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Abstract

Measurements of biomarkers in exhaled breath condensate (EBC) extend a novel route 
for monitoring lung physiology and provide a beneficial insight into the pathophysiol-
ogy of a specific disease. From the medicinal point of view, biomarkers present in EBC 
depict rather the processes occurring in lungs than those in the entire system. Therefore, 
particular profiles of exhaled biomarkers (e.g. cys-LTs, LTB

4
, 8-isoprostane, etc.) appar-

ently reveal information exclusively applicable to differential lung disease diagnoses. 
This chapter describes the developed analytical method being applied to a clinical study 
for differential diagnostics of various phenotypes of asthma, chronic obstructive pulmo-
nary disease, lung cancer, etc. In particular, having determined cys-LTs and LXs by the 
described method, and having applied them as biomarkers of bronchial asthma, their dis-
tinctive potential was demonstrated to differentially diagnose the specific disease, clearly 
suggesting this method to be reckoned as a beneficial alternative to existing diagnostic 
methods. Consecutively, the developed method was expanded to other asthma markers 
as aldehydes, nitrotyrosine, 8-isoprostane, PGE

2
, adenosine and finally, a supplementary 

study was carried out, engaging in detecting serotonin. The multi-marker screening and 
importance in the diagnostics of pulmonary diseases are referenced in the text as well.

Keywords: exhaled breath condensate, pulmonary diseases, leukotrienes, lipoxins

1. Introduction

From the very beginnings of civilizations, with tracks from Mesopotamia, Egypt, and ancient 

Greece, medical practitioners examined the potential of exhaled breath (EB) parameters as 

health-related signs usable for identifying various ailments and essentially mapping  different 
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physiological states. Via different odors, sounds, and breath dynamics often attributed to 
supernatural powers and superstitious believes, various lung diseases could be relatively well 

diagnosed and further progression could be predicted. For instance, the odors in EB as, for 

example, fruity traces of acetone aided to identify diabetes; a rather pungent characteristic odor 

was associated with a lung inflammation, while volatile vapors from urine revealed a kidney 
disease [1]. Modern investigations enlisted approx. 250 frequently detected volatile organic 

compounds (VOC’s) in EB [2]. Early analyses did not incorporate sample pre-treatments as 

sample concentration and exclusively depended on relatively modest gas chromatography 

(GC) methods. The progress of technology, however, over the decades has permitted much 
more precise and sophisticated analyses of EB, some of which have been implemented to 

the clinical practice, as, for example, ethanol levels in blood or typical inflammations caused 
by common pathogens as Helicobacter pylori using 13/14C-urea [3]. As mentioned above, the 

prime advantage of EB analysis is the patient’s comfort, especially eliminating the stressful 

intrusions to human organisms, yet there are challenges ahead. For instance, a breakthrough 

task is to find common internal standard reliably standardizing diagnoses for each pathologi-
cal status. Furthermore, an opposite selection of multi-marker panel is to be conspicuously 

correlated to different health phenomena, providing the knowledge of characteristic concen-

trations. Moreover, it is often unclear which metabolic pathways in relation to different mea-

sured biomarkers are involved and some are probably yet to be discovered or decoded. Last 

but not the least, technological and procedural challenges include also the standardization in 

terms of the sample collection and treatment, and conceivably, endeavors to automatization 

of the complete process in the clinical practice.

2. Exhaled breath condensate

Compared to the currently widespread invasive and semi-invasive diagnostic methods, the 

analysis of exhaled breath condensate (EBC) is relatively new and has the first-rate potential 
to become a preferred and completely noninvasive alternative. EBC is a biological matrix 

reflecting the composition of the bronchoalveolar extra-cellular lung fluid. The main advan-

tage of EBC as of a matrix is its specificity for the respiratory tract (the liquid is not influenced 
by process occurring in other parts of human organism). Many important biomolecules are 

present in exhaled breath in the form of an aerosol [4, 5] (Figure 1) which is condensed by 

cooling during the collection, forming the EBC matrix.

The collection of EBC is performed while using the condenser, which is currently available 

at a specialized clinical facility. During the collection, the exhaled air is led through the con-

denser into the cooling box that is pre-cooled to the temperature −20°C. In the cooling box, the 
aerosol particles are obtained and the gaseous phase is liquidized.

In the obtained liquid, typically known as EBC, more than 2000 compounds [6] have been 

identified so far and many of them are considered to represent sensitive biomarkers of lung 
diseases [7, 8]. The determination of the concentration of these molecules in EBC allows 
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assessing the type and severity of ongoing pathological process or even the efficiency of a 
therapeutic procedure, etc. In case of numerous pulmonary diseases, H

2
O

2
, cysteinyl leukot-

rienes (cys-LTs), lipoxins (LXs), malverines, resolvins, isoprostanes, prostaglandines, gluta-

thione, adenosine, thiobarbituric acid, aldehydes, nitrotyrosine, cytokines represent a specific 
group of biomarkers and their concentration levels are elevated (eventually lowered) in air-

ways and lungs as a result of an ongoing allergic reaction, inflammation, oxidative stress, and 
other processes [9–12].

The most significant advantage of EBC compared to other biological matrices (as are, for 
example, urine and blood) is the fact that EBC is a highly specific fluid for the respiratory 
system, so any other biochemical processes in human organism do not influence it.

3. The collection of EBC

During the collection of EBC, the exhaled air is led through the condenser, where some com-

ponents are condensed. The patients should breath calmly and regularly during the whole 

Figure 1. Formation of exhaled breath condensate.
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 process. The exhaled air flows through the mouthpiece and the one-way valve into the cooling 
cuff that is pre-cooled at the temperature of −20°C. In the cooling cuff, the aerosol particles 
and the obtained gaseous phase are condensed. This liquid is then gathered in the sample col-

lection vial (the temperature remains the same) [13]. The whole process lasts approximately 

7–12 min. It is necessary to obtain 120 l of EB in total, which corresponds to 1–2 ml of the con-

densate. The obtained condensate is then conserved in a micro-test-tube. In order to monitor 

the degrading process, the samples were labeled by deuterium-labeled internal standards. 

The prepared samples are then subsequently frozen and stored for a period not exceeding  

6 months (−80°C).

As the collection of EBC is a noninvasive diagnostic method that does not burden the patient, 

it can be used in several different clinical studies. A regular collection of EBC enables, for 
example, monitoring of the impact of climate conditions on the patients. Globally, collection 

of EBC is a method that is suitable for clinical studies that are trying to understand the process 

in the organism which corresponds to some external impulses (physical activity, air quality, 

allergens, etc.)

4. Bronchial asthma

Bronchial asthma is a relatively common pulmonary disease, which is usually characterized 

by dyspnoea combined with intervals of a normal breathing [14–19]. Typical symptoms of 

asthma include constricted bronchial tubes and an increased secretion of sputum, which is 

abnormally dense and viscous [16]. Various sources agree that on the global scale, the asthma 

incidence accounts for around 300 million people, while the prognoses that are negative in 

the sense of the future number will keep rising. On the other hand, wide ranges of relatively 

efficient anti-asthmatic therapies are available (e.g., glucocorticoid therapy, β
2
-receptors ago-

nists, etc.) [17] enabling the majority of patients to live normal lives. However, there is still a 

small group of patients, who do not respond to any kind of current therapy. These patients 

are usually diagnosed as sever refractory asthmatics (SRA) [6], whose common feature is a 

lack of any response to any contemporarily available pharmacotherapy. SRA accounts for 

approximately 5% of all asthmatics, which represents 10 million of people [6].

Figure 2 describes the immunopathogenesis of asthma [20]. The asthma attack starts by 
exposure to an allergen, which causes synthesis of immunoglobulin E (IgE). IgE then binds 

to the surface of mast cells. As there occurs a re-exposure to the same allergen, the interac-

tion between allergen and antibody triggers the release of mediators as are prostaglandins 

(PGDs), cys-LTs, LTB
4
 and platelet-activating factor (PAF). These mediators cause broncho-

constriction that is connected to an immediate drop in FEV1 (= forced expiratory volume in 

1 s; the FEV1 is the volume exhaled during the first second of a forced expiratory maneuver 
started from the level of total lung capacity). The allergen-antibody interaction also causes 

production of a wide range of cytokines (e.g., interleukin 4 and 5 (IL-4 and IL-5), tumor 

necrosis factor (TNF) and tissue growth factor (TGF)). These cytokines then activate neu-

trophils and eosinophils. Neutrophils produce proteases and PAF, and at the same time, 

eosinophils produce eosinophil cationic protein (ECP) and major basic protein (MBP). These 

Biomarker - Indicator of Abnormal Physiological Process144



products, eosinophils and neutrophils, cause mucus hypersecretion, edema, and constriction 

of smooth muscles. This is usually associated with the late asthma phase and it causes the 

second drop in FEV1.

4.1. The diagnostics of asthma

There are several options for the diagnostics of asthma; however, only an early and correct 

diagnosis of this life-threatening disease permits the physician to timely initiate an effective 
therapy and minimize the harm to the patient [18]. Several noninvasive methods are already 

in clinical use (e.g., spirometry, bronchomotoric tests, etc.). In some cases, invasive and semi-

invasive methods appear to be an inevitable option to gain the correct diagnosis (e.g., open-

lung biopsy and bronchoalveolar lavage) [21], yet it is to an unambiguous expense of the 

patient and often the health cost as well as a demanding laboratory examination.

Currently, a significant part of the relevant research centers focuses on methods of the so-
called personalized diagnostics (or methods of personalized medicine), with the aim to 

stratify patients to characteristic groups (e.g., phenotypes) and thus achieve a more efficient 
therapy reflecting an individual phenotypic disposition (inclusive of genomic, proteomic and 
metabolomic profiles) [22, 23]. One of the examples of these endeavors (particularly for diag-

nostics of pulmonary diseases) is the measurement of a fractional exhaled nitric oxide (FeNO) 

[24–26] in EBC, helping to distinguish asthma from other pathogenetic processes diagnosed 

as chronic cough, gastroesophageal reflux disease (GERD), vocal cord dysfunction, bronchi-
tis, chronic obstructive pulmonary disease (COPD), etc.

4.2. Asthma phenotypes

As asthma is a disease affecting millions of people of all ages worldwide, many criteria can 
be used for its classification. Nevertheless, the predominantly used criterion is the severity of 
the disease, as is presented in Figure 3, followed by the age of the first exacerbation [9, 26].

Figure 2. Immunopathogenesis of asthma [20].
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5. Chronical obstructive pulmonary disease (COPD)

Chronical obstructive pulmonary disease (COPD) is a chronical inflammatory pulmonary 
disease [27–29]. The development of COPD usually lasts many years. During these years, 

bronchial tubes of COPD patients are getting more and more narrowed. COPD is also charac-

terized by attacks of dyspnoea and persistent dry cough. The cough is often accompanied by 

expectorated mucus. In a late stage, it can cause obstructive, effortful, and painful breathing. 
These complications can be a hindrance also during simple physical activity. COPD patients 

are also prone to pneumonia. The main cause of COPD is often smoking. Other contributing 

factors include the genetic inheritance, a long exposition to dust particles, or a regular and 

frequent lung infection.

COPD is often divided into two main groups (phenotypes): chronic bronchitis and emphysema.

Figure 3. Asthma phenotypes.
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5.1. Chronic bronchitis

In chronic bronchitis [28], a typical symptom is a permanent constriction of bronchial tubes. 

Furthermore, an inhalation of harmful substances cause impairment of the respiratory 

mucous membrane, while a repeated damage to the membrane makes it thicker and lowers 

the tissue transparency. As a result, the affected cells increase the production of mucus, lead-

ing to the characteristic cough.

5.2. Emphysema

Emphysema is characterized by a loss of the pulmonary tissue, while the respiratory ways are 

abnormally widened distantly from terminal bronchioles [28].

The main cause of emphysema is smoking. The substances that are inhaled during smoking are 

led through the respiratory ways to bronchioles. In bronchioles, the substances provoke a local 

immune reaction, which is linked with the production of aggressive compounds via leucocytes 

(mainly free radicals responsible for oxidative stress). This reaction thus initiates a degradation 

of bronchioles. The afflicted bronchioles merge into huge lung sacs. These sacs have a smaller 
surface of the pulmonary tissue and thus the gas exchange between lungs and blood is limited.

The second cause of this disease can be disequilibrium between proteases and their inhibi-

tors—anti-proteases. Some COPD patients suffer from the lack of alfa-1-tripsin (an anti-pro-

tease), which is the reason for a higher number of proteases in the respiratory ways, which 

damage the pulmonary tissue [29].

5.3. Asthma and COPD

Similar to asthma, COPD is a pulmonary disease and shares many similar symptoms (e.g., 

pulmonary obstruction, over-production of mucus, attacks of cough and dyspnoea, etc.).

Parameter Asthma COPD

Age (origin of the disease) Childhood, anytime 40+

Development of the disease Abrupt attack Slower

Dyspnoea Rather abrupt, variable Often, rather permanent

Pulmonary obstruction Mainly reversible Often irreversible

Smoking Not very common 80% of cases

Allergy Often (or parents) Rarely

Inflammation (can differ) Rather eosinophil Rather neutrophil

Bronchial hyperreactivity Distinct Less common

Glucocorticoid therapy Mainly efficient Rather inefficient

Mortality (inhabitants per year (world)) 300 million (decreases) 600 million (increases)

Table 1. Asthma and COPD comparison.
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Especially, these common characteristics cause that asthma and COPD are sometimes misdi-

agnosed [30–32]. This can cause an incorrect pharmacotherapy administration, followed by 

their health state not (or just slightly) improving.

However, several factors can be used to distinguish asthma from COPD (Table 1).

6. Biomarkers of pulmonary diseases present in EBC

The term biomarker herein refers to a measurable biomolecular factor applicable for the mea-

surement of a disease progression or treatment-related biomolecular changes in the human 

organism. On a molecular scale, biomarker refers to “a subset of markers that might be dis-

covered using metabolomics, proteomics, genomics and other -omics technologies or imaging 

technologies.” Biomarkers play a major role in medicinal biology. Biomarkers may be foreseen 

as a promising tool in the near future due to their unique potential for early diagnoses, which 

obviously permit disease prevention, a drug target identification, a drug response monitoring, 
etc. The collection and analyses of substances present in EBC provide a simple, noninvasive, 

real-time, point-of-care clinical and research tool for the evaluation of lung pathophysiology.

Very significant role is played by some biomarkers that are produced from the arachidonic 
acid (some of them were already mentioned above). Arachidonic acid ((5Z,8Z,11Z,14Z)Eicosa-

5,8,11,14-tetraenoic acid) is a polyunsaturated omega-6 fatty acid present in phospholipid 
cell membranes [11, 12]. The products of the metabolism of arachidonic acid are called eico-

sanoids. These molecules are characterized by the 20C chain. The production of eicosanoids 

is enabled by different enzymes (Figure 4), the only exception are isoprostanes which emerge 

through oxidation of arachidonic acid (non-enzymatic pathway).

6.1. Arachidonic acid metabolites

Arachidonic acid is a polyunsaturated fatty acid present in phospholipid bilayer. In human 
organism, arachidonic acid acts as a vasodilator or regulates inflammation as a key intermedi-
ate. There are several pathways which allow transformation of the arachidonic acid in a num-

ber of different metabolites (Figure 4). Among the most significant products of its metabolism 
can be classified leukotrienes, lipoxins, isoprostanes, and prostanoids [6, 33].

6.1.1. Leukotrienes

Leukotrienes (LTs) [6, 33] represent a group of biologically active molecules. LTs are produced 

by various tissue cells (e.g., leukocytes, macrophages, mastocytoma cells) as a response to 

both immunological and non-immunological stimuli. LTs are potent pro-inflammatory [33] 

mediators and their release is usually triggered by the organism coming in contact with an 

allergen. The interaction between LTs and their receptors can lead to a wide range of biologi-

cal effects: leukocytes activation, bronchial smooth muscles contraction, vascular permeability 
stimulation and increased mucus production, etc. All of the described symptoms are typically 

connected not only to pathophysiology of bronchial obstruction, especially to asthma, but 

also to other lung inflammatory disorders.
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LTs are derivatives of arachidonic acid that are synthetized via the 5-lipoxygenase pathway 

(Figure 5). The major problem in the determination of LTs in body matrices is their low stabil-

ity due to their sensitivity toward oxidation. This explains challenging analytical determina-

tion of the used assays and to a relatively high variability of the published data.

6.1.2. Lipoxins

Lipoxins (LXs) function in our organism as “natural antiasthmatics” as they are the anti-

inflammatory mediators. Binding of LXs to their receptors also support the reconstructive 
process that is initiated in lungs immediately after the asthma attack.

LXs and LTs are derivatives of arachidonic acid and they are generated in three different met-
abolic pathways [34] . The first one is enabled by acetylsalicylic acid (ASA, in aspirin induced 

Figure 4. Biomarkers generated from arachidonic acid.

Figure 5. Biosynthesis of leukotrienes.
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Figure 6. Biosynthesis of lipoxins.

asthma), the second one by the enzyme 15-lipoxygenase, and the last one by 5-lipoxygenase 

which transforms arachidonic acid into LTA
4
 and then into LXA

4
 eventually into LXB

4
 (Figure 6).  

On the other hand, the levels of LXs are usually lowered during inflammation.

6.1.3. Prostanoids

Prostanoids represent another group of biomarkers that are generated from the arachidonic 

acid. The synthesis is enabled by the enzyme cyclooxygensases (COX
1
, COX

2
) [6, 33]. Three 

major groups of biomarkers belong to the prostanoid family: prostacyclins, prostaglan-

dins (PGD
2
, PGE

2
, and PGF

2
), and thromboxanes (TXA

2
, TXB

2
). All of them represent sig-

nificant participants in the inflammatory response. Thromboxanes are mainly responsible 
for vasoconstriction, while prostaglandins play an important role in the inflammatory and 
anaphylactic reactions. Another important function of thromboxanes and prostaglandins is 

their ability to adapt the inflammatory response and affect symptoms, such as fever, pain, 
or swelling.

The effect of prostanoids can be both pro- and anti-inflammatory with regard to the type of 
the inflammatory stimulus. Increased levels of some prostanoids with brocnhoconstrictive 
effects (PGE

2
, PGD

2
, PGF

2
, and TBX

2
) have been detected in EBC; however, the significance of 

their presence has not been sufficiently explained yet.
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6.2. Resolvins and protectins

Although the resolution of inflammation may have been regarded as a passive process, it 
has been proved that it can be actually described also as an active process in which numer-

ous chemical mediators are involved. An example of these molecules may be resolvins and 

protectins. Both of them are synthetized from ω-3-PUFA precursors. Based on the model sys-

tems, it has been proved that resolvins and protectins participate in the anti-inflammatory 
response. In connection, the disproportion in their molecular levels can lead to diseases that 

are characterized by prolonged inflammation [33, 35]. At the same time, resolvin receptors 

may represent interesting targets for the future pharmacotherapies.

6.3. Oxidative stress biomarkers

6.3.1. Biomarkers of lipid peroxidation

6.3.1.1. Isoprostanes; 8-iso-prostaglandin F2α (8-iso-PGF2α or 8-isoprostane)

Isoprostanes are prostaglandin-like compounds formed in vivo from the free radical-catalyzed 

peroxidation of essential fatty acids (primarily arachidonic acid) without the direct action of 
cyclooxygenase (COX) enzymes [6, 8, 9, 33]. These non-classical eicosanoids possess potent 

biological activity as inflammatory mediators that augment the perception of pain. These 
compounds are accurate markers of lipid peroxidation in both animal and human models of 

oxidative stress.

8-iso-prostaglandin F2α (also known as 8-epi-PGF2α or 8-isoprostane) is a biomarker that 
has been shown to be useful for the assessment of oxidative stress in vivo. It is produced in 

the phospholipid membranes from the non-cyclooxygenase peroxidation pathways derived 

from arachidonic acid. It is present in EBC in physiological concentration levels which grows 

in the course of lifetime as a consequence of aging. Pathological levels in EBC are reasonably 

increased as a result of several lung diseases and disorders that are induced by oxidative 

stress (asbestosis, silicosis, lung cancer, COPD, etc.).

6.3.2. Biomarkers of nucleic acids damage

6.3.2.1. 8-hydroxy-2′-deoxyguanosine, 8-hydroxyguanosine, and 5-hydroxymethyl uracil

The steady-state levels of nucleic acids damage biomarkers represent the balance between 

formation and repair. As reviewed by Valavanidis et al. [36], increased levels of 8-hydroxy-

2′-deoxyguanosine (8-OHdG), the principal product of DNA oxidation, represent a valuable 
biomarker of DNA damage by oxidative stress.

8-Hydroxyguanosine (8-OHG) is a nucleoside that is an oxidative derivative of guanosine. 

Measurement of the levels of 8-OHG is used as a biomarker of RNA damage by oxidative 

stress.

In a rat model, 8-OHdG was found to have anti-inflammatory effect. Rats treated with lipo-

polysaccharide (LPS) exhibited inflammatory lung injury dependent on neutrophils with 
an increase in pro-inflammatory cytokines such as interleukins 6 and 18 (IL-6, IL-18) and 
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tumor necrosis factor α (TNF-α). Rats pre-treated with 8-OHdG prior to LPS treatment 
showed inhibited LPS-induced inflammatory responses. 8-OHdG anti-inflammatory action 
was found to be higher than for aspirin and other nucleosides (8-OHG, deoxyguanosine, 

guanosine, adenosine). 8-OHG and adenosine also exhibited anti-inflammatory activity, but 
it was much lower than for 8-OHdG. Deoxyguanosine was found to be almost ineffective. 
Compared to aspirin, which acts through cyclooxygenase (COX) inhibition, 8-OHdG seems to 

be more versatile and, therefore, more effective as it was found that 8-OHdG suppresses ROS 
formation in human neutrophils. However, in human organism, 8-OHdG is excreted in much 

lower concentrations than in rats and, therefore, only exogenously administered 8-OHdG 

could have a therapeutic potential as an anti-inflammatory agent. 8-OHdG is also considered 
to be a potential biomarker of cancers related to smoking (e.g., lung cancer).

5-Hydroxymethyl uracil (5-OHMeU) is an example of oxidized-pyrimidines. Low levels of 
these molecules have been detected as a consequence of DNA oxidation initialized by oxida-

tive stress. Oxidized-pyrimidines are more likely to be repaired than other relative molecules, 

which may represent an explanation of their low detected pathological concentration levels. 

As the excision rate from DNA is different for various bases, participation of specific excision-
repair enzymes might occur.

6.3.3. Biomarkers of peptides damage

6.3.3.1. o-Tyrosine, 3-chlorotyrosine and 3-nitrotyrosine

o-Tyrosine (o-Tyr), 3-chlorotyrosine (3-ClTyr), and 3-nitrotyrosine (3-NOTyr) are among the 

most prominent biomarkers of oxidative protein damage and are present in the body fluids of 
patients with diseases related to oxidative stress [6].

Free radicals cause alterations in cellular protein structure and function. Oxidized, nitrated, 

and chlorinated modifications of aromatic amino acids including phenylalanine and tyrosine 
are reliable biomarkers of oxidative stress and inflammation in clinical conditions. In human 
organism, tyrosine is formed from phenylalanine. Physiological p-tyrosine (p-Tyr) occurs 

by enzymatic oxidation of phenylalanine by phenylalanine hydroxylase. Important deriva-

tives of tyrosine are catecholamines (dopamine, adrenaline, and noradrenaline) or thyroid 

hormones. o-Tyr and m-tyrosine (m-Tyr) are formed by the attack of ROS on phenylalanine. 
Unlike p-Tyr, o-Tyr and m-Tyr are not natural amino acids and are considered to be oxida-

tive stress biomarkers. The biomarkers that are formed during protein oxidative damage are 

amino acids o-Tyr, 3-ClTyr, and 3-NOTyr (Figure 7).

6.4. The other biomarkers

6.4.1. Cytokines

Cytokines are proteins secreted by immune cells (e.g., B lymphocytes, T lymphocytes, macro-

phages, and mast cells) or fibroblasts and endothelial cells. Cytokines are fundamental regula-

tors of the immune system and they play various roles in human organism (not only in immune 

system), as they influence: regeneration of the tissue, embryonal development, carcinogenesis, 
 angiogenesis, etc. The function of numerous cytokines can be triggered by oxidative stress. In 
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human organism, they can act as both inflammatory and anti-inflammatory molecules, how-

ever in the respiratory tract they are mainly considered to represent biomarkers of chronic 

inflammation.

A wide range of cytokines has been detected in EBC so far. An example of such cytokine can 

be tumor necrosis factor (TNF) or interferon (IFN). Low concentration levels [37–40] of both 

of these biomarkers have been detected in EBC. Specifically, TNF represents a biomarker of 
oncological diseases as its increased levels have been mainly described among lung cancer 

patients [41, 42]. Other cytokines that are detectable in EBC are various members of the inter-

leukin family (IL-1, IL-2, IL-4, IL-5, IL-6, IL-8, IL-10 and IL-13).

6.4.2. Glutathione

Glutathione (GSH) is a tripeptide that functions in organism as an endogenous antioxidant. The 

main task of GSH is to prevent the cells to be damaged by free radicals and reactive oxygen spe-

cies and thus protect the organism from oxidative stress. An important part of this process is the 

oxidation of GSH to glutathione disulfide (GSSG). This process occurs, for example, in the airway 
cells, where it is essential to protect the lungs and airways tissue which are exposed to the effect 
of external oxidants. Simultaneously, GSH is one of the regulators of the NO cycle. Decreased 

levels of GSH and proportionally increased levels of GSSG, which are mainly connected to the 

disproportion in the redox balance, represent a reliable biomarker of oxidative stress, usually 

coupled with inflammation [43]. Decreased levels of GSH in EBC have been mainly monitored 

Figure 7. Formation of o-tyrosine, 3-chlorotyrosine, and 3-nitrotyrosine.
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in case of patients suffering from bronchial asthma. The results of another conducted study 
showed that significantly increased levels of GSSG occur in EBC of alcoholics [44].

6.5. Other molecules determined in EBC

6.5.1. Proteins and metabolites

The majority of pulmonary diseases is also characterized by alternations in the protein profile 
of the patients. Many of these changes are measurable in EBC and can be used for monitoring 

of pathological process occurring (mainly) in the respiratory tract. The changes in the struc-

ture and concentration levels of various proteins have recently become a popular and reliable 

tool for monitoring of the process and molecular alterations in lungs and airways. Based on 

the proteomic analysis of EBC, 44 unique proteins [45, 46] have been detected so far. Many 

of these proteins might become steady biomarkers of inflammation or oxidative stress, when 
scanning of the differences between the proteome profiles of healthy control subjects and 
subjects with various pulmonary diseases may represent a significant shift toward detecting 
new prognostic and/or diagnostic biomarkers.

6.5.2. Serotonin

Serotonin (5-hydroxytryptamin (5-HT)) is a neurotransmitter that is predominantly located 
in central nervous system and gastrointestinal tract (GIT). In GIT, 5-HT regulates bowel 

movements. In CNS, it is responsible for the regulation of mood, sleep, muscle contraction, 

and some cognitive functions (involving memory and learning abilities). It is also present in 

thrombocytes, where it is involved in the regulation of homeostasis and coagulation [47].

5-HT plays a significant role in many pathological and neuropsychiatric diseases [47, 48]. The 

serotonergic substances are also important in pharmacology. The genes that code various com-

ponents of 5-HT system are the subject of the study as they could be factors of depression, schizo-

phrenia, obsessive–compulsive disorder, aggression, alcoholism, migraine, and autism [49].

7. Experimental part

7.1. Analytical method for multi-marker screening

The following analytical methods combined with various pre-treatment methods are cur-

rently referenced in the literature for the determination of biomarkers present in EBC: 

HPLC-MS, GC-MS and EIA (ELISA). Based on validation parameters (e.g., accuracy, preci-

sion, limit of quantification (LOQ), limit of detection (LOD), linearity, selectivity, etc.) the 
methods described above can be compared.

LC-MS method in a highly selective and accurate SRM mode affords both quantitative and 
qualitative information about the monitored biomarkers and today seems to be method of the 

first choice. Liquid chromatography can be used in UHPLC, which is characterized by the fact 
that the separation of substances occurs at higher flow rate of the mobile phase (1 mL/min) on 
LC columns with smaller average particle size of the stationary phase (diameter of particles 
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<2 μm) and by shortening the time of LC-MS analysis. When using the so-called “stable-

isotope-dilution assay,” the accuracy and precision of the LC-MS method can be increased by 

suitable deuterated internal standards. However, the main disadvantage of the LC-MS analy-

sis is the inclusion of the pre-treatment step (SPE, immunoaffinity extraction, etc.), when the 
EBC sample is recommended to exclude a contact to room temperature, ideally temperature 

above 0°C. This problem can be prevented by using the 2D technology for liquid chromatog-

raphy. In the first dimension, an on-line SPE is carried out and the subsequent dimension uses 
the UHPLC. For detection of selected biomarkers, 2D UHPLC-MS method was developed and 
because of the sensitivity of biomarkers mentioned above, it is highly recommended.

Analysis of substances were realized on the LC-MS system consisting of quaternary pump and 

mass spectrometer operating on the principle of triple quadrupole equipped with electrospray 

ionization (ESI). To implement multimarker screening, it was necessary to carry out two types 

of analyses. The first one were determined substances containing amino group in its structure. 
The second one serves to determine substances with aldehyde and carboxylic groups. These 

two analyses were necessary because of the different conditions of derivatization reactions 
(acid vs. alkaline environment) and the resulting liquid chromatography at different condi-
tions (different composition of the mobile phase used on different chromatographic columns).

7.1.1. Determination of the amino compounds

For the derivatization of compounds containing an amino group in its structure (o-tyrosine (o-

Tyr), 3-nitrotyrosine (3-NO
2
-Tyr), 3-chlorotyrosine (3-Cl-Tyr), hydroxyguanosin (8-OHG) and 

8-hydroxy-2′-deoxyguanosine (8-OHdG) were used as derivatization reagent 3-aminopyridyl-
N-hydroxysukcinimidyl carbamate (= APDS). To 500 μl of the EBC sample-containing deute-

rium labeled analyte analogues was added to 450 μl of borate buffer (pH 8.5) and 50 μl of APDS 
derivatization agent (concentration of 1 mg/ml of acetonitrile). Derivatization reactions were 

carried out for 10 min at 4°C. Thus prepared sample was subjected to LC-ESI-MS/MS analysis 
on chromatographic column XTerra MS (C18 50 × 1 mm × 3.5 μm) (Waters, Republic of Ireland). 

The substances were subjected to analysis where isocratic elution method with a mobile phase 

composed of acetonitrile: water (60:40—v/v) (water = 0.1% formic acid) was used. The column 

was tempered to 25°C. Mobile phase flow rate was 150 μl/min. The volume of the analyzed sam-

ples was 10 μl. Mass spectrometer parameters were optimized to the following values: capillary 

voltage −2500 V, the inlet capillary temperature 300°C, the temperature of the evaporator HESI 
300°C, sheath gas (nitrogen) pressure 45 psi, auxiliary gas (nitrogen) 10 ArbU. Measurement 
parameters were optimized for use in neutral loss mode in the interval 250–500 Da (Q1) → 130–

380 Da (Q3) with CID energy 15 eV in the negative electrospray ionization (ESI-).

7.1.2. Determination of aldehydes and carboxylic acids

Derivatization of aldehydes (n-aliphatic aldehydes (C6–C12), malondialdehyde (MDA), 

4-hydroxynonenal (4-HNE), 4-hydroxyhexenal (4-HHE) and substances with a carboxyl 

group in its structure 8-isoprostane (8-iso-PGF2α), cys-LTs, LTB
4
 was carried out using 

derivatization with Girard’s reagent T (GirT) in the presence of N-(3-dimethylaminopropyl)-

N′-ethylkarbodiimide hydrochloride (EDC) and N-hydroxysuccinimide. To the sample 
containing 100 μl of EBC with deuterium-labeled internal standards were added 10 μl of 

Molecular Diagnostics of Pulmonary Diseases Based on Analysis of Exhaled Breath Condensate
http://dx.doi.org/10.5772/intechopen.74402

155



each derivatization reagent GirT (c = 100 μl/ml), reagent EDC together with 10 μl of sulfo-N-

hydroxysuccinimide, 10 μl of 1% hydrochloric acid and 270 μl of propan-2-ol. Derivatization 

proceeded for 30 minutes and in such way prepared sample was immediately analyzed by 

LC-ESI-MS/MS. Chromatographic column used was a Thermo Hypercarb (100 × 21 mm × 

5 μm) with pre-column Hypercarb (Thermo Electron Corporation, USA). For separation of 
substances, was used the isocratic elution method with a mobile phase composed of methanol: 

water (40:60—v/v) (pH adjusted with ammonium hydroxide to 9). Flow rate of mobile phase 

was 150 μl/min. Chromatographic column temperature was 30°C and the sample volume was 
10 μl. Mass spectrometer parameters were optimized to the following values: capillary volt-

age 3000 V, capillary inlet temperature 300°C; HESI evaporator temperature 300°C, sheath 
gas (nitrogen) pressure 45 psi and auxiliary gas (nitrogen) 10 ArbU. Measurement parameters 
were optimized for use in neutral loss mode in the interval 150–750 Da (Q1) → 91–691 Da (Q3) 
with CID energy − 16.5 eV in the positive electrospray ionization (ESI+).

8. Case studies

8.1. Asthma phenotyping

The first aim of the study was to determine levels of the pro-inflammatory cys-LTs and levels 
of the anti-inflammatory LXs in EBC of patients suffering from different asthma phenotypes 
(including also SRA), compare the obtained data between the groups of asthmatics, and make 

the comparisons with healthy control subjects.

As is presented in Figure 8, the study showed that both levels of cys-LTs and LXs were chang-

ing among different asthma phenotypes. According to the results, EBC of SRA patients con-

tained the highest levels of the pro-inflammatory cys-LTs but at the same time the lowest 
levels of the anti-inflammatory LXs. The results of the analysis of EBC of healthy control 
subjects were inverse to these (i.e., EBC of health controls contained the highest levels of LXs 

but on the contrary the lowest levels of cys-LTs).

The remaining groups have spread in the interval from healthy control subjects to SRA. The 

order of these groups was based on the raising severity of the asthma phenotype (mild asthma 

→ moderate persistent asthma → difficult asthma) (Figure 8).

According to the results (Figure 15), it is possible to use cys-LTs and LXs for the differential 
diagnostics of asthma and identify various asthma phenotypes. The diagnosis can be assessed 

on the phenomenon that the concentration levels of LXs and cys-LTs are complementary and 

connected by dynamic equilibrium (i.e., increasing levels of the inflammatory LTs lead to a 
corresponding decrease in the levels of the anti-inflammatory LXs). This occurs due to the 
fact that biochemical synthesis (both cys-LTs and LXs are generated from LTA

4
) enhancing 

the production of LXs simultaneously lower the generation of LTs. Combining cys-LTs with 

LXs offers an interesting alternative to the currently used methods of molecular diagnostics 
of bronchial asthma. Figure 8 describes the principle of equilibrium between the pro-inflam-

matory LTs and the anti- inflammatory LXs. The developed method represents a potential tool 
for asthma phenotyping accuracy improvement, which was proved in a clinical study, which 

enabled the separation of patients into five groups:
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a. Severe refractory asthma.

b. Severe asthma.

c. Moderate persistent asthma.

d. Mild asthma.

e. Non-asthmatics—healthy control subjects.

8.2. Monitoring of efficacy of the used pharmacotherapy

The developed method was used in a parallel study. The study was conducted to prove 

whether the method could be applied for monitoring of efficacy of the used pharmacother-

apy. In this case, per oral and inhaled glucocorticoid treatments have been compared. Results 

of the study are present in Figure 9. In the clinical study of 35 patients with per oral glucocorti-

coid therapy, 35 patients with inhaled glucocorticoid therapy and 32 people from the healthy 

control group were involved.

From the results, it is obvious that the PCA analysis divided the subjects into three groups. 

The first group contained only healthy control subjects; however, the two remaining have 

Figure 8. Statistically evaluated clinical results: levels of cys-LTs and LXs in different asthma phenotypes.
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Figure 9. Monitoring of efficacy of the used pharmacotherapy.

been separated according to the type of glucocorticoid application. The results also show that 

on these terms more efficient was the per oral glucocorticoid therapy, as the cluster represent-

ing patients with per oral treatment is in the spectrum closer to the controls.

The study has also confirmed that the developed method can be used for such monitoring, 
which could in the future make the asthma pharmacotherapy more accurate. Furthermore, 

the method could also enable controlling of dosing and comparing of the efficacy of different 
anti-asthmatic drugs, which would globally improve asthma treatment.

8.3. Asthma and COPD separation

Apart from cys-LTs and LXs, EBC contains a wide range of other different biomarkers. The 
research has shown that biomarkers of oxidative stress play a significant role in the develop-

ment of some pulmonary diseases. Examples of such biomarkers can be 8-isoprostan, MDA, 

HHE, HNE and other aldehydes and biomarkers connected to damage of proteins (o-Tyr, 

3-ClTyr and 3-NOTyr) or nucleic acids (8-OHdG, 8-OHG and 5-OHMeU).

These biomarkers allowed extension of the developed method, which was originally based on 

the detection of levels of cys-LTs and LXs. An example of such extensions can be separation of 

asthma and COPD on molecular level.

The metabolic fingerprinting of EBC of patients suffering from COPD showed a significant 
increase of biomarkers of neutrophil inflammation—LTB

4
 and also biomarkers of oxidative 

stress (mainly o-Tyr and 8-isoprostane). The developed method was used in a clinical study that 

was aimed at detection and description of differences between COPD patients and SRA (SRA 
were chosen because their profile is quite similar to the profile of COPD patients and thus their 
diagnosis is often altered). The obtained results were compared to the analysis of EBC of healthy 

control subjects (two control groups were chosen—one for COPD patients and one for SRA).
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According to the results (Figure 10), the PCA analysis has divided the patients into four 

groups based on their biomarker profiles. The results show that profiles of SRA and COPD 
patients were different, which allows an accurate separation of these two diseases. The figure 
also shows that the control groups were separated. Further, the results show that it is not 

possible with this method to separate (on the molecular level) the two phenotypes of COPD—

chronical bronchitis and emphysema.

8.4. Biomarker panel for monitoring of pathogenesis of pulmonary diseases

As a significant part of the study, a panel of biomarkers that can be used for differentia-

tion of various pulmonary diseases was designed. The analyzed biomarkers are divided 

into two main groups. The first group contained biomarkers of eosinophil inflammation—
cys-LTs (ƩLTC

4
, LTD

4
, LTE

4
), the anti-inflammatory eicosanoids—LXs (Ʃ LXA

4
, LXB

4
) and 

anti-inflammatory resolvins (RvD1). The second group contained biomarker of neutro-

phil inflammation—LTB
4
, 8-isoprostane which is biomarker of oxidative stress connected 

to damage of phospholipid membrane, biomarkers of damage of proteins (Ʃ o-tyrosin, 

NO-tyrosin and Cl-tyrosin) and biomarkers of damage of nucleic acids (Ʃ 5-OHMeU, 
8-OHG and 8-OHdG).

The first two graphs show results of the analysis of EBC of patients suffering from SRA and 
moderate persistent asthma. The results are compared with the analysis of EBC of healthy 

control subjects.

Figure 10. Results of clinical study: separation of COPD patients (light blue—bronchitis, dark blue—emphysema) and 

SRA patients (orange); control groups: green—COPD controls; yellow—SRA controls.
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According to the graph (Figure 11), it is obvious that EBC of patients who suffer from asthma 
contained increased levels of cys-LTs (the highest levels—SRA, this confirms the study men-

tioned above). On the contrary, EBC of asthmatics contained lowered levels of the anti-inflam-

matory LXs and resolvins. Considering the asthma-phenotyping-study, it can be also said 

that the results of analysis of EBC of SRA and controls were inverse.

Figure 12 shows the results of the monitoring of LTB
4
, 8-isoprostane, biomarkers of damage 

of proteins and nucleic acids. Levels of LTB
4
 showed the same trend as cys-LTs, for example, 

the highest levels were detected in EBC of SRA and the lowest in EBC of healthy controls. 

At the same time, levels of 8-isoprostane were slightly elevated among the group of patients 

with moderate persistent asthma and even more among SRA. The differences in levels of bio-

markers responsible for damage of proteins and nucleic acids were slightly higher in EBC of 

asthmatics, but the differences were not so significant, which means that these biomarkers are 
not so specific and influential in case of bronchial asthma.

Figures 13 and 14 show same biomarkers as the previous Figures 11 and 12, but in EBC of 

patients who suffer from COPD, asbestosis and lung cancer.

From Figure 13, it is quite obvious that biomarkers cys-LTs, LXs and resolvins do not play 

a significant role in pathogenesis of these diseases, as their levels are comparable to those 
detected among healthy control subjects (the levels are just slightly elevated and only COPD 

patients show some more noticeable deviations).

Figure 14 shows that illnesses characterized by damage of the pulmonary tissue are usu-

ally connected to increased levels of biomarkers of oxidative stress. One of these significant 

Figure 11. Evaluated clinical results: levels of cys-LTs, LXs and resolvins in EBC of SRA, moderate persistent asthma 

and healthy controls.
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Figure 12. Evaluated clinical results: levels of LTB
4
, 8-isoprostane, biomarkers of proteins and nucleic acids damage in 

EBC of SRA, moderate persistent asthma and healthy controls.

Figure 13. Evaluated clinical results: levels of cys-LTs, LXs, and resolvins in EBC of COPD, asbestosis, and lung cancer 

patients.
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Figure 14. Evaluated clinical results: levels of LTB
4
, 8-isoprostane, biomarkers of proteins and nucleic acids damage in 

EBC of COPD, asbestosis, and lung cancer patients.

indicators of ongoing tissue necrosis processes is 8-isoprostane. The analysis of EBC showed 

that the levels of this biomarker are increased among COPD and asbestosis patients and even 

more among people suffering from lung cancer. Similar information is provided by the bio-

markers of proteins damage (tyrosines) and nucleic acids damage (5-OHMeU, 8-OHG, and 
8-OHdG). The levels of these molecules were elevated in EBC of patients with COPD and 

asbestosis and it can be said that the highest levels are specific for lung cancer (average con-

centration of tyrosines is approximately 75 pg/ml of EBC for healthy controls and 160 pg/ml 

of EBC for patients with lung cancer).

8.5. Serotonin in EBC of SRA

Based on the clinical experience, it is proved that SRA patients positively respond to SSRI 

(selective serotonin reuptake inhibitors) antidepressants therapy. SSRI antidepressants usually 

improve physical state of patients, which may seem as a quite logical coincidence. However, 

much more surprising is the fact that when SRA patients are prescribed SSRI antidepres-

sants, their breath functions improve significantly. This phenomenon prompted to performed 
research aimed at the detection of serotonin in EBC of SRA. The obtained results were com-

pared with serotonin levels in EBC of other asthma phenotypes and healthy control subjects.

According to the results (Figure 15), it is obvious that the levels of serotonin in EBC of SRA 

are different as compared to other asthma phenotypes and healthy control subjects. However, 
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surprisingly, the levels were significantly elevated (in case of SRA patients) which is against all 
expectations (it was expected to detect lower levels of serotonin, which would provide a pos-

sible explanation of positive SRA’s responsiveness to SSRI antidepressants therapy). Probably, 

even more interesting is the fact the levels of serotonin of other asthma phenotypes and health 

controls were the same, which indicates that the deviation appears only among SRA.

The interpretation of these results is quite complicated. One of the possible hypotheses is 

that SRA could be a different disease that would only demonstrate itself as asthma (i.e., 
patients have similar symptoms as asthmatics, but the cause of the disease could be different). 
However, this theory will require further research in the future. One of the possible exten-

sions could be monitoring of levels of serotonin in cerebrospinal fluid, which would provide 
information about the process behind the blood-brain barrier. On the other hand, the study 

proved that there many significant physiological differences between SRA and other asthmat-
ics, which could be used in the future for the development of a possible drug against SRA.

9. Conclusions

Measurements of biomarkers in EBC offer a novel way of monitoring lung inflammation, 
damage by oxidation stress with an insight into the pathophysiology of different diseases. 
The described diagnostic method was based on the detection and quantification of biomark-

ers in a matrix specific for the respiratory tract—EBC. As the collection of EBC is completely 
noninvasive, the method offers a broad spectrum of application. The method is applicable to 
children as well as to senior people and it is appropriate also in case of longitudinal studies 

that are trying to precisely understand the processes occurring on the molecular level in the 

respiratory tract. The method can be easily repeated which proves its suitability for regular 

monitoring of the pharmacotherapy efficiency or the impact of various allergens. The results 
obtained from the EBC analysis represent reliable characterization of the exhaled biomarkers 

Figure 15. Evaluated clinical results: levels of 5-HT in EBC of SRA, moderate persistent asthma and healthy controls.
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profile (LXs, cys-LTs, LTB
4
, 8-isoprostane, tyrosines, etc.), which is relevant for diagnostics, 

separation, and phenotyping of different respiratory diseases. Nevertheless, EBC analysis 
requires standardization and validation including sample collection and sample pre-analysis 

treatment (e.g., internal standardization, storing, pre-treatment method application, etc.).

Model clinical studies were carried out as a part of the work, which applied a methodology 

based on the molecular diagnostics of EBC. The method allowed an asthma phenotyping, 

which was founded on the fact that the concentration levels of cys-LTs and LXs are not only 

complementary but also intra-related by a dynamic equilibrium. This phenomenon, however, 

affords not only asthma phenotyping but also other diagnostics as, for example, monitoring 
of efficacy of the used pharmacotherapy. The analysis of EBC also showed that the detected 
biomarkers can be used for the differentiation of various pulmonary diseases (more specifi-

cally (apart from asthma) COPD, asbestosis, and lung cancer). Increased (or decreased) levels 

of some biomarkers are specific only for some diseases and thus these can be selectively dif-
ferentiated as much as, for example, asthma from COPD.

Additionally, an experiment was conducted and focused on determining serotonin in EBC. The 

aim of this study was to assess the positive effects of the SSRI (selective serotonin re-uptake 
inhibitors) antidepressants on SRA. High levels of serotonin were detected in EBC of SRA 

patients, which was in contradiction to the initial assumption. Simultaneously, a hypothesis 

was formulated stating that SRA probably functions on different molecular principles. This 
could have probably been the reason for SRA inefficiency with the commonly used drugs.

For the future research, one can only recommend focusing on large longitudinal studies to 

ascertain whether sequential measurements in individual patients reflect asthma severity 
and the degree of a lung inflammation, and on studies engaged to the relationships between 
the concentrations of asthma biomarkers and its symptoms. In order to implement the EBC 

analysis to the clinical practice as well as reliably guiding the pharmacological treatment of 

asthma and the effect of drugs on asthma markers present in EBC, further controlled studies 
are required to be conducted. In particular, studies are recommended determining the expe-

diency of the EBC analysis for predicting a treatment response, and assessing new therapies. 

Obviously, this outlines a great deal of work to be done. The fact that EBC analyses are cur-

rently used in various clinical trials and studies corroborates the above arguments. On the 

other hand, it is important to proclaim that the fact whether and when EBC analyses will 

become applicable to the clinical settings is still difficult to predict.
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