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Abstract

In this chapter, we briefly introduce the evolution of symmetry as a mathematical concept
applied to physical systems and lay the mathematical groundwork for discussion of
topological physics. We explain how topological phases, like the Berry phase, can be
obtained from a gauge symmetry of a quantum system. Also, we introduce numerical
tools (e.g., Chern numbers, Wilson loops) for topological analysis of chemical solids based
on the crystal structure and corresponding electronic structure.

Keywords: topological physics, topological quantum chemistry, Weyl semimetals, Dirac
semimetals, Hall effects, Berry phase, Berry curvature

1. Introduction

This past century saw a dramatic advancement of our understanding of the physical world

driven by the dethronement of classical physics by the combined discoveries of relativistic and

quantum mechanics. From those revelations, and the subsequent intensive fundamental inves-

tigations, a new age of unprecedented rapid technological progress was ushered in. These

physical theories were heavily inspired by differential geometry and linear algebra, like in the

case of reinterpreting gravitation as a curvature of space or in the case of reimagining objects as

both particles and waves. Today, another evolution in our understanding of physics is under-

way, this time inspired by the ideas of topology and symmetry. While the application of these

concepts is slowly beginning to extend to all branches of science, the recent ramifications of

their adaptation to crystal structures, electronic structures, and electronic properties have been

profound. So much so, the 2016 Nobel Prize in Physics was awarded to Duncan Haldane,

J. Michael Kosterlitz, and David J. Thouless for theoretical discoveries in topological phase
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transitions and topological phases of matter. Ranging from superconductivity, superfluidity,

quantized Hall effects and now to new quasiparticles, the ideas of topology and symmetry are

revealing new, unexpected properties and states of matter.

The evolution of physical theories matches well with the evolution of symmetry as a mathe-

matical concept. At first, symmetry was considered just as a transformation of space which

conserves certain qualities. However, mathematicians later realized that all such transforma-

tions can form a group which can be a characterization of the quality. Crystallographic groups

were born from this understanding of symmetry. Conserved, in this case, are the relative

positions of atoms in space because the only allowed transformations are linear transforms

(rotations and translations, i.e., Galilean transformations), which saves distances between

points in space. Such an approach was enough for the dominant idea, at the time, of linear

space and was consistent with Newton’s classical mechanics. After Einstein’s revolution,

however, it turned out that distances between points are not necessarily conserved in real life.

Since particles in crystals can move with velocities close to the speed of light, modern transport

theory in crystals cannot ignore relativistic effects, requiring an expanded conceptualization of

symmetry.

This issue was mitigated in quantum mechanics with the idea of nonhomogeneous space. The

main equations there are written not for a vector in space but for a wave function, i.e., one does

not have to deal with a real space of points but with a Hilbert space of possible transformations

of all points in the space. Used in this way, the properties of the space itself are less important

than the properties of the transformations. This transformation of space can include real

numbers as well as complex numbers. Since complex numbers cannot be measured and

observed, physicists consider the square of the wave function at some point as a probability

to detect a particle at that point. Since the idea of a fixed position in space is not valid anymore,

a new understanding of symmetry is required. Previously, symmetry transformations affected

points in space; however, in quantum mechanics, the transforming object is a function, and

symmetry operations are actually maps between functions a.k.a. an operator. In general, an

operator is not required to have an expression, but for certain special functions, an action of the

operator can be expressed as simply as, for example, a multiplication by a number. This

number is called an eigenvalue, and this function is called eigenfunction (also often referred

to as eigenvector or eigenstate). Both are characteristic of the operator. In the case where the

eigenvalue is one (or is a strictly unitary operator), the operator will, of course, not change the

eigenfunction. So if the wave function is an eigenfunction of the corresponding unitary opera-

tor of a transformation, the wave function can be considered to have a symmetry based on the

transformation. In practice, the determination of eigenvalues is not typically such a trivial task,

especially when the operator does not have an expression. However for linearly bounded

operators in a Hilbert space, there is always a representation via the scalar product. Due to

the Riesz representation theorem, any linearly bounded operator can be represented as a scalar

product with another function. Note that here the scalar product is not the same as the usual

product of numbers. For quantum mechanical operators, it can be written using integral

notation, which is part of why physicists consider these kinds of operators as observable.

Another important note to remember is that a wave function in quantum mechanics is also a

map to complex space. As mentioned earlier, a symmetry operator’s eigenvalue should be 1,
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but the complex plane has two ways to achieve this: a unit in the real part which is, of course, 1

and also a unit in the imaginary part which is i. Thus the symmetry operator can be unitary or

anti-unitary, respectively. Since the wave function is the solution of Schrodinger equation, the

symmetry operator must also commute with the Hamiltonian of the system (this ensures that

the operator acting on the wave function returns an eigenfunction of the Hamiltonian). In this

way, a symmetry group of the wave function can be generalized to a group of operators, which

have eigenvalues with an absolute value equal to one. This group is called a gauge group, and

this symmetry causes topological phases of the wave function, which will be explained in this

chapter.

2. Preliminaries

In order to use a consistent description, we first formulate basic mathematical definitions. The

set G ¼ g1; g2;…; gn
� �

with the operation denoted by “ � ” is called a “group” if the following

conditions hold:

• Every element g ¼ gi � gj belongs to G.

• There exist unique unitary element e∈G such that e � g ¼ g � e ¼ g, ∀g∈G.

• For every element g∈G, there exist inverse element g�1 such that g�1 � g ¼ g � g�1 ¼ e.

• We can combine elements of G in pair in any order gi � gj

� �

� gk ¼ gi � gj � gk

� �

.

If in addition, if the order of the operation does not matter, i.e., gi � gj ¼ gj � gi, the group is

called commutative or abelian, otherwise it is called non-commutative or non-abelian.

If we have the commutative group V with the operation “+”, we also can multiply every

element x∈V by a number, either real or complex, in the following way:

• 1x ¼ x, ∀x∈V,

• aþ bð Þx ¼ axþ bx, ∀a, b� numbers, ∀x∈V,

• a xþ yð Þ ¼ axþ ay, ∀a� number, ∀x, y∈V:

In this case, V is called a vector space (real or complex, respectively), and any element x∈V is

called a vector. The mapping A : V ! V which sets the relationship between elements of the

space V is called an operator. If the operator A satisfies the following properties,

A cxð Þ ¼ cA xð Þ, A xþ yð Þ ¼ A xð Þ þ A yð Þ, ∀c� number, ∀x, y∈V, (1)

then it is called a linear operator, or linear transformation, of the space V. The linear transforma-

tion between two different vector spaces V1, V2 is defined in the same way. A set of invertible

linear transformations form a group with operation A1 ∘A2, which is the composition of the

operators, and this group is called a general linear group on V and denoted by GL Vð Þ.
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If a physical system is described by some vector v, then a map defining the relationship

between a real number and that vector is called a functional. Note that since we can only add

vectors and multiply them by a number, the functionals f : V ! R which are useful for phys-

ical applications are the linear transformations, called linear functionals. The space of all such

linear functionals on V is called a dual space and is denoted by V∗. Note that without the

multiplication of two vectors in V, we cannot define analogues of polynomial functions on V.

To obtain nonlinear functionals on V, we will define the multiplication of two vectors that give

a number as a result. This makes functionals acting on V similar to the functions acting on the

space of real numbers R. The multiplication denoted by “< x, y >” is called the scalar product

and satisfies the following conditions (assuming that V is a complex vector space and x is the

complex conjugation):

• < x, y >¼ < y, x >, ∀x, y∈V,

• < x, x > ≥ 0 , and < x, x >¼ 0 $ x ¼ 0, ∀x∈V,

• < a xþ yð Þ, z >¼ a < x, z > þa < y, z > , ∀a∈C, ∀x, y, z∈V:

The vector space with the scalar product is called a Hilbert space. The two vectors x and y are

called orthogonal if < x, y >¼ 0. The
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

< x, x >
p � ∥x∥ is called the norm of the vector x, and it

returns magnitude of the vector x, like the length of a vector in real space. Usually Hilbert spaces

consist of functions; therefore, elements of Hilbert spaces are denoted simply by Greek letters.

The maximal set of vectors φi

� �

all i
in a Hilbert space such that

X

i

ai < φi,φj >¼ 0 $ ai ¼ 0, ∀i, (2)

is called a basis. If the following conditions also hold:

∥φi∥ ¼ 1, < φi,φj >¼ δij, ∀i, j, (3)

then it is called an orthonormal basis. In this case, any vector ψ∈V can be decomposed into the

sum

ψ ¼
X

i

ai � φi, (4)

where ai are numbers. If the number of basis vectors is finite, e.g., n, then ψ can be written just

as a vector a1; a2…; anð Þ. Note that space V can have different bases and ψ can be represented as

vectors in different ways. The operator on V in this case can be written just as an n� n matrix.

In general, the symmetry of the physical system described by the vectors from V should make a

group G composed of operators on V which are not necessarily linear. Of course it is easier to

deal with linear operators; therefore, we introduce the concept of a representation of the group.

The representation of the group G ¼ g1; g2;…; gn
� �

with the operation “ � ” on the vector space V

is the mapping p : G ! GL Vð Þ, which preserves the group operation “ � ” in the following way:
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p g1 � g2
� �

¼ p g1
� �

∘ p g2
� �

: (5)

For example, the spatial symmetries of a crystal belong to a subgroup of group GL R
3

� �

, but the

symmetries of quantum objects are usually represented as a subgroup of GL C
nð Þ. The relation-

ships between those representations give rise to many interesting properties of crystals.

3. Spacial symmetries

Assume we have a point x∈R
3 and we have a group Gx ¼ g1; g2;…; gm

� �

, where gi is a linear

transformation of space that leaves x fixed. The group Gx is called a point group. Now if we act

on the point x by translating by a lattice vector R:

TR xð Þ ¼ xþ R, x∈R
3, (6)

we obtain the set of points:

OTR
xð Þ ¼ y∈R

3
: y ¼ gx; ∀g∈TR

� �

, (7)

which is called the orbit of the action of the group of translations TR on the element x.

If then we act by every element gi on the point y∈OTR
, we obtain a crystal lattice, i.e., the set of

points in space that remain unchanged under the action of the group G ¼ Gx � TR. In this case,

G is called a symmorphic space group. It means the quotient space

R\TR ¼ x∈R
3

: y ¼ gx; ∀g∈TR; ∀y∈R
3

� �

(8)

has a point, x, with site group symmetry that is isomorphic to the original point group Gx [1].

Otherwise, if the lattice is invariant under the action of the group of linear transformations of a

space that cannot be decomposed into G ¼ Gx � TR at least for one point x inside the unit cell, G

is called nonsymmorphic. In this case, some operations of the group G are not separable into a

combination of rotation and translation by lattice vectors, i.e., they should be complex operations

like glide or skew operations. Examples of nonsymmorphic symmetry are shown in Figure 1.

The converse, in general, is not true, because some particular combinations of glides or screws

can leave one point inside unit cell fixed.

Any linear transformation L of R3 can be expressed in the following form:

L ¼ Axþ b,∀x∈R
3, (9)

where A is 3� 3 matrix and b is a vector in R
3. All 3� 3 matrices with a nonzero determinant

and the multiplication operation form a group GL R
3

� �

. The matrix A should have a determi-

nant of 1 or �1, where 1 corresponds to proper rotations and �1 corresponds to improper
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rotations or reflections. All such matrices form a subgroup of GL R
3

� �

, which is called an

orthogonal group and is denoted by O R
3

� �

. Thus, the point group Gx is a subgroup of the

group O R
3

� �

[2].

4. Quantum observables

Now consider a function ψ xð Þ : R
3 ! C that sets a correspondence between every point R3 and

point C. This function is called a wave function and represents a state of quantum system, like

an electronic state in a crystal.

We can also define the sum and product of such functions and use multiplication by a number

to represent interaction of the particles with each other or external forces:

ψþ ϕ
� �

xð Þ ¼ ψ xð Þ þ ϕ xð Þ; αψð Þ xð Þ ¼ α � ψ xð Þ, ∀x∈R
3,α∈C (10)

ψϕ
� �

xð Þ �< ψ xð Þ,ϕ xð Þ >¼

ð

R
3

ψ xð Þϕ xð Þdx: (11)

The space of all such functions and operations is called L2 R
3
;C

� �

. The product is a scalar

product, and thus, L2 R
3
;C

� �

is a Hilbert space.

When an observation of a physical state is carried out, it sets a correspondence between the wave

function and a real number, i.e., the observation is a linear bounded functional f : L2 R
3
;C

� �

! R.

Thus, any observable property of particles should be an operator A : L2
∗
R

3
;C

� �

! L2
∗
R

3
;C

� �

.

Luckily, Hilbert space is self-dual, i.e., L2
∗
R

3
;C

� �

¼ L2 R
3
;C

� �

, and thus, A is acting on L2 R
3
;C

� �

.

In this case, due to the Riesz representation theorem [3], A can be represented as scalar product

A ψ xð Þð Þ ¼< a xð Þ,ψ xð Þ >. Thus any element of L2 R
3
;C

� �

can be considered as a wave function

and also as a functional; to distinguish this, the so-called “bra-ket” language is used—the wave

functions are called “ket” vectors and denoted by ∣ψ xð Þ > ∈ L2 R
3
;C

� �

, while the functionals are

called “bra” vectors and denoted by < ψ xð Þ∣ ∈L2
∗
R

3
;C

� �

—the scalar in this case is denoted by

< ψ xð Þ∣ψ xð Þ >, and the action of an operator A is denoted by< ψ xð Þ∣A∣ψ xð Þ >. Schematically the

relationship between these spaces is shown in Figure 2.

Figure 1. Symmorphic and nonsymmorphic symmetry.
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For some functions the actions of the operator can be written as multiplication by the number

A φð Þ ¼ λφ, λ∈C: (12)

The number λ is called the eigenvalue, and the function φ xð Þ is called the eigenfunction or eigen-

vector. All operators considered in quantummechanics are assumed to be Hermitian, meaning the

operator has real eigenvalues and the set of its eigenfunctions φ
i

� �

i
form an orthogonal basis [4].

Assume the operator has finite number of eigenvalues; in this case, the action of the operator on the

function from the subspace spanned by eigenfunctions is expressed by the followingmatrix:

A ¼

λ1 0 … 0

0 λ2 … 0

… … … …

0 0 … λn

0

B

B

B

@

1

C

C

C

A

: (13)

One of the most important operators in quantum mechanics is the momentum operator iℏ d
dt
,

which is particularly used when analyzing a material’s electronic structure or electronic energy

vs. momentum map. Its eigenfunctions φ
n
xð Þ are called eigenstates and denoted by ∣n >. Thus,

we can decompose the wave function as ψ xð Þ ¼
P

ncnφn
xð Þ ¼

P

ncn∣n >. The eigenvalues form

a matrix which is called the Hamiltonian of the quantum system, and they correspond to the

measured energy of the system.

If we also add the normalization condition ∥ψ xð Þ∥ ¼ 1, we can consider ψ xð Þ as a probabilistic

measure. That means the functional

< ψ xð Þ∣x∣ψ xð Þ >¼

ð

R
3

ψ xð Þxψ xð Þdx (14)

Figure 2. Different spaces used in quantum mechanics.
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defines a probability to observe the particle in the position x. The ψj j2 in this case defines a

probability density [4]. As we can see from Figure 3, different symmetries between real and

imaginary parts of the wave function define different types of symmetries of the probability

density.

Consider now all possible transformations of the function which preserve it as an eigenfunction

of the Hamiltonian with the same eigenvalue. For the eigenfunctionφ
n
, the Hamiltonian acts just

as multiplication by the function λnφn
, i.e.,

Hφ
n
¼< λnφn

,φ
n
>¼ λn < φ

n
,φ

n
>¼ λn∥φn

∥2 (15)

Thus such a transformation should not change ∥φ
n
∥2; if one wave function can be obtained

from another via such a transformation, those wave functions are not distinguishable through

observation. This group is called a gauge group and represents the symmetry group of the

wave function [4]. Since

∀a∈C, ∥aφ
n
xð Þ∥2 ¼ aa � ∥φ

n
xð Þ∥2 ¼ aj j2 � ∥φ

n
xð Þ∥2, (16)

multiplication by complex numbers with ∣a∣ ¼ 1 forms the group of such transformations.

These numbers lie on a unit circle in the complex plane, and the group of multiplications by

such numbers is called U 1ð Þ or the group of unitary transformations of the complex plane. The

complex number a ¼ ∣a∣ cos αð Þ þ i � sin αð Þð Þ can be represented as an exponential function in

the following way:

a ¼ ∣a∣eiα (17)

∣a∣ ¼ 1 ! a ¼ eiα: (18)

Thus the action of the U (1) gauge is just a multiplication by the function eiα. If we represent the

complex plane as a stereographic projection of Riemann sphere, we can illustrate U (1) action

as rotation of the sphere. Schematically, it is shown in Figure 4.

If the wave function corresponds to a fermion, according to the Pauli principle, only two

fermions with opposite sign spins can occupy the same energy state. So it is convenient to

Figure 3. Symmetry of the wave function.
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consider ψ xð Þ as having two components ψ ¼ ψup;ψdown

� �

, i.e., ψ is acting to C
2. In this case

the transformation of the vector ψup;ψdown

� �

in the two-dimensional complex space C
2 is

described by a 2� 2 complex matrix A. For the same reasons as above, this matrix should be

unitary, i.e., AA† ¼ I (where A† is a Hermitian conjugated matrix). All such matrices form a

group U (2). The eigenvalues of such matrices lie on the unit circle that implies any matrix A

from U (2) can be represented in the following form:

A ¼

eiα1 0

0 eiα2

0

B

@

1

C

A
(19)

Aψ ¼

eiα1 0

0 eiα2

0

B

@

1

C

A

ψup

ψdown

0

B

@

1

C

A
¼

eiα1ψup

eiα2ψdown

0

B

@

1

C

A
: (20)

Figure 4. Action of the U (1) gauge on complex space.

Figure 5. Action of the U (2) gauge on complex space.
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Thus, if we represent ψup;ψdown

� �

as two different points on the Riemann sphere, then the

action U (2) is a simultaneous rotation of the point ψup, by angle α1 and the point ψdown, by

angle α2. After the full circle rotation, we arrive at the initial point making the space of

parameters α1;α2ð Þ a torus. This is shown schematically in Figure 5.

5. Geometrical phases of the Bloch states

The dynamics of the ψ xð Þ, i.e., changing ψ xð Þ in time, is defined by the time-dependent

Schrödinger equation:

iℏ
∂ψ t; xð Þ

∂t
¼ Hψ t; xð Þ, (21)

where H is the Hamiltonian and consists of all possible physical interactions (ideally) that the

particle can be involved in. The wave function can be determined by solving this equation. The

solution of the Eq. (21) for the eigenstates of theHamiltonian can be written in the following form:

φn t; xð Þ ¼ e
� i

ℏ

Ð

t

0

dt0λn t0ð Þ

φn 0; xð Þ, (22)

For a free electron, H consists only of the kinetic energy term � ℏ
2

2m∇
2. Its eigenfunctions are

well known as s, p, d, f, etc. (the atomic orbitals). If the electron is moving in crystal, an

external periodic potential, formed by ion cores, and the average potential of all of the other

electrons must be included. In this case, due to the Bloch theorem [5], the eigenfunctions of the

Hamiltonian can be written as

φn
k 0; xð Þ ¼ φn

k xð Þ ¼ eikxunk xð Þ, unk xþ Rð Þ ¼ unk xð Þ: (23)

The value ℏk is called the crystal momentum and is associated with an electron in the lattice. If

the lattice consists ofN atoms and every atom has n electrons, the full lattice Hamiltonian is the

Nn�Nnmatrix for the Nn electron system. Working with such high dimensional objects is not

convenient. Therefore, the wave functions are categorized into bands φk
n

� �

k¼1::N
according to

the local symmetry of the wave function (like shown previously in Figure 3), which is

described by quantum numbers of the atom. After Fourier transformation, φn becomes a

function represented in a new basis of functions which depend on crystal momentum (sche-

matically, it is shown in Figure 6). This makes up the energy versus momentum band structure

that is a more convenient representation of the full lattice Hamiltonian, compared with matrix

notation. The band in reciprocal space, however, is not really a function; it consists of discrete

points and is neither smooth nor continuous. However this band structure contains all infor-

mation about the original function ψ xð Þ. Roughly speaking, the band is made up of the

coordinates of the function φn xð Þ in the basis of harmonics ei
2πn
l x

n o

n¼1::N
(eigenfunctions of the

translation operator [6]) where N is the number of unit cells and l is the lattice parameter.
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According to the quantum adiabatic theorem during the time evolution, the system remains in

the eigenstates φn 0; xð Þ ¼ ∣n 0ð Þ > up to phase factor or in other words ∣n 0ð Þ >¼ e�iαn ∣n tð Þ >. If

we consider k as a parameter changing in time then

dφ k tð Þ; xð Þ

dt
¼ eikx ixuk xð Þ

dk

dt
þ ∂kuk xð Þ

dk

dt

	 


(24)

that gives rise to an additional phase factor to the solution of Schrodinger equation [7]:

φn t; xð Þ ¼ eiγne
� i

ℏ

Ð

t

0

dt0λn k t0ð Þð Þ

∣n k tð Þð Þ > , (25)

γn ¼ i

ð

path C

dk < n kð Þ∣
∂

∂k
∣n kð Þ > : (26)

If the path C is closed, then γn tð Þ is called the Berry phase. The expression

An kð Þ ¼ i < n kð Þ∣
∂

∂k
∣n kð Þ > (27)

is called the Berry connection, and it is the vector field over all reciprocal space. We also can

define a curl of this vector field which is called the Berry curvature:

Ω
n
i, j kð Þ ¼

∂

∂ki
An

j kð Þ �
∂

∂kj
An

i kð Þ (28)

Origin of the Berry curvature in the reciprocal space is schematically demonstrated in Figure 7.

Figure 6. Representation of a function in the Fourier space.
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The Berry curvature is involved in the semiclassical equation of motion of the particle [8]:

dxi
dt

¼
∂λn kð Þ

ℏ � ∂ki
�
dkj

dt
�Ωn

i, j kð Þ, (29)

which makes the Berry curvature fundamental to various Hall effects, i.e., quantum (integer

and fractional) Hall effects (QHE), the quantum anomalous Hall effect (QAHE), and the

quantum spin Hall effect (QSHE) [9–11]. The QAHE is where an anomalously large current is

generated orthogonal to the applied electric field without application of an external magnetic

field. The QSHE is where a spin current is generated orthogonal to the applied electric field

also without application of an external magnetic field.

Notice that if we change direction of time t ¼ �t, we change the route from counterclockwise

to clockwise in the path integrals. If time reversal symmetry is broken and the clockwise

integral is not equal to the counterclockwise integral, it requires the Berry connection to have

a nonzero curl, i.e., nonzero Berry curvature.

If time reversal symmetry is not broken, the Berry curvature still can be nonzero due to spacial

symmetries. In this case, analysis can be done using topological indices resulting from the

band structure.

6. Gauge action on the reciprocal space

First consider a one-dimensional case. As it was shown before, the U (1) gauge action can be

represented as multiplication by the factor eiα. For an electron in a crystal, it has the following

form:

eiαφ xð Þ ¼ eiαeikxuk xð Þ ¼ ei kxþαð Þuk xð Þ: (30)

Figure 7. Berry curvature in the reciprocal space.
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Thus the action of the gauge can be considered as an additional phase factor or shift by α in

reciprocal space. So the gauge allows the change of parameter k in time, and all geometrical

phases described above can be considered a result of the gauge symmetry. Schematically this is

shown in Figure 8.

The gauge symmetry is the conservation of the eigenvalues and eigenstates of the momentum

operator. The eigenstates of the momentum operator in a crystal are assumed to also be

eigenstates of the operator of translation by a lattice vector. Orthogonality of the eigenstates

implies that bands in the band structure should not intersect, i.e., not have identical E and k

values. If two bands intersect that means that the corresponding eigenstates ∣n > , ∣nþ 1 > are

not orthogonal and the corresponding matrix representing the action of the Hamiltonian has

off-diagonal terms. This is contradictory to the Hermitian rules of the Hamiltonian, i.e., its

eigenstates should be orthogonal. This can happen when the eigenstates of the translation

operator are not a suitable set of functions to form a basis. But how can this occur?

The Hamiltonian for electrons in the crystal lattice is usually constructed from a tight-binding

model and the linear combination of the atomic orbitals (LCAO) [12]. Since the crystal Hamil-

tonian has the following form:

H ¼ �
ℏ
2

2m
∇2 þ terms representing interactionsð Þ, (31)

it is reasonable to assume that eigenstates of the electrons in the lattice do not differ strongly

from the eigenstates of the free electron Hamiltonian � ℏ
2

2 ∇
2 which are s, p, d, f, etc. orbitals.

Thus we can represent the full lattice Hamiltonian as linear combinations of atomic orbitals

according to the space group symmetry, which is the basic logic of molecular orbital theory. If

the space group is nonsymmorphic, then there is also translation by a fraction of a lattice vector

that generates additional eigenstates that, in combination with other symmetries, give rise to

degeneracies in the band structure.

Figure 8. Gauge connection on the band structure.
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To understand this we can introduce Wannier functions as bases for representation of the

eigenstates of the Hamiltonian, instead of eigenstates of a translation operator, as basis. The

Wannier functions can be obtained from the Bloch eigenstates in the following way [13]:

ϕn
R xð Þ ¼

V

2π3

ð

BZ

dke�ikRψn
k xð Þ, (32)

where V is the real space primitive cell volume. The Wannier functions essentially let one trans-

form the band structure back from reciprocal space to real space, allowing relatively easy appli-

cation of symmetry and the calculation of real space properties like the quantum spin Hall effect.

Now let us consider higher dimensions. The 1D band structure is the cross section of a higher-

dimensional picture. In this case the anti-crossing point can remain a point in higher dimen-

sions but may also be a line or even surface in a 3D space as illustrated below. While for the 2D

case, we can still plot a 2D band structure and distinguish points from a line just visually, in 3D

it becomes quite complicated. The typical procedure is to project full 3D band structure on

various surfaces and analyze the series of projections. Schematically, this is shown in Figure 9.

A degenerate point in the band structure, which remains a point on the Fermi surface, is called

Dirac point or in spinful case Weyl point. An example of the calculated Dirac point ofHgTe [14]

and the measured Dirac point (via ARPES) of Sb2Te3 [15] is shown in Figure 10.

There are ways to avoid degeneracy, however. If we consider the spinful case with U (2) gauge

and include a spin orbit coupling (SOC) term in the Hamiltonian, the two degenerate states

become one connected state in terms of the two-component wave function. In this case, the

Dirac point becomes a source of Berry curvature and thus gives nontrivial spin-dependent

transport properties like the anomalous and spin Hall effect.

Figure 9. Degenerate manifolds in the band structure.
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Another way to do anti-crossing analysis is to use topological indices. This numerical method

is the basis for the algorithmic analysis of space group symmetry and their possibilities of

yielding varying topologically nontrivial band structures.

7. Topological indices

It turns out that existence of Hall conductance can be checked directly from the band structure

and that it is an internal property of the bands. The indicator that physicists use to identify this

topological property of the band structure is called the Chern number, which is the integral of

the Berry curvature of the band over the entire Brillouin zone:

Cn
ij ¼

1

2π

ð

BZ

Ω
n
i, j kð Þdkidkj (33)

In this case, the Hall conductance of the nth band is proportional to the Chern number,

quantized in units of e2

ℏ
and can be calculated by the formula:

σ
n
ij ¼

e2

ℏ
� Cn

ij (34)

The Chern number is a very powerful tool; it can be used not only for calculation of the Hall

conductance but also to indicate a surface state. For example, the Chern number described

above is the “first” Chern number, and this nonzero number indicates surface conductance for

a 2D bulk insulator. For a 3D bulk insulator, higher Chern numbers can be used to indicate

surface states [16].

Figure 10. Numerical and experimental observation of Dirac cone [16].
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Another way to obtain a topological index is using the Wilson loop [17]:

W lð Þ ¼ e
Ð

l
A kð Þdl

(35)

where l is a loop in k-space and Aij kð Þ ¼< ui,k,∇kuj,k > is a Berry-Wilczek-Zee connection.

Note for this connection we need at least a two-band system, like ψup;ψdown

� �

. The Wilson

loop describes a parallel transport of the gauge field along the closed loop.

Mathematically, a path between two points k1, k2 in k-space can be parametrized by an argu-

ment t in the following way—kt ¼ tk1 þ 1� tð Þk2, t∈ 0; 1½ �—when loop k1 ¼ k2. The Wilson

loop shows how the gauge varies with crystal momentum along a closed path in k-space; the

final gauge phase should be the same as initial. For example, the parameter space of the U (1)

gauge is a circle; thus, moving along a loop in k-space the gauge phase can be either

unchanged or equal to an integer number of full circles (2πn). We can consider also the class

of equivalent loops: loops that give one circle of phase, two circles, etc. These classes of

equivalent loops form a group, called a fundamental group [18]. As it was shown before, the

parameter space of the U (2) gauge is a torus. The torus has two types of loops: one which

shrinks into a point and one which does not. This is known as fundamental group of the torus.

TheWilson loop distinguishes those cases and yields a Z2 topological classification. In Figure 10,

an example of a calculated Wilson loop for the Se2Te3 is shown. The connection between red

dashed lines indicated an index of 1 in the Z2 topological classification.

The gauge transformation is a transformation that preserves the eigenfunction, and the crystal

eigenfunction is represented as a band in electronic structures. In the LCAO approach, bands

Figure 11. Connectivity of bands.
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in the electronic structure can be considered also as representations of the spacial symmetry of

corresponding orbitals and space group symmetry operations. Recently, a monumental and

soon-to-be defining work of this field was carried out where topological analysis and classifi-

cation were done for all 230 crystallographic space groups that describe all possible arrange-

ments of atoms in space [19]. In their work, Bradlyn et al. use the fact that bands can form a

connected group of bands in the band structure corresponding to Wannier functions centered

at maximal Wyckoff positions. If the Fermi level occurs inside such a set of bands, the com-

pound should be topological. If the real compound’s set of bands is connected but filled by

only a fraction of the number of electrons required to fully occupy the set of bands, the

compound is a symmetry enforced semimetal. If such set of bands should be connected but in

the real compound’s band structure, the set splits into a gapped state with the Fermi level

inside the gap, the compound must be a topological insulator, and the bands become

connected though surface states. Schematically, this is shown in Figure 11.

8. Conclusion

We began this chapter by asserting that evolutions in our understanding of the physical

universe have been driven by the reimagining of physical theories with different mathematical

concepts and that we are currently undergoing another such evolution inspired by ideas from

topology and symmetry. Starting from basic mathematical and physical concepts, we

constructed the ideas of eigenfunctions, eigenstates, gauge transformations, and how symme-

tries affect/define them. We then showed how electrons (and their wave functions) in crystals

can be understood in this manner. Finally, the power of this type of understanding was

illustrated by the classification of topological phases of matter with Bradlyn’s effort being the

pinnacle of the body of work in the field over the last decade. Such a general work outlining the

possibilities for topological phases as a matter of symmetry group will drastically change how

chemists and physicists search for new topological materials; they will now be able to defini-

tively start from a set of known possible topological outcomes, given a space group, and adjust

the Fermi level using chemical/physical control to realize the type of topological state desired.

The time is arriving for topological physics to reach technological application. To this end,

researchers are attempting to take advantage of the intrinsic quantum anomalous and quantum

spin Hall effects (QSHE) both of which have their basis in Berry curvature which, as described

earlier, can be understood from a symmetry perspective. The QSHE in particular has immediate

applications to the field of spintronics, which requires large spin currents for switching the states

of devices. Since anti-crossings can be sources of Berry curvature and since large Berry curvature

can result in a large spin Hall effect, it follows that topological materials (which commonly have

demanded or gapped anti-crossings) will be ideal candidates for spin Hall materials.

In the last 10 years, materials scientists have realized topological insulators, Dirac semimetals,

Weyl semimetals, Dirac/Weyl line nodes, and compounds with three, six, and eightfold degen-

erate fermions Na3Bi, Cd3As2 [20], ZrSiS [21], WTe2 [22], Bi2Te3 [23], LuPtBi, YPtBi [24], and

Ta3Sb [25]. However almost all of this work has been done on nonmagnetic systems; the

inclusion of magnetism is difficult in current density function theory calculations. For accurate
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electronic structure calculations, magnetic ordering needs to be experimentally determined

and verified because competing magnetically ordered states can be energetically similar. Soon,

Bradlyn’s type of analysis will be expanded for the 1651 magnetic space groups in three

dimensions, which opens an even larger and more diverse world of possible compounds with

ever more interesting properties to explore.
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