ, difference.

The mean values are calculated as follows:

μi ¼
1

n

X

n

j¼1

EEi, j (13)

where n, number of samples; and μi, mean elementary effect for factor i.

Although this appears to be an approximation of the mean partial derivative, it is typically not

an accurate estimate of the actual mean sensitivity. Among other differences, the elementary

effect also considers the variance in each factor. For example, considering the following equa-

tion y = x1 + x2, the value of the mathematical sensitivity for both x1 and x2 is one, but if the

variance in x1 is larger than x2, then μ1 > μ2.

The elementary effects method also calculates the standard deviation as follows.

σi ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

n� 1

X

n

j¼1

EEi, j � μi

� �2

v

u

u

t (14)

where σi is the standard deviation of elementary effect for factor i.

The advantage of elementary effects analysis is that it is a numerically efficient way to screen

many factors at the expense of accuracy. It has been shown in practice that the relative value of

the sensitivity is fairly accurate, so values sorted from high to low do typically follow the order

of the most influential to the least influential factor.

Variance-based methods are more accurate but more computationally demanding and require

(many) more samples than the elementary effects method. The variance-based method was

applied to the following numerical examples.

The metrics used are based on variances and are indicative of what part of the variance, in the

response, is attributed to the variance in each factor. Note that the relative contribution of the

factors to the variance in the response can be sorted differently for each response.

This method distinguishes between first order and total effect indices. Generally, one can split

any function.

Variance-based sensitivity indices measure the influence of individual factors on responses.

The variance-based sensitivity analysis method is based on the Saltelli’s method [4], and the

formulae used to estimate the sensitivity indices are those proposed in [5]. There are two types

of variance-based sensitivity indices (see [2, 3])

Dynamic Process Model Parameter Estimation by Global System Analysis
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• The first-order effect, that is, the direct effect of factor i on response y:

Si ¼
σ
2
i,y

σ
2
y

(15)

where Si, first-order effect index for factor i; σ2i,y, variance attributed to factor i on response y;

and σ
2
y, variance observed for response y.

• The total effect, that is, the total effect of factor i on response, y:

Si,T ¼

σ
2
i,T,y

σ
2
y

(16)

where Si,T , total effect index for factor i; and σ
2
i,T,y, variance attributed to factor i on response y

through all factors.

In this case, the influence of factor i through other variables is taken into consideration.

In variance-based sensitivity analysis, the sensitivity indices are based on variances. Note that

the relationships below can be inferred from the definitions of the factors:

X

i∈ factors

Sj, i ≤ 1 (17)

Sj, i,T ≥ Sj, i (18)

X

i∈ factors

Sj, i,T ≥ 1 (19)

where Sj, i, first-order effect index for factor i in response j; and Sj, i,T , total effect index for factor

i in response j.

It is clear that mathematical sensitivities and sensitivity indices have very different meanings.

For simplicity, consider the sensitivity index as a normalised metric which indicates what part

of the variance in the response can be attributed to which factor.

3. Numerical case studies

gPROMS®, a general-purpose DAE solver for process modelling, was used to compute the

likelihood function values based on the measurement data with some artificial errors for the

demonstration purposes. It was also used to compute the MLE (by GBM) to set a reference for

comparison with the results by the proposed method, GSA-based inference.

3.1. Case study ‘A’: bioreactor

A benchmark problem in genome research in [6] is reproduced. They applied bootstrapping to

minimise the expected variance of the estimated parameters.
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3.1.1. Problem statement

In silico experimental data for an organism in a chemostat as shown in Figure 5 is presented. A

mathematical model is set up based on a fictive network structure.

After reaching a steady state, the flow rates qin, qout as well as the concentration of the substrate

in the feed cin are changed. Measurements are available for three metabolites, M1, M2, and M3

that function as an enzyme E, representing a small biochemical network of the organism, and

for biomass B and substrate S (Table 1).

Those parameters as listed in Table 2 are assumed known prior to the experiment.

Since number of such experiments that can be performed is rather limited in reality, GSA or a

Bayesian approach is anticipated to perform better than MLE or minimum mean square error

(MMSE) methods in that the latter tends to provide overfitting of the parameters in terms of

Figure 5. Bioreactor.

Time [hour] cin [g/litre] qin, qout [litre/h]

0–20 2 0.25

20–30 2 0.35

30–60 0.5 0.35

Table 2. Experimental procedure.

‘Known’ kinetics Parameter Value Unit

Synthesis of M1 values r1max 2.4 � 104 μmol/g/h

KS 0.4437 μmol/g

Affinity M1 – E value KM1 12.2 μmol/g

Degradation of M2 values r3max 3.0 � 106 μmol/g/h

KM2 10 μmol/g

Table 1. Additional information – ‘known’ parameters.

Dynamic Process Model Parameter Estimation by Global System Analysis
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the observation or measured data, whereas the former should calculate more robust estimate

of parameters that are integrated over the posterior distribution.

_V ¼ qin � qout (20)

_B ¼ μ�
qin
V

� �

B (21)

_S ¼
qin
V

cin � Sð Þ � r1MwB (22)

r1 ¼ r1max
S

KS þ S
(23)

r2 ¼ k2E
M1

KM1 þM1
(24)

r3 ¼ r3max
M2

KM2 þM2
(25)

rsyn ¼ ksynmax
KIB

KIB þM2
(26)

_M1 ¼ r1 � r2 � μM1 (27)

_M2 ¼ r2 � r3 � μM2 (28)

_E ¼ rsyn � μE (29)

μ ¼ YX=S r1 (30)

where B, biomass concentration, (g/litre); cin, substrate concentration in feed, (g/litre); E,

enzyme (=M3) concentration, (μmol/g); k2, turnover number to produce M2, (litre/h); KIB,

inhibition of enzyme synthesis by M2, (μmol/g); KM1, Michaelis constant - M1 uptake, (μmol/

g); KM2, Michaelis constant - M2 uptake, (μmol/g); KS, Michaelis constant - substrate uptake,

(μmol/g); ksynmax, maximum enzyme synthesis rate, (μmol/g/h); Mi, metabolite i (i = 1, 2, 3)

concentration, (μmol/g); Mw, molar mass of substrate (243.3 � 10�6), (g/μmol); qin, feed flow

rate, (litre/h); qout, product flow rate, (litre/h); r1max, maximum rate constant–reaction 1, (μmol/

g/h); r3max, maximum rate constant - reaction 3, (μmol/g/h); ri, uptake rate to produce Mi (i = 1,

2, 3), (μmol/g/h); rsyn, enzyme synthesis rate, (μmol/g/h); S, substrate concentration, (g/litre); V,

reactor holdup volume, (litre); YX/S, biomass yield coefficient, (g/μmol); and μ, biomass specific

growth rate, (h�1).

The feed flow rate and the substrate concentration in feed are changed as shown in Table 3 and

Figure 6.

3.1.2. Numerical study

GSA-based parameter estimation was attempted as well as the gradient-based method or local

search as the benchmark. In Figures 7–11, each dot in blue shows an individual measurement
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YX/S k2 ksynmax KIB

Maximum likelihood estimators

Likelihood = �485

MLE 7.00E-05 6.43E + 06 6.80E-03 0.2

Std. Dev. 6.24E-07 1.85E + 05 5.70E-04 0.2

Empirical Bayes estimators (GSA)

Likelihood = �476

MAP 6.91E-05 6.70E + 06 6.26E-03 2.7

Posterior Mean 6.94E-05 6.65E + 06 6.31E-03 5.3

Posterior Variance 5.70E-07 1.21E + 05 1.30E-04 4.8

Factor sensitivity table

First order effect 0.021 0.02 0.054 0.003

Total effect 0.768 0.697 0.906 0.006

Table 3. Case study ‘A’ estimated parameters.

Figure 6. Operating conditions of the experiments.

Figure 7. Overlay plot for trajectory of substrate S.
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Figure 8. Overlay plot for trajectory of biomass B.

Figure 9. Overlay plot for trajectory of enzyme E (M3).

Figure 10. Overlay plot for trajectory of metabolite M1.

Figure 11. Overlay plot for trajectory of metabolite M2.
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in dynamic experiments. The error bar on each dot signifies standard deviation of the mea-

surement data (linear variance model). The solid lines in red are MLE estimation by the GBM

solver (gPROMS®).

A constant linear variance model is assumed for each point of the measurement data where

ω = 0.02.

σ
2
¼ ω

2z2 (31)

GSA sampling was performed by Sobol sequence involving four parameters YX/S, k2, ksynmax,

KIB. A total of 500,000 sample points were generated in terms of combinations of these four

parameters. Marginal posterior for each parameter is plotted in Figures 12–15.

Figures 16–21 are 3D presentation of the posterior in terms of the likelihood function.

Both YX/S and k2 are seen to follow rather smooth distributions as shown in Figures 12 and 13

respectively. ksynmax also seems to follow a nice and smooth distribution, but with a few outliers

scattering here and there as shown in Figure 14.

Note that those variance or confidence intervals for YX/S, k2, ksynmax by GSA are smaller than

what was obtained by local search or the conventional GBM.

KIB on the other hand presents totally different picture (Figure 15), that is, the model is almost

insensitive to the variation of this parameter. We can actually confirm this by running sensitiv-

ity analysis separately as summarised in Table 4.

An important finding here is that the local search was trapped by the local minimum, but it is

not necessarily a robust estimate because of the spread as shown in Figure 15.

3.2. Case study ‘B’: catalytic synthesis of methanol from CO and H2

A laboratory integral reactor with fixed bed catalyst was studied. Model parameter estimation

was attempted by the conventional maximum likelihood approach as well as the newly

Figure 12. Marginal posterior (YX/S).
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proposed GSA methodology. Pseudo experiment data were prepared by introducing artificial

measurement errors.

3.2.1. Problem statement

The following main reaction can be accomplished by several side and consecutive reactions

(see [7]). A large number of kinetic expressions have been proposed in the literature [8]. We

assumed the rate determining step (29) as the dominant reaction mechanism.

CO∗

þ 2H2
∗

¼ CH3OH∗

þ 2S (32)

where * denotes component as adsorbed state; S is an adsorbed site.

A Langmuir-Hinshelwood type kinetics as described by Eq. 13 was assumed for the study.

Figure 13. Marginal posterior (k2).

Figure 14. Marginal posterior (ksynmax).
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rMethanol ¼

k ϕCOϕH2

2
� ϕMethanol=Keq

� �

1þ AϕCO þ BϕH2
þ CϕMethanol

� �2
(33)

k ¼ krexp
�Er

RT

� �

(34)

A ¼ kCOexp
�ECO

RT

� �

(35)

B ¼ kH2
exp

�EH2

RT

� �

(36)

Figure 15. Marginal posterior (KIB).

Figure 16. 2D marginal posterior (YX/S vs. k2).
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C ¼ kMethanolexp
�EMethanol

RT

� �

(37)

where Ci, molar concentration of component i, (mol/m3); Ej, activation energy of jth reaction,

(J/mol); kj, reaction pre-exponent factor of jth reaction, (1/sec); rj, reaction rate of jth reaction,

Figure 17. 3D posterior plot (YX/S vs. k2).

Figure 18. 2D marginal posterior (YX/S vs. ksynmax).
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(mol/sec/m3); R, universal gas constant, (J/K/mol); t, time, (sec); and T, reaction (operating)

temperature, (K).

The molar concentrations of the species are measured with Gaussian errors with mean at 0 and

variance σ2.

Figure 19. 3D posterior plot (YX/S vs. ksynmax).

Figure 20. 2D marginal posterior (k2 vs. ksynmax).
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σ
2
¼ ω

2z2 (38)

where, z is themeasured data andω (=0.02) is the standard deviation of the linear variancemodel.

The reactor with a fixed catalyst bed was operated under three different temperatures (475,

500, 525, 550 K). Two different initial conditions were assumed, either being filled with the feed

Figure 21. 3D posterior plot (k2 vs. ksynmax).

ECO EH2 EMethanol Er kCO kH2 kMethanol kr

Maximum likelihood estimators

Likelihood = �3348

MLE 6.72E + 04 5.13E + 04 7.16E + 04 1.22E + 05 7.05E + 05 3.41E + 03 1.97E + 06 1.01E + 09

Std. Dev. 1.65E + 04 1.69E + 04 1.61E + 04 4.92E + 04 2.95E + 06 1.46E + 04 8.07E + 06 1.26E + 10

Empirical Bayes estimators (GSA-based)

Likelihood = �3397

MAP 6.56E + 04 4.86E + 04 7.29E + 04 1.21E + 05 8.35E + 05 3.59E + 03 4.47E + 06 4.58E + 09

Posterior Mean 6.55E + 04 4.86E + 04 7.29E + 04 1.21E + 05 8.35E + 05 3.60E + 03 4.47E + 06 4.58E + 09

Posterior Variance 6.48E + 02 4.49E + 02 6.93E + 02 1.67E + 03 1.21E + 04 1.20E + 02 8.04E + 04 2.26E + 07

Factor sensitivity table

First order effect 0.004 �0.011 �0.031 0 �0.043 �0.019 0.02 �0.042

Total effect 0.607 0.256 0.69 0.885 0.179 0.078 0.271 0.209

Table 4. Case study ‘B’ estimated parameters.
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gas compositions or an empty/inert state. There were eight sets of experiment data for the

study. Feed rates were controlled as shown in Figure 22.

We can observe that the GSA or Bayesian approach correctly captures the process kinetics as

described by Arrhenius equations that contains some interdependency among the activation

energies and the pre-exponent factors.

3.2.2. Numerical study

Figures 23 and 24 show measurement data in a dynamic experiment (designated by the blue

dots in the plots). Notice that the vertical bar attached to each dot denotes the measurement

error that we assumed. The red dots are the simulation results of the final iteration for the MLE

estimation by the GBM.

Figure 22. Feed rates profile.

Figure 23. Trajectory of carbon monoxide yield.
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The model parameters were estimated firstly by gPROMS®, a conventional solution engine or

GBM to maximise the likelihood function (minimising the log-likelihood). Confidence regions

or intervals for the estimated parameters are evaluated based on Cramer-Rao lower bounds.

Second, posterior likelihood of the model parameters is computed by GSA. Figures 25–30 are 3D

plots of likelihood for a few pairs of parameters to be identified. The projection of those 3D

points to 2D planes in the former plots are 2D marginal distributions as shown in Figures 31–36,

respectively.

The parameters are correlated in one way or another. Nonetheless, the pair of parameters such

as ECO and Er are still identifiable based on the posterior distribution of the likelihood function

Figure 24. Trajectory of methanol yield.

Figure 25. 3D posterior plot (ECO vs. Er).
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(Figure 31). The pair of EH2 and Er presents a little different profile, but they can also be

estimated by taking MAP or averaging over the entire sampling space (Figure 32).

One noticeable finding was that the posterior variances of the GSA in this particular case were

much smaller than those were estimated by local search or GBM (Table 5). Since the pre-

exponent factors and the activation energies in the Arrhenius-type kinetics are highly corre-

lated as can be seen in Figures 34–36, parameter estimation is difficult in its nature of the

mathematical formulation.

Figure 26. 3D posterior plot (EH2 vs. Er).

Figure 27. 3D posterior plot (EMethanol vs. Er).
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Figure 28. 3D posterior plot (ECO vs. kCO).

Figure 29. 3D posterior plot (EH2 vs. kH2).

Figure 30. 3D posterior plot (EMethanol vs. kMethanol).

New Insights into Bayesian Inference64



Figure 31. 2D marginal posterior (ECO vs. Er).

Figure 32. 2D marginal posterior (EH2 vs. Er).

Figure 33. 2D marginal posterior (EMethanol vs. Er).
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Figure 34. 2D marginal posterior (ECO vs. kCO).

Figure 35. 2D marginal posterior (EH2 vs. kH2).

Figure 36. 2D marginal posterior (EMethanol vs. kMethanol).
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4. Conclusions

We applied GSA to parameter estimation for dynamic process models. Numerical case studies

were performed for a couple of different processes with a set of simulated or artificial data. We

demonstrated the advantage of the proposed methodology that is based on global search, over

the conventional ones that are based on local search.

GSA calculates posterior distribution of the model parameters based on any measurement data

available for the study. The estimated confidence region or intervals are in general narrower

than those were calculated by the local search.

In case where some parameter is not affecting the system response significantly, GSA would

still correctly evaluate the distribution or the probable spread of the model parameters. On the

contrary, local search or GBM might find an optimal point for the same problem that can

however be elusive in that the estimated variance around the solution is erroneously small

due to lack of global information for the point estimate.

When a set of parameters are structurally correlated as in the case for the activation energy and

pre-exponential coefficient, confidence region or confidence interval by the conventional local

search methods can be very large thus smearing out the point estimate. Even under such

circumstances, GSA can provide legitimate information about the accuracy of the estimated

parameters. The posterior variance by GSA can be significantly smaller than Cramer-Rao

lower bounds.

Therefore, we can conclude that GSA can provide more robust location parameters compared

to the local search methods. But to be fair, because GBM can still find the optimal solution

more precisely, it is advised to use both the methods complementarily: local search or GBM can

initially be used to search for MLE. GSA can then provide a global view of the posterior

probability of the point estimation to make sure the solution is stable and robust. GSA can also

μ σ μ σ

0 < xi < 10 0 < xi < 1

x1 111 60.5 1.11 0.65

x2 30 13.4 3.0 1.34

Table 5. Elementary effects sensitivity analysis.

Si Si,T Si Si,T

0 < xi < 10 0 < xi < 1

x1 0.92 1.02 0.03 0.12

x2 �0.01 0.08 0.88 0.97

Table 6. Variance-based sensitivity analysis.
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be used for sensitivity study to make sure the estimated parameters or the variances of those

are reasonable.

Since GSA is computation-intensive, parallel computation must be considered to practice such

a method for a study of real-life problems. We made use of parallel computation on a single PC

with multi-cores (employed four workers). GSA with 500,000 points sampling took CPU time of

9530 s (2.6 h) and 128,752 s (35.8 h) for the abovementioned example cases ‘A’ and ‘B’ respec-

tively (performed on PC with Intel i7-5600 U @2.6GHz).

A. Appendix

A.1. Numerical implementation of Bayesian analysis: review of the

incumbent method

Although we proposed a new way of calculating posterior probability by GSA as described in

Section 2.2, it is worthwhile to review the incumbent method.

A.1.1. Markov chain Monte Carlo

Markov Chain Monte Carlo (MCMC) is a sampling method searching in a space. It is particu-

larly important in Bayesian analysis for surveying a space with an arbitrary probability mea-

sure. When the posterior distribution is not obtained in a closed form, we need to rely on

numerical sampling in the parametric space.

MCMC draws random samples from their marginal posterior distributions. With the introduc-

tion of prior distribution, we can compute the posterior distribution based on the Bayes’

theorem.

A.1.2. Sampling from the posterior distribution

Metropolis-Hastings is an accept-reject sampling. Designing a good proposal distribution is the

key to the success of such a sampling method. This concept is illustrated in the following

pseudo steps.

i. Propose a value θ (*) for the parameter.

ii. Compute the posterior probability ratio for the proposed value θ (*) against the previous

value θ (k�1).

iii. Accept the proposed value with the probability in the previous step (i.e. θ (k) = θ
(*)). In

case the proposal is not accepted, then retain the previous value (i.e. θ (k) = θ
(k�1)).

where full conditionals are conjugate, Gibbs sampling can be used. A sufficient number of

repetitions converge on the posterior distributions much more rapidly than by the Metropolis-

Hastings sampling. When conditional distributions are not conjugate, we use Metropolis-

Hastings.
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A.1.3. Shortcomings of MCMC

Although MCMC has become a standard tool for Bayesian analysis, several problems have

also become obvious particularly in the numerical implementation of the method [9]. While

MCMC provides an almost automatic way of sampling the posterior distribution, it often

converges too slowly or get stuck within one mode of a multi-modal parametric space. More-

over, it is oftentimes difficult to determine if a chain has reached stationarity or still hovering in

a certain region of the parameter space.

The computation of the likelihood function can be complicated as in the physical process

systems that are described by a set of mathematical equations, which can also be dynamic or

time-variant rather than stationary or time-invariant. Therefore, the sampling must be efficient

for the numerical implementation of MCMC to be applied to analysis of chemical, biological or

physical systems that we encounter in real life.

A.2. Global sensitivity analysis: example calculations

A couple of example calculations of GSA sensitivity analysis are shown below (refer to Section 2.4).

A.2.1. Elementary effects sensitivity analysis

Applying elementary effects sensitivity analysis on equation y = x1
2 + 3x2 returns the results in

Table 5.

A.2.2. Variance-based sensitivity analysis

Applying variance-based sensitivity analysis on equation y = x1
2 + 3x2 returns the results in

Table 6. While variance-based values do not have an exact meaning, the most influential factors

are correctly identified.
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