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Abstract

For a complete description of the electronic motion in a quantum dot, we need a method
that can describe not only the trajectory behavior of the electron but also its probabilistic
wave behavior. Quantum Hamilton mechanics, which possesses the desired ability of
manifesting the wave-particle duality of electrons moving in a quantum dot, is introduced
in this chapter to recover the quantum-mechanical meanings of the classical terms such as
backscattering and commensurability and to give a quantum-mechanical interpretation of
the observed oscillation in the magneto-resistance curve. Solutions of quantum Hamilton
equations reveal the existence of electronic standing waves in a quantum dot, whose
occurrence is found to be accompanied by a jump in the electronic resistance. The com-
parison with the experimental data shows that the predicted locations of the resistance
jump match closely with the peaks of the measured magneto-resistance.

Keywords: quantum dots, quantum Hamilton mechanics, standing waves, quantum
trajectory, magneto-resistance

1. Introduction

As the size of electronic devices is narrowed down to the nanoscale, quantum effects become

so prominent that classical mechanics is no longer able to provide an accurate description for

electrons moving in nanostructures. However, due to the lack of the sense of trajectory in

quantum mechanics, classical or semi-classical mechanics so far has been the sole tool in

determining ballistic orbits in quantum dots. Classical orbits satisfying commensurability

conditions of geometrical resonances were derived in the literature to determine the magneto-

transport behavior of periodic quantum systems. It was reported that the observed regular

peaks in the magneto-resistance corresponded to backscattering of commensurate orbits [1],

© 2018 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
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and the critical magnetic fields determined from the backscattering orbits showed an excellent

agreement with the observed peak positions in the magneto-resistance curves [2]. A recent

study showed that the ballistic motion of electrons within quantum dots can be controlled by

an externally applied magnetic field so that the resulting conductance images resemble the

classical transmitted and backscattered trajectories [3].

The use of an anisotropic harmonic function, instead of an abrupt hard potential, to describe

the confining potential in a quantum dot was shown to be helpful to improve the accuracy of

predicting magneto-resistance peaks based on backscattering orbits [4]. Nowadays, the con-

finement potential forming an electron billiard can be practically patterned to almost arbitrary

profile, through which ballistic orbits with chaotic dynamics can be generated to characterize

magneto transport [5]. However, the chaotic behavior and its change with magnetic field could

not be described in the usual quantum-mechanical picture due to the lack of a trajectory

interpretation. Regarding this aspect, the classical description becomes a valued tool for

detailed understanding of the transition from low to high magnetic fields in quantum dot

arrays [6]. On the other hand, quantum mechanical model for electron billiards was known as

quantum billiards [7], in which moving point particles are replaced by waves. Quantum

billiards are most convenient for illustrating the phenomenon of Fano interference [8] and its

interplay with Aharonov-Bohm interference [9], which otherwise cannot be described by

classical methods.

From the existing researches, we have an observation that the ballistic motion in electron

billiards was solely described by classical mechanics, while the wave motion in quantum

billiards could only be described by quantum mechanics. The aim of this chapter is to give a

unified treatment of electron billiards and quantum billiards. We point out that quantum

Hamilton mechanics [10, 11] can describe both ballistic motion and wave motion of electrons

in a quantum dot to provide us with a quantum commensurability condition to determine

backscattering orbits as well as with the wave behavior to characterize the magneto-resistance

in a quantum dot.

Quantum Hamilton mechanics is a dynamical realization of quantum mechanics in the com-

plex space [12], under which each quantum operator is realized as a complex function and

each wavefunction is represented by a set of complex-valued Hamilton equations of motion.

With quantum Hamilton mechanics, we can recover the quantum-mechanical meanings of the

classical commensurability condition by showing that there are integral numbers of oscillation

in the radial direction, as an electron undergoes a complete angular oscillation around a

quantum dot. When the radial and angular dynamics are commensurable, the shape of elec-

tronic quantum orbits is found to be stationary like a standing wave. Furthermore, the wave

number N, distributed on the circumference of the quantum dot, can be controlled by the

applied magnetic field. It will be shown that the classical backscattering orbits discovered in

the literature resemble the shape of the quantum standing waves derived here with their wave

numbers equal to the numbers of electron’s bounces within the quantum dot.

The electronic standing-wave motions considered in this chapter will reveal that a jump of the

magneto-resistance in quantum dots is accompanied by a phenomenon of magnetic stagna-

tion, which is a quantum effect that an electron is stagnated or trapped within a quantum dot
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by an applied magnetic field in such a way that the electron’s cyclotron angular velocity is

exactly counterbalanced by its quantum angular velocity. We point out that magnetic stagna-

tion is a degenerate case from the electronic standing-wave motion as the wave number N

approaches to infinity. The magnetic fields yielding the phenomenon of magnetic stagnation

can be determined by the quantum Hamilton equations derived here. Knowing these critical

magnetic fields allows us to control the magneto-resistance precisely.

In the following sections, we first introduce quantum Hamilton mechanics and apply it to

derive Hamilton equations, which are then used in Section 2 to describe the electronic quan-

tum motions in a quantum dot. By solving the Hamilton equations of motion, Section 3

demonstrates electronic standing-wave motions in various quantum states and characterizes

the magnetic field leading to the phenomenon of magnetic stagnation. In Section 4, we show

that the magnetic stagnation is the main cause to the resistance oscillation of quantum dots in

low magnetic field by comparing the theoretical predictions obtained from Section 3 with the

experimental results of the magneto-resistance curve [4, 13].

2. Quantum Hamilton dynamics in a 2D quantum dot

To probe the quantum to classical transition, which involves both classical and quantum

features, quantum dots are the most natural systems [14]. Analyzing such systems, we need

an approach that can provide both classical and quantum descriptions. Quantum Hamilton

mechanics is one of the candidates satisfying this requirement. This chapter will apply quan-

tum Hamilton mechanics to an open quantum dot with circular shape, which is connected to

reservoirs with strong coupling. The electronic transport through an open quantum dot can be

realized by nano-fabrication techniques as a two-dimensional electron gases system (2DES) at

an AlGaAs/GaAs heterostructure, as depicted in Figure 1.

Figure 1. Schematic illustration of a semiconductor heterostructure with a circular dot between the two tunnel barriers.

A Quantum Trajectory Interpretation of Magnetic Resistance in Quantum Dots
http://dx.doi.org/10.5772/intechopen.74409

23



Under the framework of quantum Hamilton mechanics [10, 12], the equivalent mathematical

model of a quantum dot is described as an electron moving in an electromagnetic field with

scalar potential V and vector potential A. The related Hamiltonian operator bH can be realized

as the following complex Hamiltonian function,

H t;q;pð Þ ¼
1

2m
pþ

c

e
A

� �
� pþ

c

e
A

� �
þ V t;qð Þ þ

ℏ

2im
∇ � p: (1)

We adopt polar coordinates q ¼ r;θð Þ and momentum p ¼ pr; pθ
� �

in the above equation to

describe the electronic quantum motion in a 2D circular quantum dot. The resulting complex

Hamiltonian Eq. (1) becomes

H ¼
1

2m∗
pr þ

e

c
Ar

� �2

þ
1

r2
p
θ
þ

e

c
Aθ

� �2
� 	

þ V r;θð Þ þ
ℏ

2im∗

1

r
pr þ

∂pr
∂r

þ
1

r2
∂p

θ

∂θ

� �
, (2)

where m∗ ¼ 0:067me is the electron’s effective mass in AlGaAs/GaAs heterostructure. The scalar

potential V r;θð Þ acts as a confinement potential in the dot, and is modeled by the parabolic

function V ¼ kr2=2 ¼ m∗
ω

2
0r

2=2 to simulate a soft-wall potential. The vector potential A is deter-

mined from the applied magnetic field B via the relation B ¼ ∇�A. Here, we consider a

constant B along the z direction, which amounts to Ar ¼ 0 and Aθ ¼ Br2=2. Substituting the

above assignments of V and A into the complex Hamiltonian Eq. (2), we obtain

H ¼
1

2m∗
p2r þ

1

r2
p2
θ

� �
þ ωLpθ þ

1

2
m∗

ω
2r2 þ

ℏ

2im∗

1

r
pr þ

∂pr
∂r

þ
1

r2
∂p

θ

∂θ

� �
(3)

where ωL ¼ eB= 2m∗cð Þ is the Larmor frequency and ω ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2

0 þ ω2
L

q
is the composite frequency.

The quantumHamilton-Jacobi equation associated with the HamiltonianH defined in Eq. (1) reads

∂S

∂t
þH t;q;pð Þ

����
pi¼∂S=∂qi

¼ 0, (4)

where S is the quantum action function to be determined. By making use of the substitution

pr ¼
∂S

∂r
, p

θ
¼

∂S

∂θ
, (5)

the quantum Hamilton-Jacobi Eq. (4) associated with the Hamiltonian in Eq. (3) turns out to be

∂S

∂t
þ

1

2m∗

∂S

∂r

� �2

þ
1

r2
∂S

∂θ

� �2
" #

þ ωL
∂S

∂θ
þ
1

2
m∗

ω
2r2 �

iℏ

2m∗

1

r

∂S

∂r
þ

∂
2S

∂r2
þ

1

r2
∂
2S

∂θ
2

� �
¼ 0: (6)

The recognition of the complex Hamiltonian H in Eqs. (1) and (3) as a complex realization of the

Hamiltonian operator bH is confirmed by the fact that the quantum Hamilton-Jacobi equation in

Eqs. (4) and (6) yields the same Schrodinger equation as constructed from bH . This can be seen by

applying the following transformation
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S ¼ �iℏlnΨ , (7)

to Eq. (6) to produce the expected Schrodinger equation:

iℏ
∂Ψ

∂t
¼ �

ℏ
2

2m∗

∂
2Ψ

∂r2
þ
1

r

∂Ψ

∂r
þ

1

r2
∂
2Ψ

∂θ2

� �
� iℏωL

∂Ψ

∂θ
þ
1

2
m∗ω2r2Ψ : (8)

Due to the time-independent nature of the applied potentials A and V , the wavefunction Ψ in

Eq. (8) assumes the following form of solution,

Ψ t; r;θð Þ ¼ e�iEt=ℏψ r;θð Þ, (9)

where ψ r;θð Þ satisfies the time-independent Schrodinger equation

bHψ≜ �
ℏ
2

2m∗

∂
2

∂r2
þ
1

r

∂

∂r
þ

1

r2
∂
2

∂θ2

� �
� iℏωL

∂

∂θ
þ
1

2
m∗ω2r2

� 	
ψ ¼ Eψ: (10)

On the other hand, Eq. (3) can be rewritten by using the substitutions Eqs. (5) and (7) as

bHψ ¼ Hψ, (11)

where H and bH are defined, respectively, by Eqs. (3) and (10). This is a direct proof of the fact

that the complex Hamiltonian H is a functional realization of the Hamiltonian operator bH in a

complex space. Indeed, it can be shown [10] that every quantum operator bA can be realized as

a complex function A via the relation bAψ ¼ Aψ. The combination of Eqs. (10) and (11) reveals

the energy conservation law H ¼ E, which is a natural result of Hamilton mechanics by noting

that the Hamiltonian H in Eq. (3) does not contain time t explicitly and must be a motion

constant equal to the system’s total energy E.

Upon performing the differentiations ∂pr=∂r and ∂pθ=∂θ involved in Eq. (3), we have to specify

in advance the action function S or equivalently the wavefunction ψ via the relation Eq. (7).

This requirement makes the complex Hamiltonian H state-dependent. For a given quantum

state described by ψ, the complex Hamiltonian H can be expressed explicitly as:

H ¼
1

2m∗
p2r þ

1

r2
p2θ

� �
þ ωLpθ þ

1

2
m∗ω2r2 þ

ℏ

2im∗

1

r
pr þ

ℏ

i

∂
2ln ψ

∂r2
þ

1

r2
ℏ

i

∂
2ln ψ

∂θ2

� �
: (12)

Apart from deriving the Schrodinger equation, the above complex Hamiltonian also gives

electronic quantum motions in the state ψ in terms of the Hamilton equations of motion,

dr

dt
¼

∂H

∂pr
¼

1

m∗
pr þ

ℏ

2im∗

1

r
¼

ℏ

im∗

∂ lnψ

∂r
þ

ℏ

2im∗

1

r
, (13)

dθ

dt
¼

∂H

∂pθ
¼

1

m∗r2
pθ þ ωL ¼

ℏ

im∗r2
∂ lnψ

∂θ
þ ωL: (14)
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The appearance of the imaginary number i ¼
ffiffiffiffiffiffiffi

�1
p

on the right-hand side of the above equa-

tions indicates that the quantum trajectory r tð Þ;θ tð Þð Þ has to be defined in the complex space as

r tð Þ;θ tð Þð Þ ¼ rR tð Þ þ irI tð Þ;θR tð Þ þ iθI tð Þð Þ to guarantee the solvability of Eqs. (13) and (14). It is

just the coupling connection between the real and imaginary parts that gives rise to the

quantum phenomena, as we have observed in the real world, such as wave-particle duality

[15], tunneling [16], and Heisenberg uncertainty principle [17]. For a given 1D wavefunction

Ψ t; xð Þ expressed in Cartesian coordinates, the complex Hamiltonian Eq. (1) has a simple form:

H t; x; pð Þ ¼ 1

2m
p2 þ V t; xð Þ þ ℏ

2im

∂p

∂x
¼ 1

2m
p2 þ V t; xð Þ � ℏ

2

2m

∂
2lnΨ t; xð Þ

∂x2
: (15)

The Hamilton equation for x turns out to be

_x ¼ ∂H

∂p
¼ p

m
¼ 1

m

∂S

∂x
¼ ℏ

im

∂Ψ

∂x
, x∈C (16)

which can be conceived of as a complex-valued version of Bohmian mechanics [18, 19]. The

complex quantum trajectory method based on Eq. (16) has been recently developed into a

potential computational tool to analyze wave-packet interference [20] and wave-packet scat-

tering [21].

The wavefunction ψ has to be solved in advance from the Schrodinger Eq. (10), before we

determine the electron’s quantum trajectory r tð Þ;θ tð Þð Þ from Eqs. (13) and (14). In terms of the

dimensionless radial distance r ¼ ℏ=mωð Þ�1=2r, the eigenvalues En, l and the related eigenfunction

ψn, l can be solved analytically as [22].

En, l ¼ 2nþ jlj þ 1ð Þℏωþ lℏωL, (17)

ψn, l r;θð Þ ¼ Rn, l rð ÞΘl θð Þ ¼ Cn, le
�r

2=2
r
∣l∣L∣l∣n r

2
� �

eilθ, (18)

where n ¼ 0, 1, 2,⋯ is the radial quantum number, l ¼ 0, � 1, � 2,⋯ is the angular quantum

number, and Cn, l is a normalization factor. The electronic motion in the eigenstate ψn, l now can

be established by integrating Eqs. (13) and (14) with ψ given by Eq. (18):

dr

dτ
¼ 1

i

d lnRn, l rð Þ
dr

þ 1

2r

� �

≜ f n, l rð Þ, (19)

dθ

dτ
¼ l

r2
þ ωL

ω
: (20)

where the dimensionless time is expressed by τ ¼ tω. Eq. (20) indicates that the angular

dynamics θ τð Þ is influenced by the magnetic field B via the relation ωL ¼ eB= 2m∗cð Þ and

reveals the existence of a critical B such that the Larmor angular velocity ωL=ω counterbalances

the quantum angular velocity l=r2 to yield dθ=dτ ¼ 0. The stagnation magnetic field denotes

the critical B that stagnates the electron with zero angular displacement within a quantum dot.

The occurrence of magnetic stagnation retards the electronic transport and causes a jump in
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resistance. In the following sections, we will characterize the stagnation magnetic field from

the equations of motion Eqs. (19) and (20) and verify the consistency between this theoretical

prediction and the experimental measurement of resistance.

3. Standing waves and critical magnetic field

The conductivity of a quantum dot depends on how electrons move under the confinement

potential within the quantum dot. Eqs. (19) and (20) provides us with all the required infor-

mation to describe the underlying electronic quantum motion. The radial motion r τð Þ

described by Eq. (19) and the angular motion θ τð Þ described by Eq. (20) are, individually,

periodic time functions, whose periods, Tr and Tθ, can be computed by using the residue

theorem. In case that the radial and angular motions are not commensurable, i.e., Tr=Tθ∉Q,

the overall motion is not periodic and the electron’s orbit precesses continuously around the

periphery of the quantum dot, as shown in Figure 2a. By way of this precession orbit, an

electron can pass through the quantum dot from the entrance to the exit and contribute to the

conductance.

On the other hand, if Tr=Tθ is a rational number, the shape of the electron’s orbit is stationary

like a standing wave, as shown in Figure 2b. Except that the orientation of the standing wave

happens to align with the direction from the entrance to the exit, as shown in Figure 2c,

passage through the quantum dot is prohibited, when a standing-wave motion emerges. A

standing-wave (non-precessing) orbit has to satisfy the commensurability condition,

Tθ ¼ NTr (21)

where N is a positive integer. This condition ensures that when the electron undergoes a

complete oscillation in the θ direction, there are integral numbers of oscillation in the r direction.

Once electronic standing waves emerge in a quantum dot, the electron after a complete θ

revolution will return to the entrance to the quantum dot and consequently contribute to the

resistance of the quantum dot.

As shown in Figure 2d, the standing-wave motion degenerates into a confined motion such

that the electron is trapped into a closed trajectory, in the extreme case N ! ∞. When the

electron is trapped or stagnated, it is in no way to pass through the quantum dot and causes a

remarkable increase in resistance. The special magnetic field corresponding to N ! ∞ plays

the major role in the magneto-resistance and is to be derived below.

The pattern and the orientation of the standing waves can be controlled by the applied

magnetic field B via the relation Eq. (20), which indicates that the angular motion depends on

the parameter,

ωL

ω
¼

ωL
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ω2
0 þ ω2

L

q ¼
eB= 2m∗cð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ω2
0 þ e2B

2= 2m∗cð Þ2
q , (22)
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which, in turn, is solely determined by the magnetic field B. We are able to control the resistance

of the quantum dot by varying the magnitude of B to satisfy the commensurability condition

Eq. (21). Our next issue is to characterize the critical magnetic field Bc that satisfies the commen-

surability condition Eq. (21). The period Tr in Eq. (21) can be evaluated by the radial dynamics

Eq. (19). The radial motion r tð Þ is a periodic time function whose trace on the complex r plane

forms a closed path cr, along which the period Tr can be computed as a contour integral as

Tr ¼

ð
dτ ¼ ∮ cr

dr

f n, l rð Þ
: (23)

Figure 2. Four types of electronic quantum trajectory in a quantum dot. (a) a magnetic field (Bc ¼ 0:4T) not satisfying the

commensurability condition Eq. (21) yields precessing trajectories. (b) A critical magnetic field Bc ¼ 0:204T yields

standing-wave like quantum trajectory, whose five wavelengths on the circumference do not contact the exit of the

quantum dot. (c) A magnetic field Bc ¼ 0:26T yields similar standing-wave trajectory as that in part (b) but with six

wavelengths which contact both the entrance and exit of the quantum. (d) At Bc ¼ 0:65T, a stagnation magnetic field, the

electron is stagnated within an isolated region of θ.
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According to the residue theorem, the contour integral in Eq. (23) is equal to 2πi times the sum

of the residues of 1=f n, l rð Þ evaluated at its poles within the contour cr, i.e.,

Tr ¼ ∮ cr

dr

f n, l rð Þ ¼ 2πi
X

k

Rk, (24)

where Rk is the residue of 1=f n, l rð Þ evaluated at its kth pole. Let Ωk be the set containing all of

contours which enclose the same poles of 1=f n, l rð Þ. According to the residue theorem, the

integrals along the contours belonging to the same set Ωk have the same contour integral,

denoted by T kð Þ
r
. If the number of different ways of pole encirclement is M, we can define M

contour sets,Ω1,Ω2,…,ΩM, with each contour set corresponding to one particular way of pole

encirclement. Along all the possible contours, the period Tr defined by Eq. (23) can only have

M discrete values, T 1ð Þ
r
, T 2ð Þ

r
,…, T Mð Þ

r
, defined by

Tr ¼ ∮ cr

dr

f n, l rð Þ ¼ T kð Þ
r
, ∀cr ∈Ωk, k ¼ 1, 2,⋯,M: (25)

The sequence T 1ð Þ
r
;T 2ð Þ

r
;⋯;T Mð Þ

r

n o

then constitutes a set of quantization levels for the period Tr

in the quantum state ψn, l r;θð Þ.

(A) Standing Wave with l¼0

In case of l ¼ 0, the radial dynamics and azimuth dynamics are decoupled according to

Eqs. (19) and (20). A look on the ground state n; lð Þ ¼ 0; 0ð Þ is helpful to understand some

common features in the states with l ¼ 0. The related wavefunction is given by Eq. (18) as

R0,0 rð Þ ¼ e�r
2=2 and Θ0 θð Þ ¼ 1. Substituting this wavefunction into Eqs. (19) and (20) yields

the equations of motion for the ground-state electron,

dr

dτ
¼ i

2r2 � 1

2r
,

dθ

dτ
¼ ωL

ω
: (26)

It appears that that the ground-state electron rotates with a constant angular velocity

ωL=ω around its equilibrium radial position req ¼
ffiffiffi

2
p

=2. Therefore, the azimuth period

Tθ is simply 2π= ωL=ωð Þ, and the radial period Tr can be computed from Eqs. (24) and

(26) as

Tr ¼
1

i
∮ cr

2r

2r2 � 1
dr ¼ π, (27)

where cr is any contour enclosing the pole req ¼
ffiffiffi

2
p

=2 on the complex plane of r.

The commensurability condition Eq. (21) with the calculated Tr and Tθ for the ground state

turns out to be
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ωL

ω
¼ 2

N
, N ¼ 3, 4, 5,⋯, (28)

where we note ωL=ω < 1 from its definition in Eq. (22). The critical magnetic field Bc now can

be solved from Eq. (28) as

Bc ¼
B0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

N2=4� 1
q , N ¼ 3, 4, 5,⋯, (29)

where B0 is the magnetic field whose Larmor frequency ωL is equal to the natural frequency ω0

of the harmonic oscillator, i.e., B0 ¼ 2m∗c=eð Þω0. The relation expressed by Eq. (29) character-

izes all the magnetic fields that force the electron to behave like a standing wave in the ground

state of a quantum dot.

Regarding excited states, there are multiple periods in the radial motion r τð Þ as indicated by

Eq. (25). Taking first excited state n; lð Þ ¼ 1; 0ð Þ as an illustrating example, the quantum dynam-

ics is described by

dr

dτ
¼ i

2r4 � 11r2 þ 6

2r r2 � 2ð Þ
dθ

dτ
¼ ωL

ω
, (30)

which has four equilibrium points at

req ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

11�
ffiffiffiffiffi

73
pp

2
(31)

According to different encirclements of equilibrium points, four sets of complex trajectories

r τð Þ can be identified as shown in Figure 3a, whereΩ1 andΩ2 denote the sets of all trajectories

enclosing only one equilibrium point,Ω3 denotes the set enclosing two equilibrium points, and

Ω4 denotes the set enclosing all the four equilibrium points.

Corresponding to the four different ways of encirclement, the four quantization levels of Tr can

be computed from Eq. (24) as

Tr ¼
2π 73� 3

ffiffiffiffiffi

73
p� �

292
,π, 2π: (32)

The commensurability condition for the occurrence of standing wave in the four contour sets

now can be derived from Eq. (21) as

ωL

ω
¼

73þ 3
ffiffiffiffiffi

73
p

16N
,N ≥ 7, r τð Þ∈Ω1

73� 3
ffiffiffiffiffi

73
p

16N
,N ≥ 3, r τð Þ∈Ω2

2

N
, N ≥ 3, r τð Þ∈Ω3

1

N
, N ≥ 2, r τð Þ∈Ω4

8

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

:

9

>

>

>

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

>

>

>

;

(33)
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The related critical magnetic field Bc can be determined by substituting Eq. (33) into Eq. (22).

Comparing Eq. (28) with Eq. (33), we can see that the critical Bc, which raises standing waves in

the ground state, also raises standing waves in the first excited state. The peaks of the magneto-

resistance just concentrate on the dominant critical magnetic field that concurrently produces

standing waves in different states.

(B) Standing Wave with l > 0.

In the case of l > 0, the cyclotron angular velocity ωL=ω and the quantum angular velocity l=r2

are in the same direction so as to give an intensified resultant _θ ¼ l=r2 þ ωL=ω. The coupling

between the azimuth motion θ τð Þ and the radial dynamics r τð Þ makes the evaluation of Tθ

more difficult; however, because r τð Þ is a periodic function, we can evaluate _θ in Eq. (20) by

simply replacing l=r2 with its average value l=r2
� �

ave
, if only the period of θ τð Þ is concerned,

Figure 3. (a) Four sets of complex trajectories r τð Þ are identified according to different encirclements of equilibrium

points in the state n; lð Þ ¼ 1; 0ð Þ. (b) Typical time response of an increasing Re θð Þ corresponds to the trajectory shown in

Figure 2b. (c) Typical time response of an oscillatory Re θð Þ corresponds to the trajectory shown in Figure 2d.
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Tθ ¼ 2π
_θave

¼ 2π

l=r2ð Þave þ ωL=ω
¼ NTr: (34)

The time average l=r2
� �

ave
is computed over one period of r τð Þ and can be converted into a

contour integral along the contour cr traced by r τð Þ on the complex plane:

l

r2

� �

ave

¼ l

Tr

ðTr

0

dτ

r2 τð Þ ¼
l

Tr

∮ cr

dr

r2f n, l rð Þ : (35)

Substituting the above l=r2
� �

ave
into Eq. (34), we obtain the critical value of ωL=ω as

ωL

ω
¼ 2π

NTr

� l

r2

� �

ave

: (36)

Due to the constraint 0 ≤ωL=ω ≤ 1, the admissible integer N lies in the interval

2π=Tr

1þ l=r2ð Þave
< N ≤

2π=Tr

l=r2ð Þave
, (37)

where Tr and l=r2
� �

ave
are given by Eqs. (24) and (35), respectively. The admissible range of N

is narrowed by increasing angular quantum number l, as can be seen from inequality Eq. (37).

There is a maximum allowable l beyond which inequality Eq. (37) has no integer solution and

standing-wave motion within the quantum dot disappears. To compare with the quantum

state n; lð Þ ¼ 1; 0ð Þ considered previously, let us study the state n; lð Þ ¼ 1; 1ð Þ whose quantum

motion is described by

dr

dτ
¼ i

2r4 � 11r2 þ 6

2r r2 � 2ð Þ ,
dθ

dτ
¼ 1

r2
þ ωL

ω
: (38)

The period Tr is the same as that derived in Eq. (32), and the period Tθ can be computed by

Eq. (34) with l=r2
� �

ave
evaluated by the contour integral Eq. (35) as

1

r2

� �

ave

¼
l 11þ

ffiffiffiffiffi

73
p� �

=12, r τð Þ∈Ω1

l 11�
ffiffiffiffiffi

73
p� �

=12, r τð Þ∈Ω2

2l=3, r τð Þ∈Ω3∪Ω4

8

>

<

>

:

9

>

=

>

;

(39)

Using Tr and l=r2
� �

ave
in Eqs. (36) and (37), the critical value of ωL=ω in the state n; lð Þ ¼ 1; 1ð Þ

becomes

ωL

ω

73þ 3
ffiffiffiffiffi

73
p

16N
� 11þ

ffiffiffiffiffi

73
p

12
, N ¼ 3, r τð Þ∈Ω1

73� 3
ffiffiffiffiffi

73
p

16N
� 11�

ffiffiffiffiffi

73
p

12
, 3 ≤N ≤ 14, r τð Þ∈Ω2

2=N � 2=3, N ¼ 2, 3, r τð Þ∈Ω3

1=N � 2=3, N ¼ 1, r τð Þ∈Ω4

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

9

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

;

(40)
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The comparison between Eqs. (33) and (40) leads to the observation that the number of

the allowed integer N decreases dramatically when l increases from 0 to 1. Since the total

different number of N accounts for the number of different ways by which standing wave can

be formed, the possibility for the occurrence of standing-wave motion and thus the electronic

resistance decreases with increasing angular quantum number l. The main reason is that the

increment of the angular velocity _θ ¼ l=r2 þ ωL=ω with large l accelerates the electron’s angular

motion around the quantum dot and thus improves the conductance of the quantum dot.

(C) Standing Waves with l < 0

In this case, the cyclotron angular velocity ωL=ω and the quantum angular velocity l=r2 are in

opposite directions so as to give a weakened resultant _θ ¼ l=r2 þ ωL=ω. The resultant angu-

lar velocity _θave may be positive, negative or zero, depending on the magnitude of l=r2
� �

ave
,

which can be classified into three categories: (1) l=r2
� �

ave
≥ 0, (2) �1 < l=r2

� �

ave
< 0, and (3)

l=r2
� �

ave
≤ � 1, as listed in Table 1.

The cases of l ¼ 0 and l > 0 considered previously belong to category (1) with _θave > 0, while

the case of l < 0 belongs to categories (2) and (3). Taking into account the motion with _θave < 0,

Eq. (36) now becomes

ωL

ω
¼ �

2π

NTr

�
l

r2

� �

ave

, (41)

where the admissible integer N for the three categories is summarized in Table 1.

The critical magnetic field Bc given by Eq. (41) with _θave > 0 and _θave < 0 produces standing-

wave motions oscillating, respectively, counterclockwise and clockwise around the quantum

dot, as shown in Figure 2b and c. For an angular quantum number with �1 < l=r2
� �

ave
< 0 in

category (2), there exists a special Larmor angular velocity ωL=ω such that it counterbalances

the quantum angular velocity l=r2
� �

ave
to yield

_θave ¼ l=r2
� �

ave
þ ωL=ω ¼ 0: (42)

Range of l Critical ωL=ω Range of integer N

l=r2
� �

ave
≥ 0 ωL

ω
¼ 2π

NTr

� l
r2

� �

ave

2π=Tr

1þ l=r2ð Þave
< N ≤

2π=Tr

l=r2ð Þave

�1 < l=r2
� �

ave
< 0 ωL

ω
¼ 2π

NTr

� l
r2

� �

ave

N >
2π=Tr

1þ l=r2ð Þave

ωL

ω
¼ � l

r2

� �

ave

N ! ∞

ωL

ω
¼ �2π

NTr

� l
r2

� �

ave

N ≥
2π=Tr

� l=r2ð Þave

l=r2
� �

ave
≤ � 1 ωL

ω
¼ �2π

NTr

� l
r2

� �

ave

�2π=Tr

l=r2ð Þave
≤N <

�2π=Tr

1þ l=r2ð Þave

Table 1. The relation between critical Larmor frequency and angular quantum number l.
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The critical Bc satisfying _θave ¼ 0 produces isolated standing waves that form closed trajecto-

ries as shown in Figure 2d. This critical Bc nullifies the electron’s net angular displacement and

is called stagnation magnetic field. Because a passage through the quantum dot requires a net

angular displacement equal to π, an electron with _θave ¼ 0 is unable to pass the quantum dot

and makes no contribution to the conductivity.

In a case study of l < 0, we consider the state of n; lð Þ ¼ 1;�1ð Þ, whose quantum equations of

motion read

dr

dτ
¼ i

2r4 � 11r2 þ 6

2r r2 � 2ð Þ ,
dθ

dτ
¼ �1

r2
þ ωL

ω
: (43)

The radial trajectories r τð Þ are the same as those depicted in Figure 3a. Along different

sets of radial trajectory, different modes of standing-wave motion are excited. According

to the value of l=r2
� �

ave
¼ � 1=r2

� �

ave
given by Eq. (39), it is found that the trajectory set Ω1

belongs to category (3), while the sets Ω2, Ω3 and Ω4 belong to category (2), as tabulated

in Table 2.

Typical standing waves in Ω1, Ω2 and Ω3 are shown in Figure 4 for N ¼ 5, 7 and 9. We can see

that the geometrical meaning of the integer N defined in Eq. (21) is just the number of electronic

waves distributed on the circumference of the quantum dot. Due to _θave < 0 in Ω1 trajectory set,

as indicated in Table 2, the mean rotation direction of the electron in Ω1 is clockwise. Because
_θave merely denotes the mean angular velocity, locally we may have _θ > 0 during some short

periods in which the electron rotates in an opposite direction as shown in Figure 3b.

In the state ψ, we have two stagnation frequencies at ωL=ω ¼ 11�
ffiffiffiffiffi

73
p� �

=12 and ωL=ω ¼ 2=3.

In the presence of magnetic stagnation, Larmor angular velocity ωL=ω is counterbalanced by

Set Frequency range Critical frequency Integer N

Ω1 0 ≤ ωL

ω < 1 ωL

ω ¼ � 73þ3
ffiffiffiffi

73
p

16N þ 11þ
ffiffiffiffi

73
p

12
4 ≤N ≤ 9

Ω2 11�
ffiffiffiffi

73
p

12 ≤
ωL

ω < 1 ωL

ω ¼ 73�3
ffiffiffiffi

73
p

16N þ 11�
ffiffiffiffi

73
p

12
N ≥ 4

ωL

ω ¼ 11�
ffiffiffiffi

73
p

12
ωL

ω ¼ 11�
ffiffiffiffi

73
p

12
N ! ∞

0 ≤ ωL

ω < 11�
ffiffiffiffi

73
p

12
ωL

ω ¼ � 73�3
ffiffiffiffi

73
p

16N þ 11�
ffiffiffiffi

73
p

12
N ≥ 15

Ω3
ωL

ω > 2
3

ωL

ω ¼ 2
N
þ 2

3
N ≥ 7

ωL

ω ¼ 2
3

ωL

ω ¼ 2
3

N ! ∞

0 ≤ ωL

ω < 2
3

ωL

ω ¼ � 2
N
þ 2

3
N ≥ 3

Ω4
ωL

ω > 2
3

ωL

ω ¼ 1
N
þ 2

3
N ≥ 4

ωL

ω ¼ 2
3

ωL

ω ¼ 2
3

N ! ∞

0 ≤ ωL

ω < 2
3

ωL

ω ¼ � 1
N
þ 2

3
N ≥ 2

Table 2. Distribution of the critical frequencies in the state n; lð Þ ¼ 1;�1ð Þ.
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the quantum angular velocity l=r2
� �

ave
such that the electron’s net angular displacement Δθave

is zero and the electron is stagnated within the quantum dot. The instantaneous dynamics of

r τð Þ and θ τð Þ are solved from Eq. (43) at the stagnation frequency ωL=ω ¼ 2=3 and the results

are shown in Figure 3c. As expected, the net change of θ τð Þ is zero after a period of oscillation.

The projection of the computed complex trajectory on the real x� y plane is a closed path as

illustrated in Figure 2d. This closed path produced by magnetic stagnation isolates the electron

from the exit of the quantum dot and is the main cause of electronic resistance.

Apart from the consequence of _θave ¼ 0, the effect of magnetic stagnation is also reflected in the

wave number N. From Eq. (21), the relation between _θave and N can be expressed by

N ¼ 2π=Tr

θave
¼ 2π=Tr

l=r2ð Þave þ ωL=ω
(44)

There are infinitely many wavelengths distributed on the circumference of the quantum dot, as
_θave approaches to zero. The variation of the wave number N with respect to the critical Larmor

frequency ωL=ω for the quantum state n; lð Þ ¼ 1;�1ð Þ is demonstrated in Figure 5a. A prominent

change of N appears in the vicinity of the two stagnation frequencies ωL=ω ¼ 11�
ffiffiffiffiffi

73
p� �

=12

and 2=3, at which the wave number N approaches to infinity. These two stagnation frequencies

Figure 4. Typical standing-wave motions in the state n; lð Þ ¼ 1;�1ð Þwith wave number N ¼ 5,7 and 9. The trajectory sets

Ω1, Ω2, and Ω3 refer to the three sets of radial trajectory defined in Figure 3a.
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coincide with the locations of the resistance peaks by comparing with the experimental results as

shown in Figure 5b.

4. Experimental verification

This section will compare the above theoretical predictions with the existing experimental data

[4, 13] to confirm the fact that the effect of magnetic stagnation is the main cause to the

resistance oscillation of quantum dots in low magnetic field. The experiment was performed

in an AlGaAs/GaAs heterostructure with a carrier concentration ne ¼ 2:5� 1011cm�2. Resis-

tance was measured at temperature T ¼ 1:4K using a sensitive lock-in amplifier at currents of

typically 1 nA and a frequency of 12 Hz. The resulting resistance measurement in the range of

low magnetic field B ≤ 1:3 is depicted in Figure 5b showing a strong peak located around

B ¼ 0:22T and three weak peaks at B ¼ 0:65T, 0:97T, and 1:21T.

Thus far, our analysis on quantum trajectory focuses on some specific states. In order to know

the influence of the applied magnetic field on the resistance, we have to consider all the possible

quantum states occupied in the device. At temperature T ¼ 1:4K, where the resistance is mea-

sured, the possible states to be occupied can be estimated by the Fermi-Dirac distribution,

f Eð Þ ¼ 1

1þ e En, l�EFð Þ=kBT , (45)

where En, l is the energy level given by Eq. (17), and EF ¼ 8:5 meV is the Fermi energy of the

AlGaAs/GaAs heterostructure. All the possibly occupied states and their associated stagnation

frequencies are listed in Table 3.

Figure 5. (a) The variation of wave number N with respect to the Larmor frequency ωL=ω in the quantum state

n; lð Þ ¼ 1;�1ð Þ. (b) The two stagnation frequencies, ωL=ω ¼ 11�
ffiffiffiffiffi

73
p� �

=12 and 2=3, coincide with the two peaks of the

experimental curve of resistance.
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An incident electron subjected to an applied magnetic field B may enter any one of the

occupied states listed in Table 3. The electronic resistance induced by B depends on the global

transportation behavior across the quantum dot through all the allowable states. Magnetic

stagnation slows down the electron’s angular rate and retards the passage of the electron. The

angular motion is fully retarded and the electron is trapped in the quantum dot without

contribution to the conductance, as _θave ! 0. To quantify the effect of magnetic stagnation,

we define a magneto-stagnation function as following

S Bð Þ ¼ �
X

n, l

ln _θave n; l;Bð Þ
�

�

�

� ¼ �
X

n, l

ln
ωL

ω
þ

l

r2

� �

ave

�

�

�

�

�

�

�

�

n, l

(46)

where the summation is taken over all the states listed in Table 3. The expression of ωL=ω as a

function of B has already been given by Eq. (22). Upon comparing the prediction of Eq. (46)

with the experimental results, we evaluate the constants in ωL=ω according to the experimental

setup [4, 13], which gave ℏωc ¼ ℏeB=m ¼ 1:76B meVand ℏω0 ¼ ℏ
ffiffiffiffiffiffiffiffiffi

k=m
p

¼ 0:64meV. Using

these data in Eq. (22) yields

ωL

ω
¼

0:88B
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

0:4096þ 0:7744B2
p (47)

which in turn is substituted into Eq. (46) to express the magneto-stagnation function S Bð Þ as an

explicit function of B.

The electron’s total angular velocity via all admissible quantum states at T ¼ 1:4K can be esti-

mated by the function S Bð Þ. Because of S Bð Þ ! ∞ as _θave ! 0, a large value of S Bð Þ implies that

there is a high resistance to the electron’s angular movability. Accordingly, S Bð Þ can be reasonably

treated as an alternative description of electronic resistance. Figure 5a and b illustrates the first

ωL=ω n

0 1 2 3 4

l 0 0 0 0 0 0

�1 2/3 2/3, 0.205 2/3, 0.373, 0.119 2/3, 0.52, 0.19 2/3, 0.252, 0.124

�2 4/5 4/5, 0.316 4/5, 0.543, 0.2 4/5, 0.73, 0.31, 0.146 0.4, 0.213, 0.115

�3 6/7 6/7, 0.391 6/7, 0.64, 0.26 0.39, 0.196 ∗

�4 8/9 8/9, 0.445 0.7, 0.3, 8/9 0.454, 0.237 ∗

�5 ∗ 0.486 0.75, 0.347 ∗ ∗

�6 ∗ 0.52 0.78, 0.38 ∗ ∗

�7 ∗ 0.546 ∗ ∗ ∗

�8 ∗ 0.57 ∗ ∗ ∗

Table 3. Stagnation frequencies ωL=ω evaluated in the quantum states n; lð Þ at T ¼ 1:4K.
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evidence of this correspondence. At the two stagnation frequencies ωL=ω ¼ 11�
ffiffiffiffiffi

73
p� �

=12 and

2=3, corresponding to the two peaks of the resistance curve around B ¼ 0:22T and B ¼ 0:65T,

S Bð Þ approaches to infinity, even though only the state n; lð Þ ¼ 1;�1ð Þ is considered in Figure 5a.

If magnetic stagnation takes place simultaneously in many states, its effect will be amplified.

Stagnation frequencies such as ωL=ω ¼ 2=3, 4=5, and 6=7 appear concurrently in different

quantum states, as can be seen from Table 3. Because the stagnation function considers the

superposition of ln _θave n; l;Bð Þ
�

�

�

� coming from all the allowable states, the value of S Bð Þ is

intensified at such stagnation frequency concurring in different states. According to the con-

version formula Eq. (47), the magnetic field relating to the stagnation frequencies ωL=ω ¼ 2=3,

4=5, and 6=7 is found to be B ¼ 0:65T, 0:97T, and 1:21T, respectively, which are just the

locations of the three weak peaks of the resistance curve as shown in Figure 5b.

Figure 6 demonstrates the strong correspondence between the stagnation function S Bð Þ and
the resistance curve, where the resistance curve is superposed on the gray-level plot of the

stagnation function S Bð Þ with the intensity of darkness representing the magnitude of S Bð Þ.
As can be seen, the gray-level distribution matches closely with the resistance curve and in

that the dark bands of S Bð Þ correctly locate the peaks of the resistance. The gray-level plot of

S Bð Þ has several narrow dark bands and one broad dark band. The narrow dark bands come

from the isolated stagnation frequencies at ωL=ω ¼ 2=3, 4=5, and 6=7, and their locations

coincide with the three weak peaks of the resistance curve. The broad dark band of S Bð Þ
covers the neighborhood of the strong peak of the resistance curve, which is formed by a

series of closely distributed stagnation frequencies centered at ωL=ω ¼ 0:29, or equivalently,

Figure 6. A gray-level plot of the stagnation function S Bð Þ with the darkness intensity representing the value of S Bð Þ is
compared with the resistance curve. The resistance curve [4, 13] has a strong peak located around B ¼ 0:22T and three

weak peaks at B ¼ 0:65 T, 0:97T, and 1:21 T. It appears that the locations of the three narrow dark bands coincide with the

three weak peaks of the resistance curve, while the broad dark band covers the neighborhood of the strong peak of the

resistance curve.
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at B ¼ 0:22T from Eq. (47). The agreement between the experimental data of magneto-

resistance and the magneto-stagnation function S Bð Þ constructed from the quantum Hamil-

ton dynamics Eqs. (19) and (20) is not surprising, if we recall that Eqs. (19) and (20) is fully

determined by the wavefunction ψn, l r;θð Þ, which is responsible for the observed magneto-

resistance in quantum dots.

5. Conclusions

Parallel to the existing probabilistic description for a quantum dot by a probability density

function ψ∗ψ, this chapter considered an alternative trajectory description according to a

dynamic representation of ψ constructed from quantum Hamilton mechanics. The equivalence

between a given wavefunction ψ xð Þ and its dynamic representation _x ¼ f xð Þ ensures that the

various quantum properties possessed by ψ also manifest in its dynamic representation. The

established Hamilton dynamics for a quantum dot predicts that there are special magnetic fields,

which can trap electrons within the quantum dot and cause a significant raise in the resistance.

The comparison with experimental data validates this theoretical prediction. Apart from the

magneto-transport considered in this chapter, many other features of a quantum dot, which

were studied previously from a probabilistic perspective based on ψ, now can be reexamined

from a trajectory viewpoint based on the dynamic representation of ψ proposed here.
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