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Abstract

The vertebrates’ retina has a highly conserved laminar organization of 10 alternating
nuclear and plexiform layers. Species differences in the retinal specializations, i.e., areas
of higher cell density, among the species, represent specific regions of the visual field of
higher importance for a better spatial resolution and indicate distinct evolutionary pres-
sures on the structures of the visual system, which can be related to many aspects of the
species evolutionary history. In this chapter, we analyzed the density and distribution of
cells of the retinal ganglion cell layer (GCL) and estimated the upper limits of the spatial
resolving power of 12 species of snakes from the Colubridae family, 6 diurnal and 6
nocturnal, which inhabit different habitats. Our results revealed lower visual acuity in
nocturnal species, compared to diurnal, and we observed different types of retinal spe-
cialization, horizontal streak, area centralis, or scattered distribution, with higher cell
density in different retinal regions, depending on the species. These variations may be
related to ecological and behavioral features, such as daily activity pattern, habitat, and
substrate preferentially occupied, hunting strategies and diet. This comparative study
indicates the complexity of the adaptive strategies of the snakes’ visual system.

Keywords: retina, visual ecology, visual acuity, ganglion cells, snakes

1. Introduction

1.1. The visual system

The sensory systems allow the animals to interact properly with their environment and with

other organisms. The perception of the surrounding environment is essential for the animals’

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



survival, and in most vertebrates, the visual system plays a crucial role in basic activities such

as foraging behavior, sheltering, flight from predators, and breeding. Functional and anatom-

ical differences of the visual structures often reflect distinct selective pressures implied by the

ecological niches.

In all vertebrates, three layers of tissue concentrically arranged form the eyes. The sclera is the

outermost layer composed by highly interconnected collagen fibers that support the eye. In the

anterior part of the eye, the fibers of the sclera assume an orderly conformation that confers

transparency to the sclera, forming the cornea, a lens through which the light can pass. The

cornea, together with the crystalline lens, located between the anterior chamber and the

vitreous humor, a gelatinous substance that fills the eyeball, enable the focusing of the image

in the retina. The second layer is the uvea, formed by the iris, ciliary body, and choroid, and

provides nutrients and oxygen to third and innermost layer, the retina, a tissue formed by a

network of nerve and glial cells [1, 2].

1.1.1. The retina

In all vertebrates, the retina has an organizational pattern of 10 layers of body cells, nerve

plexuses, limiting membranes, pigment epithelium, and nerve fibers (Figure 1). This laminar

tissue, responsible for capturing and initiating the processing of luminous information for

image formation, has a complex organization, with five main types of neurons: photorecep-

tors, bipolar cells, horizontal cells, amacrine cells, and ganglion cells. The neuroanatomist

Santiago Ramón y Cajal was the first to describe, in 1893 [1], this thin neural tissue, with a 10-

layered division.

The retinal pigment epithelium is the outermost layer, formed by epithelial cells with pigment

granules, and has a number of metabolic functions essential for retinal homeostasis and

activity, such as nutrients and oxygen supply, and cycling of the photosensitive chromophore

(retinal) [3–6]. The photoreceptor layer (PL) is formed by the outer and inner segments of these

Figure 1. Photomicrograph of a cross section of the diurnal snake, Tomodon dorsatus, labeled with hematoxylin and eosin.

PL, photoreceptor layer; ONL, outer nuclear layer; OPL, outer plexiform layer; INL, inner nuclear layer; IPL, inner

plexiform layer; GCL, ganglion cell layer. Scale bar = 20 μm.
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neurons (cones and rods), specialized in capturing and converting the light energy into elec-

trochemical energy and transmitting this information to the cells of the following layer. The

outer limiting membrane (OLM), located below the PL, is formed by the extensions of Müller

cells (glial cells) and is followed by the outer nuclear layer (ONL), with the photoreceptors

nuclei. These first-order neurons make synaptic contact with second order neurons, bipolar

and horizontal cells, in the outer plexiform layer (OPL). Bipolar, horizontal, and amacrine cell

bodies are located in the inner nuclear layer (INL), and these cells make synaptic contact with

the ganglion cells (third order neurons), in the inner plexiform layer (IPL). The cell bodies of

ganglion cells and displaced amacrine cells form the ganglion cell layer (GCC). The ganglion

cell axons form the nerve fiber layer (NFL) and come together to form the optic nerve, which

conducts information from the retina to the higher visual centers in the brain. The inner

limiting membrane (ILM) is also composed of laterally contacting extensions of Müller cells [1].

The photoreceptors contain visual photopigments, which are responsible for capturing lumi-

nous information and initiating visual processing. Two main types of photoreceptors are

usually present in vertebrate retinas, cones, and rods. The outer segments of these cells consist

of stacked membranous disks containing the visual photopigments. The latter are formed by a

membrane protein, opsin or rhodopsin, coupled to a chromophore, responsible for the absorp-

tion of photons and the beginning of the visual processing [7, 8]. The higher number of

photopigments in rods provides greater absorption capacity of photons, which makes these

cells more sensitive to light compared to cones. Rods are responsible for the scotopic (noctur-

nal) vision system, which is highly sensitive, with a large capacity of light capturing and signal

amplification generated by a single photoizomerization event and the great synaptic conver-

gence, with many rods attached to one ganglion cell, through the bipolar cells, but with a low

visual acuity, due to the high degree of convergence. The photopic (diurnal) visual system

mediated by cones has less sensitivity but greater visual acuity [7–9]. Under high luminous

intensity, rods are saturated, while cones are activated. During the night, rods are activated

with the illumination below the activation threshold of cones [10]. Nocturnal animals usually

have retinas with predominance of rods, whereas diurnal animals possess greater amount of

cones. Different types of photopigments capture maximally photons with different wave-

lengths. The presence of distinct photoreceptors in the retina, with different opsin types,

together with a postreceptor mechanism capable of comparing the signal transmitted by these

neurons, is the first step to enable the color vision [11].

More recently, a third photoreceptor class was described in the inner retina of many verte-

brates [12–14]. The melanopsin-containing ganglion cells, known as intrinsically photosensi-

tive retinal ganglion cells (ipRGCs), are activated directly by light. These cells give rise to

circuits that process important physiological functions, such as the circadian rhythm synchro-

nization and pupillary light reflex [15–17]. They constitute the nonimage forming visual

system. The ipRGCs represent about 1–3% of the retinal ganglion cells in mammals [14, 18].

In other vertebrates, as fish [19, 20] and birds [21, 22], melanopsin-containing neurons were

described not only in the GCL but also in the other retinal layers.

The ganglion cells are on average larger than the other retinal neurons and have myelinated

axons, with large diameters, capable of transmitting the electrical messages of the visual signal
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generated by the photoreceptors and processed in the inner retina [7], to the receptive areas of

the brain, many millimeters or centimeters away from the retina. Their density and topo-

graphic distribution in the retina are important factors in determining the upper limits for the

spatial resolution power of the eye [23–26].

In short, the highly complex and standardized laminar pattern of the retina is observed in all

vertebrates. However, remarkable differences related to the specific cell types, and their den-

sity and distribution in the retina, the so-called retinal specializations, are observed among the

different species and are related to specific habitats, behaviors, and the species’ visual ecology.

1.1.2. Retinal specializations

A higher concentration of retinal neurons is observed in regions of greater demand for a good

image quality [24, 25, 27–34]. Some studies have shown that cell distribution correlates better

with species behavior and habitat than with phylogeny, and that phylogenetically related

species may have different patterns of distribution and organization of the neural elements

and vice versa [28–30, 35, 36]. The retinal specializations are areas of higher cell density

compared to neighboring areas and include visual streaks, area centralis, and fovea [2, 32, 37,

38]. Visual streaks are elongated regions of higher cell density and can be horizontal or vertical.

The horizontal streak is common in vertebrates that occupy habitats whose visual field is

dominated by the horizon, such as the air-land interface of terrestrial species or water-land

interface of aquatic species [32] (Figure 2). The horizontal streak provides a panoramic view of

the environment without the need for a high degree of eye movement [28, 32]. Examples of

horizontal streaks are observed, for instance, in retinas of the turtle Trachemys scripta elegans

[39, 40], alpacas Vicugna pacos [41], and the agouti Dasyprocta aguti [30, 42]. The vertical streak

Figure 2. Representation of an area centralis located in the central retina, and a horizontal streak extended along the retinal

meridian axis. The variation in cell density is represented by the color gradient, where the darker color indicates the

region of higher density. The white spots represent the optic nerve head.
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is also defined as an elongated increase in cell density but extends along the dorso-ventral axis

of the retina and is usually located in the temporal region. This specialization is more unusual

and can be observed in retinas of species whose visual field is dominated by a vertically

oriented feature, such as the tree branches seen by the sloth Choloepus didactylus [43], the trunk

of the African elephant Loxodonta africana [44], or the water column, seen by vertically migrat-

ing species, as the teleost fish Howella sherborni [45].

Many species have a circular area of higher cell density called area centralis (Figure 2). This type

of specialization does not have the advantage of perceiving the panoramic visual field like that

provided by the horizontal streak and requires a greater degree of eye movement to locate

prey and the presence of potential predators [28, 32]. The area centralis is usually located in the

temporal region of the retina, thus included in the frontal binocular visual field, which is also

determined by the position of the eyes on the head. In some species, there is a concentric

arrangement of the isodensity contours within the area centralis, while in others, the cellular

arrangement is described as anisotropic, because the isodensity contours are not concentric

and the density distribution is irregular [32, 38].

According to Hughes’ “terrain theory” [28], terrestrial animals inhabiting open fields generally

have a horizontal streak with high density of photoreceptors and ganglion cells. Since the

streak provides a panoramic view of the environment, there is no need for eye movements for

detection of objects along the horizon line, an appropriate feature for the field extension vision

and perception of the approach of predators. Arboreal species or those from dense forests

generally have an area centralis, with a higher density of cones and ganglion cells, which

confers better acuity to this circular region. The specific function of the area centralis may vary

depending on the predominant type of retinal ganglion cell [38, 46]. About 20 different types of

ganglion cells have been described in the retina of mammals [47, 48] and can be distinguished

based on their morphology, stratification pattern, and specific functions.

Some primates, reptiles, and birds have a fovea, a specialization of the area centralis, character-

ized by the lateral displacement of cells from the inner layers of the retina and an increase in

the density of ganglion cells in the perifoveal region [2, 32, 49]. In the fovea, there is an increase

in the density of photoreceptors with more elongated outer segments and smaller diameter,

and the presence of only cones favors greater acuity in this region [2, 37, 39, 50]. There are two

main types of foveae—the convexiclivate fovea, with a steep slope on both sides of the

depression, as observed in some fish and birds, or the concaviclivate fovea with a shallow

depression, as in monkeys and humans [32]. In some species, as the sacred kingfisher bird,

Halcyon sancta, the presence of two foveae has been described; a temporal that acts in the

binocular vision and a nasal involved in monocular vision [51].

1.1.3. Spatial resolving power

Variations in the visual acuity may reflect ecological differences among species and are limited

by the diffraction and optical aberration characteristics of the eye, the density of photorecep-

tors and ganglion cells, and by variables such as refraction error, ambient illumination, and

contrast [52]. Lisney and Collin [26] analyzed the retinas of several species of elasmobranchs

(sharks and rays) and observed that species with lower resolution power tend to be relatively
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less active and feed on benthic invertebrates and small fish, while more active, predatory

species that usually feed on larger prey have a greater eye resolving power.

The visual acuity of an animal can be measured using different approaches, such as behavioral

tests, response to a stimulus, ocular movements (preferential look), electrophysiological

recording, or it can be estimated from anatomical data [41]. Because the ganglion cells consti-

tute the final output of visual information from the retina to the higher visual centers, their

density represents a limiting factor of the spatial resolution power of the eye and the ability of

the animal to distinguish fine details of the objects [24]. Thus, the peak density of ganglion cells

in combination with the eye focal length may be used to infer the maximum spatial resolution

power of an animal [24, 25, 33, 34, 53]. These estimated values are usually very close to the

acuity values obtained from more direct methods for many species in which both measure-

ments were compared [54–58].

The retinal specializations and the spatial resolution power of the eye are closely associated

with the animals’ visual ecology. Studies on these aspects of the visual system, which include

the analysis of the density and distribution of retinal neurons and the specific area of higher

degree of visual acuity, bring valuable information on the species biology and are often more

related to ecological and behavioral features than to phylogeny. In order to better understand

the evolution and functioning of this complex sensory system, it is of great value to compare

closely related species with ecological differences. An excellent model for this type of compar-

ative study is the group of snakes, given their great diversity and the variety of ecological

niches occupied by phylogenetically close species.

1.2. Snakes: characteristics of the group and adaptations of the visual system

The infraorder Serpentes is characterized by body stretching, absence of limbs, eyelids and

external ears, and the presence of forked tongue [59] and is subdivided into two main groups.

The Scolecophidia group (blind snakes) is composed by small fossorial snakes with reduced

eyes that feed on small prey as termites and ants. The Alethinophidia group is composed by a

greater diversity of species, with two major groups, the paraphyletic Henophidia group, with

about 180 species, including pythons and boas, and the Caenophidia group, with about 2500

species [60, 61]. Snakes from the Caenophidia group are found in virtually every portion of the

biosphere, except for the poles, some islands, and the ocean deep [62]. The great diversity of

this group, with species adapted to a great variety of habitats, can be explained by the

occurrence of a number of adaptations that favored their dispersion [63–65] and the speciali-

zation of their sensory systems that evolved to allow their survival and adaptive radiation. The

Caenophidia group is therefore characterized by a great diversity of species, with differences

in the circadian activity patterns and in the habitats occupied, including terrestrial, arboreal,

cryptozoic or fossorial, as well as aquatic environments, which include marine or fresh water

habitats [66].

Despite the great diversity of snake’ species and ecological and behavioral features, very few

studies have investigated their retinal specializations. To date, only three studies described the

distribution of neurons in snakes’ retinas. Wong [67] described a visual streak for cones and
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GCL cells in retinas of the terrestrial Thamnophis sirtalis. The arboreal Philodryas olfersii has a

horizontal streak and two discrete anisotropic area centralis in the central and temporal regions

of the retina, while the closely related species, the terrestrial P. patagoniensis, has an anisotropic

area centralis in the ventro-nasal retina [36]. In retinas of marine snakes from the Hydrophiidae

family, Hart et al. [34] observed a horizontal streak in Lapemis curtus, Aipysurus laevis, and

Disteira major, with discrete area in the temporal and nasal quadrants. The species L. curtus and

D. major also have a ventral area.

The upper limits of spatial resolving power, estimated based on the ganglion cell peak density

and the eye focal length, varied between 2.3 and 2.8 cpg in diurnal and terrestrial snakes [36,

67] and were lower in marine species, ranging between 1.1 and 2.3 cpd [34]. The lower values

of marine snakes were attributed to reduced eye size and differences in the photic properties of

water compared to air. A higher visual acuity, 4.9 cpd, was measured by recording evoked

responses from telencephalon in the aquatic snake Nerodia sipedon pleuralis [68]. Compared to

other reptiles, snakes had lower values of visual acuity: 6.1 cpd in the red-eared slider turtle

(Trachemys scripta elegans) [69], 6.8 cpd in the sleepy lizard (Tiliqua rugosa) [70], and 13.6 cpd in

the anoline lizard (Anolis carolinensis) [71]. Compared to mammals, snakes had higher values

than the opossum Didelphis aurita (1.3 cpd) [72], rats (1 cpd) [73, 74], and mice (0.6 cpd) [75] but

lower than cats (10 cpd) [54], and humans (60 cpd) [76].

In short, the diversity of species and the variability of habitats used by snakes point to

important adaptations of their visual system. Studies on the characteristics and adaptations of

the visual system of snakes are extremely scarce in view of the large number of species. Based

on their ecological diversity, caenophidian snakes represent a good model for testing hypoth-

eses of correlations between retinal specializations and behavioral ecology. Thus, we analyzed

and compared the density and distribution of the GCL cells and estimated the eye spatial

resolving power of 12 species from the Colubridae family, with variety regarding their daily

activity pattern, and the preferential substrate: arboreal, terrestrial, fossorial, or aquatic. The

analysis revealed the presence of different specialization types, visual streak or area centralis

located in different regions of the retina, depending on the species. The population of GCL

cells and the estimated upper limit of the spatial resolving power varied among diurnal and

nocturnal species. The diversity of retinal specializations observed in this study seems to be

related to a variety of ecological and behavioral features, pointing to the complexity of the

evolution and adaptations of the retinal structure.

2. Assessing cell density and topographic distribution across the retinas

and estimating the spatial resolving power

In this study, retinas of 12 Colubridae snakes, 6 considered as primarily nocturnal and 6 as

primarily diurnal (Table 1), were collected and dissected for wholemount and Nissl-staining

technique. The adult specimens were obtained at the Butantan Institute, São Paulo, Brazil, and

were euthanized with a lethal injection of sodium thiopental (thiobarbiturate ethyl sodium,

30 mg/kg). Following euthanasia, the eyes were enucleated, and the axial length was
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measured. The cornea, ciliary body, and lens were removed, and the lens diameters were

measured. A small radial incision was made in the dorsal region of each eyecup, for retinal

orientation. The retinas were dissected from the eyecup, the pigment epithelium was sepa-

rated, and the vitreous humor was removed. The retinas were fixed in 10% formalin. After

these procedures, the specimens were fixed in 10% formaldehyde and preserved in the herpe-

tological collection of the Butantan Institute. The animal procedures were done in accordance

with the ethical principles of animal management and experimentation established by the

Brazilian Animal Experiment College (COBEA). Species daily activity pattern and ecological

features were established based on [77–79] (Table 1).

The retinas were flattened on gelatinized slides, with the GCL side facing up. Small radial

incisions were made to allow the retinas to flatten and adhere to the slide. To label the retinal

ganglion cells, we used Nissl-Staining procedures as described previously [36]. Glial cells were

identified by their dark staining, small size, and rounded profile [34, 67, 83] and were not

included in the counts. However, ganglion cells and displaced amacrine cells could not be

reliably differentiated from each other, and both were included in the GCL cell counting [36,

80–85]. To analyze the density and distribution of GCL cells in wholemount retinas, we used a

systematic random sampling and the fractionator principle [53, 82, 86–88]. The coordinates of

the retinal edges were plotted on an Excel spreadsheet, and cells were counted at regular

intervals defined by a sampling grid, ranging from 220 � 220 μm up to 680 � 680 μm,

depending on the size of each retina (Table 2). The coordinates of the sampled fields were

plotted on the same Excel spreadsheet, as well as the number of cells counted per field. The

counting was performed directly under a Leica DMRXE microscope with a 100� oil objective

Family Subfamily Tribe Species Biome Habitat Substrate Activity pattern

Colubridae Colubrinae Chironius bicarinatus AF F Ar/Te D

Spillotes pullatus AF F Ar/Te D

Dipsadinae Atractus pantostictus CE/AF F Su N

Atractus reticulatus CE/AF F Su N

Dipsas albifrons AF F Ar/Te N

Sibynomorphus mikanii CE/AF F, O Te N

Sibynomorphus neuwiedi AF F Ar/Te N

Erythrolamprus aesculapii CE/AF F, O Te D

Xenodontini Erythrolamprus miliaris AF F Aq/Te D

Erythrolamprus poecilogyrus CE F, O Te D

Pseudoboini Oxyrhopus guibei CE F, O Te N

Tachymenini Tomodon dorsatus AF F Te D

CE, Cerrado; AF, Atlantic Rain Forest; O, open area; F, forested area; Ar, arboreal; Te, terrestrial; Su, subterranean; Aq,

aquatic; D, primarily diurnal; N, primarily nocturnal. Biome, habitat and substrate were determined based on [78].

Activity pattern was stablished based on [77, 79].

Table 1. Species, habitat and daily activity pattern.
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(numerical aperture, NA = 1.25), equipped with a Nikon Digital Sight DS-U3 DSRi1 camera

and the software NIS-Elements AR Microscope Imaging (Nikon Instruments, Melville, NY,

USA). A counting frame at 74 � 74 μm was imposed on each sampled frame (Table 2). Cells

were counted when inserted fully inside the counting frame or if touched the acceptance lines,

without touching the rejection lines [86]. The number of cells quantified at each sampled field

was entered in the Excel spreadsheet and converted into density value of cells per mm2, by

dividing the number of cells by the frame sampling area. The total number of GCL cells was

estimated by multiplying the total number of cells counted by the inverse of the area sampling

fraction (asf). The asf is calculated dividing the area of the counting frame by the area of the

sampling grid, according to the algorithm: N total = ΣQ � 1/asf, where ΣQ is the number of

counted cells [53, 89, 90] (Table 2). The average cell density of each retina was estimated from

the average density values of each sampled field. The coefficients of error (CE) were calculated

using the method proposed by Scheaffer et al. [91] and were <0.02 for all retinas, indicating

that the total cell number estimates had a high degree of accuracy [53, 87, 92].

The coordinates of each sampled frame and the cell density values were used to elaborate the

topographic maps, with the software OriginPro 8.1 (Northampton, MA, USA). The position of

the retina was determined based on the radial incision made in the dorsal region during the

dissection procedures and based on the optic nerve located in the ventral and temporal retinal

quadrant in snakes. The reconstructed images were processed using the software Adobe

Photoshop CS3 (Adobe Systems, Inc.).

Species Counting Frame (μm � μm) Grid (μm � μm) Area sampling fraction Number of sites counted

Diurnal

C.bicarinatus 74 � 74 620 � 620 0.014 154

E. aesculapi 74 � 74 520 � 520 0.020 125

E. miliaris 74 � 74 320 � 320 0.054 217

E. poecilogyrus 74 � 74 320 � 320 0.054 155

S. pullatus 74 � 74 680 � 680 0.010 190

T. dorsatus 74 � 74 320 � 320 0.050 184

Nocturnal

A. pantostictus 74 � 74 230 � 230 0.100 55

A. reticulatus 74 � 74 220 � 220 0.110 56

D. petersi 74 � 74 340 � 340 0.048 160

O. guibei 74 � 74 310 � 310 0.057 117

S. mikanii 74 � 74 320 � 320 0.053 133

S. neuwiedii 74 � 74 220 � 220 0.115 272

Table 2. Stereological parameters used to estimate the number and distribution of retinal ganglion cell layer (GCL) cells

in retinas of colubrid snakes, using the optical fractionator method.
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We estimated the theoretical upper limits of the spatial resolving power based on the peak

density of presumed ganglion cells and the estimated focal length of the eye. The focal length

of the eye is represented by the posterior nodal distance (PND), which corresponds to the

distance from the lens center to the choroid-retina border [93, 94]. In a broad analysis of

different vertebrate species, Pettigrew and colleagues [24] proposed that the PND of diurnal

vertebrates has a mean of 0.67 of the eye’s axial length and that of nocturnal vertebrates has a

mean of 0.52 of the eye’s axial length. However, Hauzman and colleagues [36] estimated a

focal length of 0.52 for diurnal colubrids. In this study, we accessed the eye’s focal length

of two colubrids, the diurnal Tomodon dorsatus and the nocturnal Sibynomorphus neuwiedi

(Figure 3). For the other species analyzed, the PND was inferred from the measured axial

length of the eye and the PND values obtained from the nocturnal and the diurnal species. To

assess the focal length, we used the method described by Lisney and Collin [26], and for both

species, the estimated focal length was 0.52 of the eye’s focal length (Figure 3).

To estimate the theoretical peak of spatial resolving power, we applied the method proposed

by Hart [85], wherein the distance d subtended by one degree on the retina is determined from

the PND and calculated according to the formula: d = (2πPND)/360. Assuming that the

spacing between the ganglion cells is the limiting factor of the spatial resolving power, we

applied two different approaches, one in which we assume that the retinal ganglion cell fields

are arranged in approximately a hexagonal array and the other in which we assume that the

ganglion cell fields are arranged in an approximately square lattice. For both approaches, we

estimated the average spacing between the cells using the value of peak density of GCL cells.

Assuming a hexagonal array, the average spacing between the cells (S) was estimated

Figure 3. Transversal section of the eye of the nocturnal snake S. neuwiedi (A) and the diurnal T. dorsatus (B). The posterior

nodal distance (PND) from the lens center to the edge of the retina-choroid is represented by the white dashed line, and

correspond to about 52% of the axial length of the eye. Scale bar 1 mm.
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according to the formula: S2 = 2/(D√3), where D is the peak density of GCL cells in mm2. In the

second approach, the linear density (cells/mm) was estimated by calculating the square root of

D (cells mm�2), and then was divided by 2, because at least two cells are required to detect

1 cycle of a given spatial frequency [90]. The maximum spatial (Nyquist) frequency (v) of a

sinusoidal grating resolvable by these cell arrangements [95] was calculated using the formula

v ¼ 1= S
ffiffiffi

3
p� �

. This value was multiplied by the distance d to obtain the value of spatial

resolution in cycles per degree [24, 90].

Statistical analyses were performed using the program SPSS v.20.0 Statistic (IBM Corporation,

Armonk, NY, USA), to compare the population of GCL cells and the estimated upper limit of

the spatial resolving power in diurnal and nocturnal colubrids, using the parametric t test and

the nonparametric Mann-Whitney test. All data were log 10 transformed prior to analysis. The

distribution of values for each variable in each group was evaluated by the Kolmogorov-

Smirnov test, and the homoscedasticity between the groups was assessed by the Levene test.

The t test for independent samples was performed to verify possible differences between the

mean of the groups, for each variable analyzed. There was no disagreement in terms of

statistical significance between the Mann-Whitney tests performed, which reinforces the

results of the t tests. The level of significance for all comparisons was 5%.

In the retinal wholemounts, we were able to differentiate the neuron population (ganglion cells

and displaced amacrine cells) from the nonneuron cell population (glial cells) (Figure 4).

Diurnal and nocturnal colubrid snakes differed statistically in the total population of GCL cells

and the estimated spatial resolution but not in the mean density of GCL cells. The average cell

Figure 4. Photomicrograph of the Nissl-stained retinal GCL of the diurnal snake T. dorsatus. n, neurons; g, glia cells. The

digital image was processed using adobe Photoshop CS3 for scaling, resolution, and adjustment of the levels of brightness

and contrast. Scale bar = 10 μm.
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population in the GCL was 57.856 � 27.815 cells in the retinas of nocturnal snakes and

288.974� 186.079 cells in retinas of diurnal snakes (t(10) = 4.7, p = 0.001) (Table 3 and Figure 5).

The mean cell density was 6.739 � 2.530 cells/mm2 in nocturnal species and 7.729 � 1.318 cells/

mm2 in diurnal species (t(10) = 1.2, p = 0.28) (Table 3 and Figure 5). The mean spatial resolution

assuming a hexagonal arrangement was 1.3 � 0.4 cpd in nocturnal snakes and 2.5 � 0.6 cpd in

diurnal snakes (t(10) = 3.9, p = 0.003) (Table 3 and Figure 5). Similar values were obtained for

the assumption of a square lattice: 1.2 � 0.4 cpd and 2.3 � 0.6 cpd, in nocturnal and diurnal

species, respectively (Table 3).

The ganglion cell isodensity contour maps showed different types of retinal specializations,

which may be related to species daily activity pattern and differences in habitat preferentially

used (Figure 6). Poorly defined horizontal streaks with higher cell densities in the temporal

Species Retinal

area

(mm2)

Total number

of cells

CE Mean cell

density

(cells/mm2)

Eye axial

length

(mm)

Peak density of

GCL cells (cells/

mm2)

Visual

acuity

(cpd)*

Visual

acuity

(cpd)**

Diurnal

C. bicarinatus 59 394,096 0.01 6721 � 1634 5.5 11,623 2.9 2.7

E. aesculapii 33 247,386 0.01 7474 � 2308 4.5 12,176 2.4 2.3

E. miliaris 22 172,525 0.01 7842 � 2034 4.0 12,281 2.2 2.0

E. poecilogyrus 16 110,153 0.01 7016 � 2258 3.0 13,381 1.7 1.6

S. pullatus 88 614,553 0.01 7025 � 1355 7.0 10,815 3.5 3.3

T. dorsatus 19 195,131 0.01 10,297 � 1934 4.0 14,759 2.4 2.2

Mean � SD 39 � 28 288,974 � 186,079 7729 � 1318 4.7 � 1.4 12,506 � 1389 2.5 � 0.6 2.3 � 0.6

Nocturnal

A pantostictus 3 31,404 0.02 11,019 � 2410 1.3 16,788 0.8 0.8

A reticulatus 3 23,007 0.02 8490 � 2177 1.8 11,992 1.0 0.8

D. albifrons 18 97,524 0.02 5341 � 1189 3.5 7933 1.5 1.4

O. guibei 11 59,285 0.02 5327 � 1140 2.9 8798 1.3 1.2

S. mikanii 14 58,621 0.02 4270 � 1175 3.9 7195 1.6 1.5

S. neuwiedii 13 77,298 0.01 5987 � 1200 3.7 9531 1.8 1.6

Mean � SD 10 � 6 57,856 � 27,815 6739 � 2530 2.9 � 1.1 10,373 � 3550 1.3 � 0.4 1.2 � 0.4

CE, Schaeffer coefficient of error; PND, posterior nodal distance; cpd, cycles per degree; SD, standard deviation of the

mean.
*Estimated visual acuity assuming a hexagonal array.
**Estimated visual acuity assuming a square array.

Table 3. Stereological analysis of the population of cells in the retinal ganglion cell layer (GCL) of colubrid snakes, and

the anatomical parameters used to estimate the upper limit of spatial resolution.
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region were observed in diurnal species that inhabit distinct habitats: the arboreal species

C. bicarinatus and S. pullatus, the terrestrial species E. aesculapii and E. poecilogyrus, and the

semiaquatic species E. miliaris. In the terrestrial snake T. dorsatus, we observed a scattered

distribution with anisotropic area centralis in the ventro-temporal retina. Among the nocturnal

species, we observed anisotropic area centralis located in the dorso-temporal retina of the

fossorial species A. pantostictus and A. reticulatus. An anisotropic area centralis in the temporal

retina was observed in the terrestrial and nocturnal snake O. guibei, and a scattered GCL cell

distribution was observed in the other three nocturnal species: the semiarboreal snakes

D. albifrons and S. neuwiedi, with higher density in the ventral retina, and the terrestrial snake

S. mikanii, with higher density in the central retina. Examples of horizontal streaks, anisotropic

area, and scattered and nondefined distributions are shown in Figure 6.

Figure 5. Total number (upper plot) and mean density (lower plot) of GCL cells in nocturnal (black) and diurnal (gray)

colubrid snakes. All of the data were log10 transformed. Apan, A. pantostictus; Aret, A. reticulatus; Dalb, D. albifrons; Ogui,

O. guibei; Smik, S. mikanii; Snew, S. neuwiedii; Cbic, C. bicarinatus; Eaes, E. aesculapii; Emil, E. miliaris; Epoe, E. poecilogyrus;

Spul, S. pullatus; Tdor, T. dorsatus.
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3. Discussion

3.1. Density of GCL cells and the estimated spatial resolving power

To our knowledge, this is the first study to evaluate and describe the density and distribution

of neurons in retinas of nocturnal Colubridae snakes. The average of the total population of

GCL cells was significantly lower in nocturnal species (57,856 � 27,815 cells) compared to

diurnal species (288,974 � 186,079 cells). No significant difference of the mean density of GCL

Figure 6. Topographic maps showing the distribution of cells in the GCL in retina of diurnal and nocturnal Colubrid

snakes. The upper three maps show poorly defined horizontal streaks in diurnal species. The middle maps show

anisotropic area centralis in diurnal and nocturnal species and the lower three maps show scattered and nondefined

distributions in retinas of nocturnal snakes. The daily activity pattern and species habitat are indicated next to the name

of each species, in the order (activity pattern/habitat): D, primarily diurnal; N, primarily nocturnal; ar, arboreal; fs,

fossorial; s-ar, semiarboreal; s-aq, semiaquatic; te, terrestrial. The gray gradient bars represent the number of cells per

mm2. The position of the optic nerve head is depicted as a white circle. d = dorsal; n = nasal. Scale bars = 2 mm, except for

C. bicarinatus and E. aesculapii, where scale bar = 1 mm.
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cells was observed between diurnal and nocturnal species, although this may reflect the low

species sampling, with a high sampling variability (Figure 5). Among the nocturnal snakes,

the fossorial A. reticulatus had the lowest value of GCL cell population (23,007 cells), while the

highest was seen in the semiarboreal D. albifrons (97,524 cells). Among diurnal snakes, the

semiaquatic E. miliaris had the lowest value (172,525 cells) and the arboreal S. pullatus (614,553

cells) the highest.

Data from the literature show similar density values for diurnal and terrestrial snakes. The

population of GCL cells in the semiarboreal P. olfersii was 307,605 � 80,422 cells, in the

terrestrial P. patagoniensis 350,294 � 64,756 cells and in the terrestrial T. sirtalis 209,800 � 1150

cells [36, 67]. The estimated densities in diurnal marine snakes were lower than those observed

for diurnal terrestrial species (104,011 cells in A. laevis, 31,977 cells in D. major, and 72,597 cells

in L. curtus) [34] and were similar to the values estimated for the nocturnal colubrids.

The upper limits of the spatial resolving power were also significantly higher in diurnal snakes

(2.5 � 0.6 cpd), which points to the importance of a better image quality in snakes with diurnal

habits that actively forage during photoperiods of higher illumination. Similar values were

reported for other terrestrial and diurnal species: 2.6 cpd in P. olfersii, 2.7 cpd in P. patagoniensis,

and 2.3 cpd in T. sirtalis [34, 36, 67]. The average spatial resolving power in nocturnal colubrids

was 1.3 � 0.4 cpd, which was similar to the values estimated for the marine snakes D. major

and L. curtus: 1.1 cpd and 1.6 cpd, respectively [34]. The marine A. laevis had a higher

estimated visual acuity (2.3 cpd), which was associated to its crevice-foraging hunting strate-

gies [34]. The lower values estimated for marine and for primarily nocturnal terrestrial species

may be associated to the smaller eye’s axial diameter and shorter focal length. In nocturnal

snakes, visual acuity may be compensated by light sensitivity.

Morphological studies revealed that diurnal snakes from the Caenophidia group, which

include the Colubridae and Hydrophiidae families, have pure cone retinas, with no typical

rod-like photoreceptor [2, 34, 36, 67, 96–98], and a lower photoreceptor density, compared to

nocturnal species [36, 98]. The presence of only cones in retinas of diurnal snakes should

contribute to higher spatial resolution [99], given the lower convergence from cones to gan-

glion cells.

These important differences in the retinal morphology and the upper limits of the spatial

resolving power between diurnal and nocturnal snakes and between aquatic and terrestrial

snakes indicate how the variety of environments and circadian activity patterns plays a role in

the adaptation of the visual system and influence essential aspects of vision.

3.2. Distribution of neurons in the retina and visual ecology of snakes

This comparative study on the distribution of GCL neurons in retinas of Colubridae snakes

revealed the variety of retinal specializations, which indicates the complexity of the adaptive

strategies of the snakes’ visual system. In the literature, only three studies described the

density and topography of neurons in snake retinas [34, 36, 67], and this is the first study to

describe the distribution of neurons in retinas of nocturnal snakes. In general, the diurnal

species had a poorly defined visual streak extending along the meridional axis of the retina
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with peak density of cells in the temporal region, while nocturnal species had an anisotropic

area centralis in different regions of the retina, or a scattered and nondefined distribution,

depending on the species (Table 4).

According to the terrain theory proposed by Hughes [28], species that inhabits open areas

where the visual field is dominated by the horizon should preferably have a horizontal streak,

which favors the panoramic view of the environment, without the constant need for eye or

head movements. On the other hand, animals that live in forested areas, where the visual field

is obstructed by foliage and should have an area centralis, which favors the spatial resolution of

this circular area. However, the distribution pattern observed in snakes’ retinas does not

support this theory. For instance, visual streaks were observed in arboreal snakes that inhabit

preferentially forested areas, such as P. olfersii [36], C. bicarinatus and S. pullatus, and on the

other hand, area centralis were observed in species that inhabit preferentially open areas, such

as P. patagoniensis [36] and O. guibei.

In the literature, we find some studies that showed the presence of a horizontal streak in

species of mammals where the horizon is not a relevant feature of their habitat or the absence

of this type of distribution in species that inhabit open fields [30, 100, 101]. Stone [102]

suggested that the topography of the retina must be a phylogenetically inherited trait and does

not necessarily represent an adaptive condition of a lifestyle of a given species. However, if this

Subfamily Species Biome Habitat Substrate Activity pattern Diet Retinal specialization

Colubrinae C. bicarinatus AF F Ar/Te D an HS

S. pullatus AF F Ar/Te D ma, av HS

Dipsadinae A. pantostictus CE, AF F Su N ol AC—dorsal

A. reticulatus CE, AF F Su N ol AC—dorsal

D. albifrons AF F Ar/Te N mo Diffuse—ventral

S. mikanii CE, AF F, O Te N mo Diffuse—central

S. neuwiedii AF F Ar/Te N mo Diffuse—ventral

E. aesculapii CE, AF F, O Te D sn HS

E. miliaris AF F Aq/Te D an, fi HS

E. poecilogyrus CE F, O Te D an HS

O. guibei CE F, O Te N ma, li AC—temporal

T. dorsatus AF F Te D mo AC—ventral

P. olfersii CE, AF F Ar/Te D an, ma HS*

P. patagoniensis CE, AF O Te D an, ma AC—ventral*

AF, Atlantic Rain Forest; CE, Cerrado; F, forested area; O, open area; Ar, arboreal; Te, terrestrial; Su, subterranean; Aq,

aquatic; D, primarily diurnal; N, primarily nocturnal; an, anurans; ma, mammals; av., birds; ol, annelids; mo, mollusks;

sn, snakes; fi, fish; li, lizards; HS, horizontal streak; AC, area centralis. Ecological features (biome, habitat, substrate,

activity patter and diet) were stablished based on [77–79].
*Data from Hauzman et al. [36].

Table 4. Snake species, ecological features and retinal specializations.
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proposition was applied to snakes, one would expect to observe the same pattern of cell

distribution in the retinas of the phylogenetically close-related species P. olfersii and

P. patagoniensis [36], for example, or in the nocturnal Dipsadinae and close-related species

S. mikanii, S. neuwiedi and D. albifrons, which was not the case.

Based on the results obtained for Philodryas retinas, Hauzman et al. [36] suggested that the

microhabitat may have a more important role in the visual ecology of snakes than the habitat.

The terrestrial species P. patagoniensis, for example, although it occupies open areas, has its

visual field obstructed by foliage. Thus, an area centralis in the ventral region of the retina

(Table 4) favors the spatial resolution of the superior visual field, which allows the view of

aerial predators, an important defense mechanism for crawling animals [36]. The same was

suggested for sea snakes with an area centralis in the ventral retina, L. curtus and D. major [34].

In our analysis, we also observed a ventral area in the retina of the primarily diurnal and

terrestrial T. dorsatus and a scattered distribution of cells but with higher densities in the

ventral retina of the primarily nocturnal and semiarboreal snakes D. albifrons and S. neuwiedi

(Table 4). On the other hand, the two fossorial snakes, A. pantostictus and A. reticulatus, had an

area centralis located in the dorsal region of the retina (Table 4). Snakes with fossorial habits

usually have adaptations related to the necessity to reduce friction and allow digging tunnels

in compact soil [66]. These species tend to have smaller and compact heads, almost indistinct

from the rest of the body, a reduced number of scales on the head, small eyes, and shorter tails

[103–105]. The retinal specializations with an area centralis in the dorso-temporal region may

improve the spatial resolving power of the inferior and frontal visual field, thereby helping the

digging habit and the search for annelids as prey [77]. Furthermore, we also observed an area

centralis in the central retina of the primarily diurnal snake E. poecilogyrus, which may improve

the lateral monocular vision, and a temporal area centralis in the retina of the primarily

nocturnal snake O. guibei, which may improve frontal vision (Table 4).

A horizontal streak was observed in different diurnal snakes that inhabit a variety of habitats

and occupy different substrates: terrestrial, arboreal, or aquatic (Table 4). This type of retinal

specialization results in the formation of a sharper image that favors the visual acuity along the

naso-temporal axis, and is related to the ability of a panoramic view of the visual field, without

the need for head movements [32], which would reveal the location of the snake for a possible

prey or for visually oriented predators. Thus, a visual streak would be an important adapta-

tion for locomotion and foraging in different substrates. In the literature, a visual streak was

observed in the semiarboreal P. olfersii [36], in the terrestrial T. sirtalis [67], and in the sea snakes

L. curtus, D. major and A. laevis [34]. In this study, we observed this type of retinal specializa-

tion in primarily diurnal species that occupy predominantly forested areas: the terrestrial

snake E. aesculapii, the semiaquatic snake E. miliaris, and the semiarboreal species C. bicarinatus

and S. pullatus. We thus suggest that this type of specialization is widely spread among snakes

and may be important for foraging behavior in different substrates.

In summary, the variation of the types of retinal specialization in snakes may be related to

ecological and behavioral features such as the daily activity pattern, the habitat and substrate

preferentially occupied, hunting strategies, and diet. Snakes that actively forage during the

day and prey on fast and visually oriented preys may benefit from a horizontal streak that
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enables the screening of the environment without the constant need for eye and head move-

ments. On the other hand, snakes are active during the night spend most of the day

camouflaged resting [106] and may not have the necessity of a panoramic view of the environ-

mental provided by a visual streak. The presence of an area centralis or a diffuse distribution of

GCL cells may also be related to food items, in that these types of distribution are observed

in snakes that feed on slowmoving preys, as snails and slugs: the nocturnal speciesD. albifrons,

S. mikanii, S. neuwiedi, and the diurnal snake T. dorsatus. Mollusks are also relatively smaller

and easier to handle and ingest compared to other types of prey and that may decrease the

time of exposure to potential predators during feeding [107], which may also exert distinct

selective pressure on the retinal specializations.

4. Conclusion and future directions

In conclusion, this broad study reveals that the retinal topography in Colubridae snakes may

have suffered influences not only from the preferential habitat, microhabitat, and substrate

used by the species but also to a range of features and behaviors such as daily activity pattern,

foraging strategies, and diet. We suggest that horizontal streak with higher cell density in the

temporal retina is a more common feature of primarily diurnal snakes from forested areas,

which feed on fast moving preys. An area centralis is more common in nocturnal species or

those that feed on slow moving preys. We also speculate that retinal specializations may have

resulted from adaptations to environments and habitats that have undergone drastic and

recent changes, and many features and specific adaptations of the species visual system may

not be associated with the current environment but may indicate traits of the evolutionary

history of the species.

It is also important to emphasize that these anatomical and morphological analyses of the

visual system should be expanded not only to a broader species sampling but should also be

combined with other studies, which include electrophysiological and behavioral approaches.

Electrophysiological recordings, for instance, can be performed to compare the visual acuity

measured with a more direct technique, with the upper limits of the eye spatial resolving

power estimated from anatomical data. In addition, behavioral tests can be designed to verify

how a specific morphological feature of the retina is ultimately associated to certain behaviors

and to the species’ visual ecology.
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