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Abstract

The eastern part of Kachchh Rift basin was reactivated after 2001 Bhuj earthquake of 
Mw 7.7 and continuous seismicity has been recorded since then. The northern part 
of Wagad upland also experienced moderate earthquakes Mw ≥ 5.7 in February 2006 
and March 2007. These moderate to major Intraplate earthquakes provide a unique 
opportunity to study the effects and linkage between brittle-ductile dynamics, surface 
processes and drainage evolution. We presented a geomorphological analysis of the 
Wagad highland providing new constraints on the evolution of river network. The 
shallow to deeper nature of fault and their response to development of hydrological 
networks has been analyzed using seismic tomography. Based on surface drainage 
offset and seismic structures several E-W oriented faults controlling fluvial dynam-
ics are identified. From seismic structures and drainage offset it is clear that the flu-
vial dynamics is controlled by shallower to deeper faults. The estimated attributes 
are well supported with seismic structures and focal mechanisms solutions. Based on 
fluvial offset and seismic structure analysis a new tectonic model has been proposed 
for WH. The tectonic model shows that the faults WH are well connected at deeper 
level and generated negative flower structures and significantly controlling surface 
fluvial dynamics.

Keywords: drainage, geomorphology, fluvial dynamics, seismic structure, focal 
mechanisms
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1. Introduction

Spatial distributions of geomorphic landforms in active regions are the results of the com-
plex interaction of shallow and deep earth processes [1]. The imprints of these processes are 

reflected in the form of changes of local relief, drainage pattern, hypsometry, steepness, and 
channel slope relationship [2–8]. These parameters can be used to quantitatively characterize 

the relationship between shallow and deeper crustal structure, and geomorphic processes [1, 9]. 

The dry land fluvial systems of intraplate Kachchh rift basin, allow us to study the effects and 
linkage between brittle - ductile dynamics and surface processes on landscape evolution. The 
Kachchh basin evolved during the Early Jurassic, bound by Nagar Parkar Fault to the north and 
North Kathiawar Fault to the south (Figure 1A). The rifting was aborted by the trailing edge 

uplift during the Late Cretaceous pre-collision stage of the Indian plate, when the leading edge 
of the plate was slab-pulled towards the Tethyan trench [10, 14, 16]. Lateral motion during the 

drift stage of the plate induced horizontal stress and near vertical normal faults, which were 
reactivated as reverse faults during initiation of the inversion cycle, and became strike-slip faults 
involving divergent oblique-slip movement [10, 14, 17, 18].

Figure 1. (A) Seismotectonic map of the Kachchh rift basin integrated with the geological map, showing the epicenters 
of significant earthquakes (modified after [10]). The Wagad area lies between the SWF and GF. Locations - A (Anjar), B 
(Bhuj), Ba (Bhachau), Br (Bharudia), Ch (Chitrod), D (Dholavira), De (Desalpar), L (Lakhpat), F (Fatehgarh) and G (Gedi); 
faults: NKF (North Kathiyawad Fault), KHF (Katrol Hill Fault), VF (Vigodi Fault), KMF (Kachchh Mainland Fault), SWF 
(South Wagad Fault), NWF (North Wagad Fault), GF (Gedi Fault), IBF (Island Belt Fault), ABF (Allah Bund Fault) and 
NPF (Nagar Parkar Fault); uplifts: KMU (Kachchh Mainland Uplift), PU (Patcham Uplift, KU (Khadir Uplift), BU (Bela 
Uplift), CU (Chorar Uplift). (B) Geological map of northern Wagad highland region [11]; shows location of earthquake 
epicenters. Focal mechanisms (1–16) plotted in the figure are after [12–15]. (C) CARTOSAT-DEM driven local relief map 
of Wagad Highland. Major and minor faults are marked by solid black line. (D) CARTOSAT DEM of the study and 
location of the five swath profiles; 1–5) swath profiles show the trends of the maximum, minimum and mean topography 
of the Wagad region. Figure 1A and 1B  have been digitized in Surfer 14 software, while, we used MICRO-DEM 10 software for 

generation of C and D, and final editing has been done in golden software Surfer 14.
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Major structural features of the Kachchh region include east – west trending active faults 

[16, 19] (Figure 1A). The Wagad highland (WH) of Kachchh is bounded by the South Wagad 
Fault (SWF) in the south and Gedi Fault (GF) in the north comprises of Mesozoic sediments 
overlying a granitic basement [16]. The initiation and steadiness of dynamics support beneath 

Kachchh basin have been explored in several studies [10]. Earlier researchers argued that the 
impingement of a large intrusive body in the lower crust [19–21]. However, the fault adjacent 
to intrusive body at deeper depth gradually flattens close to magmatic body owing to listric 
nature of fault [20, 22]. The fault model proposed by [10] suggests that the GF is a sub-vertical 
fault and gradually changing listric nature in lower crust.

The chronometric and geomorphic attributes of the GF, suggests that the region is uplifting 
at the rate of 0.3–1.1 mm/y during the last 9 ka [23]. The results of geomorphic processes and 

subsurface dynamics of GF zone can be explored by investigating how base level fall at the 
WH region propagates through the drainage network. The subsurface nature of faults in WH 

and their association with landscape evolution is still unknown. However, in present study 
an attempt has been made to understand brittle and ductile dynamics of fault system control-
ling surface landscape pattern. In this study first time we proposed an integrated sub surface 
model of WH by combining seismic structure (Tomograph) and surface geomorphology. In 
this connection we analyzed the 27 basins of WH. In particular, we investigated the general 

topographic features e.g. swath profiles, local relief and the river network (river longitudinal 
profiles). We employed a knickpoint celerity approach in order to provide a chronological 
framework to the evolution of the river network. Furthermore, we made an attempt to image 
subsurface fault pattern of the area using the seismological approaches such as tomoDD and 
focal mechanisms. The results permitted us to trace the long-term evolution of the WH, to 
confirm dynamic support and documenting its impact on the contrasting development of the 
drainage basins.

2. General geomorphology and seismicity of Wagad Kachchh

The WH is second largest uplifted block of Kachchh basin, after mainland of Kachchh, cov-
ering an area of ~2432 km2, and is bounded by GF to the north and SWF to the south [11, 16]. The 

area is drained by numerous ephemeral streams; flow direction regularly spaced around 
the upper planation surface [23, 24]. From north to south, the WH comprises of three E-W 
trending active faults, namely the GF between Deshalpar and Fatehgarh area, the North 
Wagad Fault (NWF) north of Bharudia and the SWF between Mai and east of Chitrod 
(Figure 1A).

Geomorphologically the WH is divided into 3 units; (i) the upper planation surface (Mesozoic) 
with juvenile streams, (ii) the middle incised slopes with piedmont (Tertiary), and (iii) the 
low-lying areas representing Quaternary deposits [23, 25]. The upper surface represents 

an early Quaternary erosional event, whereas the middle incised slopes with terraces were 
developed during late Quaternary [26]. These two geomorphic units provide sediments to the 

lower peripheral areas. Suvai, Bhimguda, Narelawali, Dhadawali, Karaswali, Malan, Baniyo, 
and Dabhodanwari are six ephemeral rivers that flow northward and originate from the WH, 
following the regional slope and drain into the Great Rann of Kachchh [23]. Along their lon-
gitudinal length, these rivers cross several E-W oriented faults (Figure 2).
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The aftershocks of the January 26, 2001 Bhuj earthquake (Mw 7.7) are still continuing [15]. 

Distribution of the hypocenter of these aftershocks suggests that they are distributed mainly 
towards NE and SW directions. It has been observed that the WH is pronounced activated 
after the 2001 mainshock [12, 15, 27]. It is testified by a large number of aftershocks (Mw ≥ 2.5) 
occurred in the WH with focal depths ≥10 km. A few moderate earthquakes also occurred 
along the GF. Among these earthquakes, the most recent are the February 2006 (Mw 5.0); 
February 2006 (Mw 4.8); March 2006 Mw 5.7 and April 2008 Mw 4.1 [27] (Figure 1B). In the 

GF zone some 30 earthquakes (Mw 3.0–5.7) have been recorded at Seismic Network of Gujarat 
(SesisNetG) at shallow focal depths (≤ 20 km) during the period of 2006–2013 (Figure 1B).

3. Data and methodology

To investigate the relationship between brittle - ductile dynamics and surface processes in 
northern Wagad, we focused on topographic features (filtered topography, swath profiles, 
local relief), and hydrography (river longitudinal profiles), We used two elevation data 
sources: the CARTOSAT 2.5 m resolution digital elevation data (http://bhuvan.nrsc.gov.in) for 
regional scale analysis and the SRTM (http://srtm.csi.cgiar.org) of 90 m resolution for detailed 
analysis. Seismic tomography has been used to evaluate shallower to deeper surface dynamic 

Figure 2. (A) Geological map of Wagad area shows especial distribution of SL along various geological units. Spatial 
distribution of SL class contour map of northern Wagad region. The higher activity is marked by higher order color  

(B) especial distribution of Ks along various geological units. Distribution of Ks class contour of northern Wagad region. 
Fault lines are shows by solid black line; dykes are marked by green lines; and bedding slope direction is highlighted 
by small black arrow. (C) Spatial variation of topography and statistics estimation for values of basin-wide hypsometric 
integral. The hotspots of higher uplift are marked by higher color values of hypsometric integral. (D) Relationship 
between amounts of stream offset along the fault and upstream length from the faults (F1–F10). For generation of Figure 

1A and B used Arc-GIS-10.4, Global mapper 18 software’s and the final editing and contouring has been done in Surfer-11 software. 
We used River tool 3.0 for generation of hypsometric curves. The contour values of hypsometry Integral (HI) has been generated in 

Global mapper 18 and finally the contouring has been done in Surfer 14 software. We used excel for generation of D.
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process. The digital elevation model extracted from the SRTM was validated with the Survey 

of India topographic map (1:50,000) scale. To extract drainage network DEM data is used and 
27 northward and south ward flowing rivers basins were generated. We calculated several 
tectonic attributes namely stream length-gradient Index (SL); steepness index (Ks), hypsomet-
ric integral (HI), asymmetric factor (AF) and Basin shape (BS). Based on results obtained from 
above analysis, spatial distributions of relative index of active tectonics (RIAT) are estimated 
for North Wagad/Bharudia, Gedi and Island fault zones. The dimensions of these drainage 
basins are given in Table 1.

3.1. Map of local relief

The map of local relief in the present study is produced from River-Tool by subtracting 
arithmetically a sub-envelope surface that describes the general pattern of valley bottoms 
elevations from an envelope surface (that connects peaks elevations) [28]. We obtained such 

surfaces by smoothing the minimum and maximum topography of the SRTM DEM by a 
20 km wide circular moving window (Figure 1C). We chose the value of 20 km since it is the 

average spacing of the main valleys (5th, 6th and 7th Strahler order with respect to a critical 
area of ~4 km2). This allowed us to remove small valleys, in effect operating like a low-pass 
filter that highlights the regional-scale features.

3.2. Swath profiles

We have considered five swath profiles across the study area to describe and quantify the 
topographic trend of the northern WH. The results show the trend of minimum, maximum 
and mean elevation into a single plot [29, 30] (Figure 1D). The statistical analyses such as 

maximum, minimum and mean elevations were calculated along each swath profile within a 
GIS platform. (Figure 1D). A rectangular swath of 300 m width was chosen to extract a series 
of parallel profiles that are separated by 1-cell (5 m). The width of the swath profile has been 
used to condense both elevated surfaces and streams. The higher elevation in swath depicts 

maximum elevation corresponds to the ridgelines; whereas, the lower elevation curve for the 
minimum elevation represents the valley floors. The Incision by river can be measured by the 
arithmetic difference between the maximum and minimum elevations within the longitudinal 
distance of the swath rectangle [31].

3.3. Stream length gradient index (SL)

The SL index is one of the quantitative geomorphic parameters included in morphotectonic 

assessment (Hack, [34]). This index will increase in value as rivers and streams flow over 
active uplifts and may have lesser values when flowing parallel to structures such as valleys 
made by strike-slip faulting [32]. The SL index seems to be a valid tool to detect local uplift 

as well as the incipient local response to regional processes [33]. Conventionally the SL index 

shows a quantitative approach to differential geomorphic studies related to erosion and depo-
sitional processes that include the river channel, long profile, and valley morphology as well 
as tectonically derived features such as fault scarps. This index was defined by [32] as:
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  SL =   (𝛥H / 𝛥L)    ∗  L  (1)

where ΔH/ΔL is the local slope of the channel segment being evaluated, and L is the channel 

length from the divide to the midpoint of the channel reach. The SL index value increases as 

Basins Area (km2) Area % AF BS SL 

class

Ks 

class

HI 

class

AF 

class

BS 

class

RIAT 

value

RIAT class

1 30.759 2.05 7.70 3.4 2 2 2 2 4 2.4 3

2 8.962 0.60 1.90 3.2 1 1 4 1 4 2.2 2

3 49.538 3.31 14.21 3.4 2 2 2 2 4 2.4 3

4 22.855 1.53 16.59 5.3 1 2 2 3 5 2.6 3

5 49.991 3.34 12.06 4.8 1 2.5 1 2 5 2.3 3

6 17.051 1.14 5.12 3.9 2 2 3 2 4 2.6 3

7 20.658 1.38 15.41 5.4 2 2 2 3 5 2.8 4

8 7.733 0.52 13.51 3.6 1 1 4 1 4 2.2 3

9 56.53 3.77 3.60 3.5 2 2 1 1 4 2 3

10 52.989 3.54 8.07 2.8 2 2 1 2 3 2 3

11 40.325 2.69 1.48 3.6 1 1 2 1 4 1.8 1

12 20.395 1.36 8.76 1.5 1 2 3 2 2 2 2

13 11.269 0.75 5.24 3.2 2 2 3 2 4 2.6 3

14 13.33 0.89 14.92 6.2 2 2.5 2 2 5 2.7 4

15 16.705 1.12 35.33 1.6 1 1 2 4 2 2 2

16 9.342 0.62 20.88 3.4 1 2 1 3 4 2.2 3

17 5.188 0.35 4.82 3.7 1 3 2 1 4 2.2 3

18 53.91 3.60 25.82 2.3 1 2 3 4 3 2.6 3

19 134.73 8.99 10.92 1.6 2 1 3 1 2 1.8 1

20 48.422 3.23 13.31 9.4 2 2.5 3 1 5 2.7 6

21 209.47 13.98 8.26 1.9 2 2 2 2 2 2 2

22 71.57 4.78 15.51 3.7 2 2 3 1 4 2.4 3

23 151.26 10.10 3.18 3.9 3 3 3 1 4 2.8 5

24 129.46 8.64 14.02 4.9 3 2.4 4 2 5 3.28 5

25 96.119 6.42 4.32 2.5 2 2 3 1 3 2.2 2

26 64.618 4.31 31.38 1.9 1 2 4 1 2 2 2

27 104.85 7.00 2.10 1.5 2 2 4 1 2 2.2 3

Table 1. Spatial distribution of SL, HI, AF, Smf, SI, Bs, RSS, RIAT classes.
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streams flow over active uplifts and areas with high rock resistance and may decrease with 
low rock resistance. The integrated plot of stream longitudinal profile and SL index of all the 
rivers are presented graphically on the x- and y-axis of the longitudinal profile of the main 
channel (Figure 3).

3.4. Steepness index (Ks)

The normalized channel steepness index could be expected to vary with rock uplift rate (rela-
tive to base level), lithology, and climate [34, 35]. The method used for evolution of steepness 

index in the study area is based on the empirical power law equation of [36, 37] that relates 

the local slope (S) to the upstream contributing drainage basin area (A) [37, 38], However in 
present paper similar methodology has been:

  S =  k  
s
    A   −Ѳ   (2)

where k
s
 is the steepness index and Ѳ is concavity. Given Flint’s law, the relationship between 

drainage area and distance downstream often described with Hack’s law strongly influences 
the rate of change in channel gradient with distance downstream, which of course defines 
the concavity of river profiles. If there is no differential uplift, the value of Ks should remain 
constant. In the case of the river basin is undergoing differential uplift, Ks may change from 
one segment to another [38].

Figure 3. Integrated longitudinal river profiles and SL index of eight representative, rivers (Note: For details of all 
integrated river profiles, see Figure 3, SL is shown by small green line along the profile; solid thick red dots represents 
values of Ks along the long profile; knickpoints are marked by black star. After collecting data in Arc GIS we used Microsoft 

excel for generating long river profiles and final editing has been done in golden software Surfer 14.
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3.5. Hypsometric integral (HI)

The hypsometric integral is an index that describes the distribution of elevation of a given 

area of a landscape [39]. The integral is generally derived for a particular drainage basin and 

is an index that is independent of basin area. The index is defined as the area below the hyp-
sometric curve and thus expresses the volume of a basin that has not been eroded. The simple 

equation that may be used to calculate the index [32, 40] is:

  HI =  (average elevation − minimum elevation)  /  (maximum elevation − minimum elevation)   (3)

The hypsometric curve indicates degree of dissection of the basin, i.e., erosional stage 
of the basin. Concave profiles represent long-term equilibrium between uplift and ero-
sion rates. Concave – convex profiles with erosion steps in the middle reaches indicate 
long-term predominance of erosional processes. Convex profiles are characteristic of areas 
where uplift (active tectonics) is dominant [41] The area below the hypsometric curve 

is known as the hypsometric integral (HI). The value of HI varies from 0 to 1 [41–43]. 

These profiles are drawn by projecting rivers onto a theoretical pre-incision surface that 
is obtained by interpolating the altitudes from present-day lateral divides of the basins 
(Figure 4). The values of elevation necessary for the calculation are obtained from a digital 

elevation mode.

3.6. Basin asymmetry (AF)

The asymmetric factor (AF) is a way to evaluate the existence of tectonic tilting at the scale of a 
drainage basin. The method may be applied over a relatively large area [32, 41] AF is defined 
by:

  AF = 100  (Ar / At)   (4)

where Ar is the area of the basin to the right (facing downstream) of the trunk stream and 
At is the total area of the drainage basin. If a basin has developed under stable conditions 
with little or no tilting, the Af factor is close to 50. The index is sensitive to change in incli-
nation perpendicular to the channel direction. An AF factor above or below 50 may result 
from basin tilting, resulting either from active tectonics or lithologic, structural control, 
differential erosion. The AF value ranges from 18 to 85. The absolute difference (AF-50) 
has been calculated and the obtained values are grouped into four classes: class-1 (AF ≤ 5; 
symmetric basins), class-2 (6 ≤ AF ≤ 15; gently asymmetric basins), class-3 (16 ≤ AF ≤ 25; 
moderately asymmetric basins), and class-4 (AF ≥ 26; strongly asymmetric basins) (Table 1). 

The area of these drainage basins corresponding to asymmetric values is shown on the map 

(Figure 5A).

3.7. Basin shape (Bs)

The horizontal projection of a basin may be described by the basin shape index or the elonga-
tion ratio, Bs [43]:

  Bs = Bl = Bw  (5)
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Figure 4. Hypsometry curves of all river basins integrated with youth (brown color), mature (cyan color), and old stages 
(green color) of river basin. The hypsometric curves has been generated using River Tool 3.0 software and final editing has been 
done in golden software Surfer 14.
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where Bl is the length of a basin measured from the highest point, and Bw is the width of a 

basin measured at its widest point. Relatively young drainage basins in tectonically active 

areas tend to be elongated in shape, normal to the topographic slope of a mountain [41, 43]. 

Therefore, Bs may reflect the rate of active tectonics.

Figure 5. A spatial distribution of basin asymmetry along the northern Wagad area. (B) Estimated relative index of active 
tectonics (RIAT) distribution pattern of the area. A and B have been generated using Global mapper 18 software and the final 
editing has been done in surfer 14 software.
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4. Relationship between fault displacements and drainage offset

Conventionally, quantitative displacement in a fault zone has been demonstrated by an off-
set of the river channel [25, 44, 45]. Usually, it has been widely observed that the maximum 
displacement occurred in the central part of the fault zone [46] and that the displacement 

decreases with increasing length. Decrease of river offset towards the west is possibly, west-
ward propagation of the faults. These streams were taken into account to calculate offset ratio:

  a = D / L  (6)

where D is the amount of stream offset along fault and L is upstream length of the displaced 

stream [47]. A relationship between long-term slip rate (S) along the lateral slip of a fault and 
offset ratio (a = D/L) has been roughly calculated as S (m/1000 years), i.e., 10 a [25, 44, 45].

We investigated the major to north flowing rivers such as the Suvai, Bhimguda, Narelawali, 
Dhadawali, Karaswali, Malan, Baniyo, and Dabhodanwari rivers and adjoining streams to 
estimate river offset along the E-W faults F1–F4 (GF). However, 17 south flowing rivers such 
as 1–8, Khalwa River (9), 10, 11, Sharan Nadi (12), and rivers 13–17 have been analyzed to esti-
mate offset along faults F6–F8. Based on offset of river channel we estimated net displacement 
along F2–F10 respectively.

5. Relative index of active tectonics (RIAT)

Several remote sensing studies have used the geomorphic indices to obtain index of relative 

tectonic activity [48–50]. To understand the RIAT of the fault segments, the results of all calcu-
lated geomorphic indices were synthesized. In this study we used geomorphic indices of active 

tectonics to obtained RIAT for the (NWF) North Wagad Fault, (GF) Gedi Fault, Bharudia Fault 
and (IBF) Island Belt Fault. Based on these classes we have considered each basin class average 
and combined to obtain the RIAT. The values of RIAT is assigned into five classes as Class- VI 
(RIAT >4), Class V: (> 3.5 RIAT <4), Class IV: (>3 RIAT <3.5), Class III: (>2.5 RIAT <3), Class II 
(>2 RIAT <2.5), and Class I (RIAT <2), (Supplementary Table 1; Figure 5B). Depending on the 
relative index of active tectonics classes, Western part of Wagad uplift covering basin 11, and 
Easterly covering 15 and 16 comes in highly active zone and shows offsetting drainage pattern 
(Class 5). Basin 1, 3, 4, 7 and 10 in Bela island, basin 13 and 18 in Wagad uplift are tectonically 
active and comes in (Class 4) zone and also delimiting by transverse fault between Basin 5, 6 
and 9 in Bela Island 12, 14 and 17 in Wagad uplift are moderately active zones (Class 3) (Figure 

5B). Basin 2 is intermediately active and comes in (Class 4) and Basin 8 is low active region.

6. Seismological approaches

The evidences of geomorphological in the Kachchh Rift Basin (KRB) is also supported by 
available high resolution seismic structures, fault plane solutions and recorded seismicity at 
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SeisNetG [13, 15, 51]. Theses integrated approaches provide a clue to understand what insti-
gate to generating a negative flower structure of drainage patterns and its role in the seis-
micity in the regions. The snapshot of the seismic images play important role to understand 

brittle-ductile dynamics. It also shed light about hidden causative faults and the drainage pat-
terns that can dictate the degree of damage through shaking (Figure 1B). Several faults in the 

Kachchh areas are mapped on the surface but still there are many among the existing factory 

of faults which still remains undiagnosed and not mapped on the surface [15, 51]. That is why 

we have determined almost all geological evidences and crustal heterogeneities parameters 

in the present study to understand the nature and extent of underlain structures controlling 

drainage network. The available 16 fault-plane solutions of the inferred fault planes of the 
events (Mw ≥ 3.5) recorded during 2007–2014 [13, 15, 51] (Figure 1B). The results obtained 

from morphotectonic analysis of fluvial networks and seismological approaches are jointly 
analyzed in the next section.

7. Imprints of active tectonics

The rivers in WH containing the knickpoints over the Mesozoic formations; are related to 
active geological structures. The maps of local relief, swath, stream length gradient index, 
and channel steepness (Figures 1D and 2) represents two major topographic zones. The 

high elevated zones are located between 28 and 228 m. The high relief locations represent 

remnants of a relict landscape that was preserved at high elevations caused by erosion-
ally balanced rapid Late Quaternary uplift [23]. The low relief zones are marked by Banni 

and Rann surfaces (Figure 1C). The DEM generated swath profiles shows incision into the 
alluvial surfaces. This incision is associated with multiple phases of tectonic events and 

intensified climate forcing during early to mid-Holocene [23]. The sedimentation in lower 

reaches of river valleys is predominantly controlled by processes that act in response to 

tectonically triggered and climatically enhanced events [23]. The uplift involve the Bela 

and WH that shows abrupt and anomalous variation in elevation as noticed in the swath 

profiles (Figure 1D). The swath profiles shows maximum elevation correspond to uplifted 
region and low elevation correspond to valley floor. The swath analysis of each profile 
shows asymmetrical nature of valley shape. The results of the SL index are shown in Figure 2A. 

Integrated longitudinal river profiles with SL and Ks longitudinal profiles of all rivers are 
illustrated in Figure 3. The SL values range from 5 to 2300 which are grouped into five 
classes: class-1 (low activity: 5 ≤ SL ≤ 100), class-2 (intermediate activity: 101 ≤ SL ≤500), 
class-3 (moderate activity: 501 ≤ SL ≤ 1000), class-4 (active: 1001 ≤ SL ≤ 1500), class-5 (very 
active: SL ≥ 1501) (Figure 2A). The high and moderate classes of the SL values correspond 

to significant faults except for the Bela zone, may be caused by the high rock resistance 
prevailed in that area. The Ks and Ɵ were estimated from the log–log plot of S vs. A. The 

Ks values range from 5 to 125. To evaluate segmental tectonic activity; these values were 
also grouped into five classes: class-1 (low activity: 5 ≤ Ks ≤ 25), class-2 (intermediate activ-
ity: 26 ≤ K

S
 ≤ 50), class-3 (moderate activity: 51 ≤ K

S
 ≤ 75), class-4 (active: 76 ≤ Ks ≤ 100), and 

class-5 (very active: Ks >101) (Table 1; Figure 2B). It is observed that the Ks values are high 

close to the E-W faults.
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Equation References Fault (SRL 

km)

(RLD 

km)

Average 

RLD

Coefficient MD 

(km)

AD 

(km)

Offset ratio 
(m)

Magnitude 

(M)

Slip rate 

(mm/y)
A B

M = A + B * log (SRL)

M = A + B * log (RA)

M = A + B * log (MD)

M = A + B*log (RLD)

[55] F1 56 21 21 5.16

3.98

6.81

4.33

1.22

1.02

0.78

1.49

6.3-6.3-7.3 —

F2 55.6 26 5.2 3.9 1.1 0.34 5.4-6.4-7.3 3.4

F3 55.8 42.8 16.6 0.49 1.3 0.11 6.1-6.7-7.3 1.1

F4 55.6 40.6 40.6 0.63 4.3 0.14 6.7-6.7-7.3 1.4

F5 15.2 38.6 38.6 0.8 1.8 0.09 6.7-6.6-6.6 0.9

F6 56.7 43.8 37.6 0.79 3.1 0.07 6.7-6.7-7.3 0.71

F7 50 38.6 38.6 0.3 0.9 0.08 6.7-6.7-7.2 0.84

F8 54.13 48 17.2 0.4 1 0.06 6.2-6.8-7.2 0.67

Mw = 1.36*log SRL+ 
4.67

Johnston 
[56]

F9 21.17 19 7.2 1.36 4.67 0.8 0.9 0.14 5.6-6.2-6.7 1.4

F10 34 33 6.6 0.3 2.2 0.31 5.6-6.5-7.0 3.1

Surface rupture length (SRL).
Sub-surface rupture length (RLD).
Standard deviation (s).
Maximum displacement (MD).
Average displacement (AD).
Moment magnitude (M).

Table 2. Regression analysis of surface rupture, subsurface rupture length, and displacement.
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Conventionally the hypsometric integrals reveal complex interactions between erosion and 

tectonics [39, 52, 53]. Hypsometric integrals are thought to be affected by basin parame-
ters such as geometry, area and rapid lowering of basin elevations [53, 54]. The hypsomet-
ric integral of each basin has been computed based on drainage area and basin geometry. 

Hypsometric integrals are thought to be affected by basin parameters such as geometry, area 
and rapid lowering of basin elevations [53, 54]. The HI of each basin has been computed 

based on drainage area and basin geometry. However, we deployed conventional statistical 
technique for the entire basin as well as the computation is implemented to individual squire 

where high and low values can be obtained together. The contour map shows spatial distri-
bution of high and low values, imply that the WH experiencing rapid changes in elevation 
and incision; owing to tectonic and climatic variations [23]. The higher values of HI clustered 

around the uplifted regions however the lower values representing low lying areas (Figure 2C). 

In the analysis of HI, it is considered whether the curve is convex in its upper portion, convex 
to concave, or convex in the lower portion. The HI curves of all basins are given in Figure 4. It 

is assumed that if part of the hypsometric integral is convex in the lower portion, it could be 
associated with uplift along a fault or associated with recent folding.

In present study 10 north flowing and 17 south flowing rivers of WH were analyzed in order 
to estimate river offset and tectonic control by the faults that cut across the area (Figure 2A, B). 

The estimated values of offset along F2 ranges between 1.1 and 3.9 km, along F3, 0.49–1.3 km, 
along F4 0.63–4.3 km, along F5 0.8–1.8 km, along F6 0.79–3.1 km, along F7 0.3–0.9 km, along 
F8 0.4–1 km, along F9 0.8–0.9 km, and along 10 the offset ranges between 0.3 and 2.2 km 
respectively (Figure 2D). The stream offset along the F2–10 is comparatively less westward. 
However, the computed values of offset ratio of about 0.34 km for F2, 0.11 km for F3, 0.14 km 
for F4, 0.09 km for F5, 0.07 km for F6, 0.08 km for F7, 0.06 km for F8, 0.14 km for F9 and 0.31 km 
for F10 respectively (Table 2).

8. Geomorphic evidences controlling fluvial network

We identified various geomorphic features associated with active movement along F1 such 
as block tilting, fault scarps, co-seismic uplift and drainage offset, are well characterized by 
[57]. At a place the Mesozoic sandstone ridded over Quaternary deposits, resulted ~2 m high 
active fault scarp (Figure 6A–E). The Mesozoic strata are tilted by 8° southward. We identified 
secondary surface deformation ~10 km along the strike of the F2 (Figure 6A). The co-seismic 
movement has developed tensional fractures along the strike of F2 (Figure 6D–E). The north 

dipping tensional fractures near F2 reflect “en echelon” pattern having step-overs with strike-
slip component; probably developed during the northward movement of the hanging wall 
followed by surface bending (Figure 6D and E) [23].

Further Kothyari et al. [23] documented remarkable geomorphic features such as (a) E-W 
trending fault across gently folded Mesozoic strata, (b) steeply dipping strata with south fac-
ing active fault scarp at Deshalpar, (c) wide tensional in E-W direction, (d) highly fractured 
and sheared litho-units within faulted blocks, (e) subsidence of ground, and drainage offset 
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along the structures (Figure 6F). The tectonic movement in this region resulted changes in 

surface elevation by forming approximately 9 m high fault scarp (Figure 6G). A significant 
gradient change in the valley floor causes development of 3 m high knickpoint (Figure 6H). 

The litho-units are tightly folded within the fault zone. The southern limb of the fold is 
steeply (~75°) dipping towards south. These steeply dipping beds are characterized by pres-
ence of slickensides parallel to the strike direction (E-W) of the F5 (Figure 6I). Kothyari et al. 

[23] believe that these features are results of middle to late Holocene tectonic reactivation of 

GF. Furthermore, the significant amount of changes have been observed within the hydro-
logical network between 8 to 4 ka [23]. The north flowing Karaswali River takes 90o turn 

and flows in west direction, parallel to GF (F4). East–west offsetting of the two rivers is also 
observed south of the Gedi village (Figure 6F).

Figure 6. (A) Detailed map showing major tectonic features observed in the F2 zone (inset; DEM of growing ridge 
showing ground uplift (~1.5 m) near the fault zone (modified after [57]); (B and C) fault scarp; (D and E) development 
of E-W oriented tensional cracks within the fault zone. These tensional cracks are displaced by small scale strike slip 
faults. (F) Map shows locations of ground deformation observed along the trace of F4. Inset shows development of 
tensional fractures within the tertiary sandstone bed (modified after [23]); (G) development of ~9 m high fault scarp near 
Deshalpar, (H) lateral spreading of ground east of Deshalpar, and 3 m waterfall was developed along the F3, (I) well 
developed slickensides are visible parallel to strike of F4. The drainage map of A and F are generated using georeference SOI 

topographic map in Global mapper 18 software and for final editing we used Surfer 14 software. The inset DEM of the area has been 
generated with the help of reconnaissance Real Time Kinematic (RTK) survey. The DEM has been generated in Surfer Software.
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9. Seismic tomography and fault plane solutions

The estimated velocity images and fault-plane solutions are shed new light in understanding 
the fluvial network and geomorphic development in the intraplate region of Western India 
[15]. The epicenters of the relocated earthquakes show that the majority of the events are 

confined along F1–F4 (Figure 1B) during the recorded period. It is also noticed that some of 

small to moderate events are located north of F4 and north of F1 (Figure 1B). Interestingly, 
epicenters of small to moderate earthquakes are associated with the offset zone of fluvial 
network. Theses fluvial network are plotted over seismic tomography images at 5.0 km, 
10.0 km, 15.0 km, 20.0 km, 25.0 km, and 30.0 km depths to understand brittle - ductile dynam-
ics (Figure 7A). Based on significant perturbations in Vp anomalies, several shallow and deep 
fault controlling surface fluvial network are identified. Conventionally the low velocity of Vp 
anomalies at shallower to deeper depths represents presence of fluid, unconsolidated rocks 
fault gauge, cracks and fractured basement [15, 51, 58, 59]. Based on surface fluvial offset and 
velocity perturbation in depth sections of tomography data, the slow velocity is interpreted 
as a subsurface fracture pattern or strong heterogeneities. The high velocity zones at deeper 
depth are associated with the surface offset of drainage network [15].

The depth slices of tomography images are critically examined to identify subsurface fault 

pattern (Figure 7A). Both combined seismological and geological results clearly show that 

the zone between Bharudia/NWF and IBF is controlled by eight (F1–F8) E-W oriented 
parallel faults. Seismic tomograms at depths 5–15 km shows NW-SE and NE-SE oriented 
transverse faults. The Fault F4 is a vertical fault, which is well defined by velocity perturba-
tions sections down to the depth of 30 km depth. Faults F1, F2, F3, F5, and F6 are connected 
with the F4 at 25 km deeper level (Figure 7A, B). However, the fault F7 is connected with 
F5 at 15 km depth, whereas the F8 joints with F7 down to the depth of 10 km. Figure 7B 

represents inferred depth geometric relationship of all these faults. Geometrically all these 
faults are converge at depth along a single sub-vertical fault (F4), making an E-W oriented 
negative flower structure, where all branches of faults are interacting at different depth 
resulting rhomb shape graben structure (Figure 7B). From the experimental model of [60] 

it is clear that the strike–slip fault zone is generally composed of several branches that join 

together at depth into a single vertical plane. As a consequence, bulk displacement accom-
modated at depth on the basement fault is distributed towards the surface among several 

faults whose tectonic activity evolves through time. Some branches remain inactive during 

a certain period, and then they are reactivated later when their geometry becomes compat-
ible again with the evolving strain field in the wrench zone [60]. The model shows that the 

local relief apparently has a clear influence on subsurface fault geometries (Figure 7A). In 

the regions of low topography or where strong river incision traverses the wrench zone, a 
narrow releasing bend generally develops when the fault trace is deviated towards topo-
graphic lows. In regions of higher relief, compression is often associated with shearing, 
and the fault zone appears much more deformed and segmented [60]. From the earthquake 
fault plane solution data, it is clear that all these faults are strike slip pattern in nature 
(Figures 1B, 6 and 7A). However, a few solutions show thrust motions may be due to local 
tectonic adjustment between segmented fault blocks.
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10. Combined interpretation and discussion

Globally, the rift basins are controlled by extensional tectonic forces. Changes of stress regime 
may cause inversion of such system from normal strike slip and reverse Coward [61], Scisciani 
[62] or by development of new faults between the basement rocks and overlying sedimentary 

succession [62, 63]. The wrench zone of a strike slip fault system shows complex arrays of 

structures in brittle upper crust in which fault splays are oblique to the principal fault trend 

Figure 7. (A) Stack map shows horizontal depth slices of P-wave seismic structures [51] at 5, 10, 15, 20, 25, and 30 km. The 
topographic surface level is highlighted by digital elevation model of the area. The fault lines F1 to F10 are marked based 
on offset of river along the wave velocity transition phase and highlighted by black dotted lines. (B) Dimensional block 
model of northern Wagad areas shows development of negative flower structure at deeper level as inferred from seismic 
structures. The position of faults on the top surface is marked by stream offset pattern. The depth behavior of fault is 
shown by fault plane solutions of [12–15]. Locations on the surface are marked by black filled circles; solid fill triangles 
represent location of GPS stations. (C) Schematic block model of Wagad region based on geological and seismological 
data shows development of negative flower structure towards the northern part of the area. The streams crossing these 
faults show prominent offset on the surface. The, horizontal depth slices in Figure 1A are generated using MATLAB R2010 

software and depth wise stack map of horizontal slices has been generated using Surfer-14 software. The P wave velocity slice (B) has 

been generated in MATLAB R2010 and the final editing has been done in Surfer software. For generation of C we used CARTOSAT 

satellite data to generate N-S topographic profile and final map has been generated using Surfer-14 software.
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and generate a wide deformation zone [60, 64, 65]. The depth section of such faults tend to 

be steep at deeper level and to splay upwards, forming characteristic flower structures; have 
reverse (positive flower) or normal (negative flower) components [66, 67]. In such tectonic 

environment the shape of fault pattern is influenced by degradation and aggradation surface 
processes [68]. Conventionally in a negative flower zone the faults splays become listric as 
a result of synchronous deformation and sedimentation [69]. However, in a positive flower 
setting, faults tend to become steeper towards the surface as a result of aggradation in the 
footwall and degradation in the hanging wall [70–75].

A wide zone of fault rupture pattern is investigated in WH of Kachchh peninsula. The seis-
mic structures, seismicity and fault plane solution investigation show that the GF (F4) is 
a nearly vertical fault (Figure 7B, C) having dominant strike-slip deformation [15, 18, 51]. 

Using double difference tomography, we identified several shallower and deeper faults 
(F1–10); these faults are well connected with sub-vertical south dipping GF (F4) at different 
level (Figure 7B and C). Geometrical relationship inferred from seismic structures show 
all these faults are converge at certain depth along GF and making E-W oriented negative 
flower structure. All fault branches are interacting at different depth level and generating 
rhomb shape graben structure, which is well imaged in the seismic structures (Figure 7B 

and C). Depth section of tomography suggested that the faults F1, F2, F3, F5 and F8 are 
deeper faults. However, the F6 and F7 are imaged at shallower depth. It is also clear from 
the seismic structures that the fault F1 is a north dipping fault plane and connected with the 
F4 at 27 km depth level. The north dipping faults F2 and F3 and the south dipping faults F5 
and F8 are connected with F4 at 25 km depth level. On the other hand the fault F6 is a south-
ward dipping splay of F5 and connected with F5 at 15 km depth. The F7 is a small south 
dipping subsidiary branch of F6. The fault is connected with F6 at 12 km depth.

Conventionally, an extensional overstep zone of a strike–slip fault several branches that join 
together at depth into a single vertical plane [18]. As a consequence, bulk displacement accom-
modated at depth on the basement fault is distributed towards the surface among several 

faults whose tectonic activity evolves through time [60]. Some branches remain inactive dur-
ing a certain period, and then they are reactivated later when their geometry becomes com-
patible again with the evolving strain field in the wrench zone [60]. A few researchers argued 
that KRB regions show dominantly strike-slip with the slightly reverse faulting natures [13, 
51, 76]. However, a few solution shows reverse type of motion could be associated with the 
local tectonic adjustment between segmented fault blocks.

The archeological records from the WH experience several damaging earthquakes of mag-
nitude 6.0–7.8; that have occurred between 2900 BC and 1300 BC (Table 3). The arche-
ological evidences observed from 40 km west of study area (e.g. Dholavira) suggested 
that the ancient town was damaged by several major earthquakes between 2900BC and 

1300BC [63, 77–79]. Presence of geomorphic and paleoseismic features within the WH, 
studied by previous workers are correlated with these historical earthquakes [23, 25, 63]. 

Further, based on trench investigation and optical chronology identified three earthquake 
events during last 7000 years [63]. The displaced fluvial sediment and optical chronology 
in the area suggested that the SWF reactivated during Middle to Late Holocene period i.e., 
between 3 ka and 1 ka [25]. Similarly other geomorphic studies suggest that the F4 reacti-
vated during Middle Holocene around 4 ka [23].
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In-SAR measurements show current deformation rate as ~16 mm/y in the western part and 
7–16 mm/y in the southern part of the GF zone [14, 23, 80]. Based on trench investigation [63] 

estimated uplift rate of 0.5 ± 0.05 mm/y, horizontal shortening rate of 1.1 ± 0.12 mm/y along 
SWF. However based of fluvial offset [25] estimated slip rate 2.2 mm/y along the SWF zone 
which is compatible with the slip rate 1.19 ± 0.13 mm/y observed by [63]. Based on strath ter-
races [23] estimated the uplift rates 0.3 to 1.1 mm/y along F4, during the last 9 ka. Further, based 
on fluvial offset, we estimated slip rates for faults (F2–F10) using the imperial relationship 
given by [45]. The estimated slip rate along F2 of about 3.4 mm/y, along F3 of about 1.1 mm/y, 
along F4 of about 1.4 mm/y. along F5 of about 0.9 mm/y, along F6 of about 0.71 mm/y, along 
F7 of about 0.84 mm/y, along F8 of about 0.67 mm/y, along F9 of about 1.4 mm/y, and along 
F10 of about 3.1 mm/y (Table 2). The observed slip rate of F2–F10 are well corroborated with 
the uplift rate 0.3 to1.1 mm/y during the last 9 ka as estimated from the OSL dates. The slip 

rates obtained from drainage analysis are well correlated with the published results of GPS 
from the WH (ISR technical report by [81]. Four sites located in the southern part of study 
area shows variations in localized deformation (Figure 7B). The site Ekal shows deforma-
tion rate 2.5 ± 0.12 mm/y, Suvai is deforming at the rate of 1.9 ± 0.03 mm/yr., Badargadh is 
deformation at the rate of 1.8 ± 0.13 mm/y, and the site located near Rapar shows deformation 
rate of 2.1 ± 0.11 mm/y [81]. To sites Deshalpar and Fatehgadh shows deformation rates of 
1.0 ± 0.04 mm/y and 1.7 ± 0.04 mm/y (Figure 7B). However, a site located in the northern part 
of study area shows crustal deformation rate 3.8 ± 0.14 mm/y [81]. The estimated slip rates and 

GPS driven deformation rates together suggests that the landform development in the area is 
controlled by localized crustal deformation.

The future earthquake along active faults can be evaluated from estimates of fault rupture 

parameter in turn, released to earthquake magnitude [55]. Active fault studies require an 
assessment of seismic hazard analysis for the future potential earthquakes [55]. More spe-
cifically to estimate the size of earthquake that might be generated by a particular fault may 
be correlated with rupture parameter such as length, strike and displacement [55, 82, 83]. 

Moreover, the timing of the past earthquake and size of magnitude can be estimated with 
the help of geomorphic and paleoseismic records [84, 85]. We used regression analysis pro-
posed by Wells and Coppersmith [55] and by Johnston [56] and Johnston and Kanter [86] for 

intraplate region to estimate moment magnitude. The detail regression analysis is expressed 

S. No Year Remarks References

1 2900BC Damage in Dholavira, dislocation of walls, subsidence of floors and crushed 
bricks

[77]

2 2700BC Damage in Dholavira, 4 m wide fissured wall, collapse of southern features and 
multiple cracks running E-W

[78]

3 2100BC Damage in Dholavira; tremendous damage to the gates of castle, tilting and 
arching of thick inner walls and collapse of outer walls at north gate

[79]

4 2000BC

6 1900BC Abandonment of settlements [63]

7 1300BC

Table 3. List of historic earthquakes occurred in Kachchh region of western India.
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in Table 2. The regression analysis proposed by Wells and Coppersmith [55] and Johnston 
[56] shows strong correlation between surface rupture length and magnitude of earthquakes. 

However the regression analysis shows that probability of occurrence of earthquake mag-
nitude range between 6.3 and 7.3) along F1, magnitude (M 5.4–M 7.3) along F2, magnitude 
(M 6.1–M 7.3) along F3, magnitude (M 6.7–M 7.3) along F4, magnitude (M 6.0–M 6.6) along 
F5, magnitude (M 6.7–M 7.3) along F6, magnitude (M 6.7–M 7.2) along F7, magnitude (M 
6.2–M 7.2) along F8, magnitude (M 5.6- M 6.7) along F9, magnitude (M 5.6–M 7.0) along 
F10 respectively (Table 2). From the regression analysis it is clear that the faults (F1–F10) 
passes through the WH are capable for generating earthquake magnitude M 5.4 and M 7.3. 
Occurrence of February 2006M-5.6 along F9 validates our results and significant level.

Geomorphic indices are widely used to obtain index of active tectonics [25, 48–50]. Here we 

synthesized conventional geomorphic indices of active tectonics to calculate relative index 

of active tectonic (RIAT) distribution along the all fault segments (F1–F10). The RIAT classes 
show that the deformation is higher along the offset zone of fault segment (Figure 5B). 

Conventionally the SL and KS values show abnormal increase of gradient within normal and 

reverse faults. Minor changes of SL and KS observed within the zone of strike slip fault. At 
few places the SL and KS values do not shows any variation, which is compared with the 
strike slip motion of fault. The strike slip motion is well corroborated with the results of seis-
mic tomography and fault plane solution (Figure 7B). The existing studies suggest that the 

terrain close to the GF (F4) experienced occurrence of moderate earthquakes during recent 
time [23, 27]. The strike slip motion observed from focal mechanism is well correlated with 

drainage offset along E-W oriented faults within the north and south flowing river system.

Further the observations gathered from the SL, KS and RIAT distribution are corroborated with 
the geomorphological studies carried out by [23]. The geomorphic expressions such as active 

fault scarp, shifting and offset of channels indicates that the area is controlled by E-W oriented 
strike slip faults. Further, steepening of river gradient as observed from tectonic proxy (SL and 
KS) and uplift of ground further support that the area is tectonically active. Previous studies 
by [23] suggests that the uplifts in GF zone were associated with interlinking of strike slip 
fault segments. Further major two phase of tectonic uplift have been identified by [23] based 

on uplifted fluvial strath terraces. The study shows that the first phase of enhanced uplift took 
place round 8.0 ± 0.9 ka; however, the second phase of uplift is began after 4 ka and contin-
ued till today [23]. In present study, several E-W oriented knickpoints were identified across 
north and south flowing drainage basins of WH. At several locations these knick points have 
migrated primarily due to river response to sudden base level fall and secondly incision owing 

to vertical tectonic forces. As sudden base-level fall can be triggered by tectonic upheaval, cli-
matic change, river capture, or channel incision [87–89]. The incision by river and the formation 

of knickpoints are well correlated with tectonic upheaval along F1–F8 (Figure 2A).

11. Conclusions

The study of the topographic configuration morphometric analysis and the subsurface 
imaging of the fluvial network from WH permitted us to develop a model for the long-term 
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evolution of the drainage basin which is influence by deep tectonic processes. Based on 
present observations the following conclusions have been drawn.

1. Based on analysis of fluvial offset and subsurface velocity images major 10 traces of active 
fault (F1–F10) controlling hydraulic network have been identified.

2. The surface geomorphology, velocity imaging and fault plane solution data together sug-
gest that the subsurface structure of WH is controlled by strike slip faulting.

3. The fault geometry inferred from seismic images show presence of negative flower struc-
ture at a deeper level.

4. The depth wise images show that the GF (F4) is steeply dipping towards south. The fault 
F1, F2 and F3 are dipping towards north, whereas, the fault F5–F8 are dipping towards 
south. All these faults are connected with GF (F4) at different depth level, which is well 
imaged in the seismic structures.
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