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1. Introduction  

This chapter presents a methodology which is developed to design a controller that satisfies 
the objectives of shipboard recovery of a fixed-wing UAV. The methodology itself is 
comprehensive and should be readily applicable for different types of UAVs and various 
task objectives. With appropriate modification of control law representation, the 
methodology can be applied to a broad range of control problems. Development of the 
recovery controller for the UAV Ariel is a design example to support the methodology. 
This chapter focuses on adaptation of Evolutionary Algorithms for aircraft control problems. 
It starts from analysis of typical control laws and control design techniques. Then, the 
structure of the UAV controller and the representation of the control laws suitable for 
evolutionary design are developed. This is followed by the development of the general 
evolutionary design algorithm, which is then applied to the UAV recovery problem. Finally 
the presented results demonstrate robust properties of the developed control system.  

2. Aircraft flight control 

2.1 Overview of types of feedback control 

Not unlike the generic control approach, aircraft flight control is built around a feedback 
concept. Its basic scheme is shown in Fig. 1. The controller is fed by the difference between 
the commanded reference signal r and the system output y. It generates the system control 
inputs u according to one or another algorithm.  

 

Figure 1. Feedback system (one degree of freedom) 

One of the main tasks of flight control as an engineering discipline is design of the 
controllers which enable a given aircraft to complete a defined mission in the most optimal 
manner, where optimality is based on mission objective. A number of techniques of 
producing a required controller have been developed over the last hundred years since the 
first altitude hold autopilot was introduced by Sperry Gyroscope Company in 1912. Most of 
the techniques make certain assumptions about the controlled system (i.e. the aircraft), most 
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notably linearity of its dynamics and rigidity of the airframe, to simplify synthesis of the 
controller. A brief overview of types of feedback control is presented below. 

2.1.1 On-Off control 

The simplest feedback control is the on-off control, also referred to among engineers as bang-
bang control. This control law can be expressed as follows: 
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where u0 and k are arbitrary offset and gain suitable for the given system, and a is the 
threshold (set point). It can be extended to a multiple choice situation. 
This law is not particularly suitable for direct flight control in normal situations. Indeed, 
with only two (or several) discrete control input levels, the system output will tend to 
oscillate about the set point, no matter how well damped the system is, because the control 
signal will not switch until the set point is already passed. Moreover, if the dynamics of the 
system is fast or a significant amount of noise in the system output is present, the controller 
will be switching also fast (‘hunting’), possibly causing extensive wear to the control 
actuators. 
To prevent such behaviour, a special ‘dead zone’ (or ‘deadband’) is established around the 
set point where no switching occurs. Obviously, this reduces the accuracy of control. 
However, the on-off control comes into play when event handling is required. A classic 
example of application of such control for aircraft is stall recovery. When angle of attack 
exceeds a specified value, a nose-down elevator command is issued. A similar logic can be 
implemented for overload protection or ground collision avoidance. 
Another important area in the aerospace field where on-off rules can be successfully applied 
is internal switching between the controllers (or controller parameters). This approach is 
known as Gain scheduling (Rugh, 2000). The technique takes advantage of a set of relatively 
simple controllers optimised for different points of the flight envelope (or other conditions). 
However, it was found that rapid switching may cause stability and robustness problems 
(Shamma & Athans, 1992). One of the popular simple solutions is to ‘blend’ (interpolate) the 
output of two or more controllers, which effectively turns simple on-off switching into a 
complicated control method. 

2.1.2 PID control 

The proportional-integral-derivative (PID) control is probably the most widely used type of 
control, thanks to the simplicity of its formulation and in most cases, predictable 
characteristics. In a closed-loop system like that in Fig. 1, its control law is 

 ∫ ++= εεε &
DIP KdtKKu  (2) 

where the parameters KP, KI and KD are coefficients for proportional, integral and derivative 
components of the input error signal  respectively. By adjusting these three parameters, the 
desired closed-loop dynamics can be obtained. 
Probably the most problematic issue with the PID control is due to the differential term. 
While being important for good response time and high-speed dynamics, the differential 
component keenly suffers from both instrumental noise and calculation errors. Indeed, even 
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a small amount of noise can greatly affect the slope of the input signal. At the same time, 
numerical calculation of the derivative (for a digital controller in particular) must be done 
with a fairly small time step to obtain correct slope at a given point. Although lowpass 
filtering applied to the input signal smoothens the signal, it severely compromises the 
usefulness of the derivative term because the low-pass filter and derivative control 
effectively cancel each other out. 
In contrast, the integral term averages its input, which tends to eliminate noise. However, a 
common problem associated with the integral control owes exactly to its ‘memory’. When a 
large input value persists over a significant amount of time, the integral term becomes also 
large and remains large even after the input diminishes. This causes a significant overshoot 
to the opposite values and the process continues. 
In general, integral control has a negative impact on stability and care must be taken when 
adjusting the integral coefficient. Limiting the integrator state is a common aid for this 
problem. A more elegant approach involves ‘washing out’ the integrator state by 
incorporating a simple gain feedback, effectively implementing a low-pass filter to the input 
signal. PID control found wide application in the aerospace field, especially where near-
linear behaviour takes place, for example, in various hold and tracking autopilots such as 
attitude hold and flight path following. The techniques of selecting the optimal PID 
coefficients are well established and widely accepted. Typically, they use the frequency 
domain as a design region and utilise phase margins and gain margins to illustrate 
robustness. However, design of a PID controller for nonlinear or multi-input multi-output 
(MIMO) systems where significant coupling between the different system inputs and 
outputs exists is complicated. As the aircraft control objectives evolved, new design and 
control techniques were developing. Although many of them essentially represent an 
elaborated version of PID control, they are outlined in the following sections. 

2.1.3 Linear optimal control 

The concept of optimality in mathematics refers to minimisation of a certain problem 
dependent cost functional: 

 ( ) ( )( )∫ +=
T

TxhdtuxtgJ
0

,,  (3) 

where T is the final time, u is the control inputs and x is the state of the controlled system. 
The last term represents the final cost that depends on the state in which the system ends 
up. Optimal control is, therefore, finding the control law u(t) that minimises J. In general, for 
an arbitrary system and cost functional, only numerical search can find the optimal (or near 
optimal) solution.  
There is a number of types of linear optimal control, such as the Linear Quadratic Regulator 
(LQR), the Linear Quadratic Gaussian with Loop Transfer Recovery (LQG/LTR) and the extended 
Kalman filter (EKF). The theory and application of these control techniques and Kalman 
filtering is detailed in many common control and signal processing textbooks, such as for 
example (Brown & Hwang, 1992; Bryson & Ho, 1975; Kalman, 1960; Maciejowski, 1989).  
The Kalman filter relies on the model of the system (in its predicting part), and the 
guaranteed performance of the controller can easily be lost when unmodelled dynamics, 
disturbances and measurement noise are introduced. Indeed, robustness is a challenging 
issue of modern control designs. Also, the well known in classic linear design phase and 
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gain margin concepts cannot be easily applied to the multivariable systems that modern 
control is so suited for. These problems led to the introduction of robust modern control 
theory. 

2.1.4 Robust modern control 

Unlike traditional optimal control, robust optimal control minimises the influence of various 
types of uncertainties in addition to (or even instead of) performance and control energy 
optimisation. Generally, this implies design of a possibly low gain controller with reduced 
sensitivity to input changes. As a consequence, robust controllers often tend to be 
conservative and slow. On the other hand, they may be thought as the stabilising controllers 
for the whole set of plants (which include a range of uncertainties) and not only for the 
modelled system, which is a more demanding task. 
The majority of modern robust control techniques have origins in the classical frequency 
domain methods. The key modification of the classic methods is shifting from eigenvalues 
to singular values (of the transfer function that describes the system), the singular value 
Bode plot being the major indicator of multivariable feedback system performance (Doyle & 
Stein, 1981). 
Probably the most popular modern robust control design techniques (particularly in the 
aerospace field) are H2 and H∞ control, also known as the frequency-weighted LQG 
synthesis and the small gain problem respectively. These techniques and the underlying 
theories are thoroughly described in several works, notably (Doyle at al., 1989; Kwakernaak, 
1993; Zhou & Doyle, 1998).  
The H∞ control design found extensive use for aircraft flight control. One of the first such 
applications was the development of controllers for the longitudinal control of a Harrier 
jump jet (Hyde, 1991). This work has been subsequently extended in (Postlethwaite & Bates, 
1999) to fully integrated longitudinal, lateral and propulsive control. Other works include 
(Kaminer et al., 1990), where a lateral autopilot for a large civil aircraft is designed, and 
(Khammash & Zou, 1999), where a robust longitudinal controller subject to aircraft weight 
and c.g. uncertainty is demonstrated. 
A mixed H2 / H∞ approach is applied in (Shue & Agarwal, 1999) to design an autoland 
controller for a large commercial aircraft. The method employed here utilises the H2 
controller for slow trajectory tracking and the H∞ controller for fast dynamic robustness and 
disturbance rejection. 
Several H∞ controllers have been tried to accomplish the UAV shipboard launch task 
(Crump, 2002). It has been found that these controllers perform quite well in nominal 
situations. However, in the presence of large disturbances which place the aircraft well 
beyond its linear design operating point, the controllers performed poorly (sometimes 
extremely). At the same time, inability to include even simple static nonlinearities such as 
time delays and saturations made it difficult to synthesise a practical controller for this task 
within linear approach. Another deficiency found is common to all frequency domain 
techniques: the frequency domain performance specifications cannot be rigidly translated 
into time and spatial domain specifications. Meanwhile, time and especially spatial 
(trajectory) constrains are crucial for both launch and recovery tasks. 
The time domain performance can be accounted for directly in the time domain l1 design 
(Blanchini & Sznaier, 1994; Dahleh & Pearson, 1987).  
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It is often extended to include the frequency domain objectives, resulting in a mixed norm 
approach. However, l1 design is plagued by the excessive order of the generated controllers. 
This is usually solved by reducing the problem to suboptimal control, imposing several 
restrictions on the system and performance specifications (Sznaier & Holmes, 1996). The 
application of l1 approach to flight control is discussed in (Skogestad & Postlewaite, 1997), 
with the conclusion that controllers with excessive order will generally be produced when 
using practical constraints. 
There have been attempts to solve the H∞ optimal control problems for nonlinear systems. 
However, these methods usually rely on very limiting assumptions about the model, 
uncertainties and disturbance structure. The mathematical development of nonlinear H∞ 
control can be found in (Dalsamo & Egeland, 1995). An example of nonlinear control of an 
agile missile is given in (Wise, 1996). 
Despite a very complicated solution algorithm, this work is limited by a linear assumption 
on the vehicle aerodynamics, reducing the benefits gained from the use of nonlinear control.  

2.1.5 Nonlinear control 

Linear control design techniques have been used for flight control problems for many years. 
One of the reasons why aircraft can be controlled quite well by linear controllers is that they 
behave almost linearly through most of their flight envelope. However, when the aircraft is 
required to pass through a highly nonlinear dynamic region or when other complicated 
control objectives are set, it has been found by several researchers that it is difficult to obtain 
practical controllers based on linear design techniques. The UAV shipboard launch and 
recovery tasks are substantially nonlinear problems. The sources of nonlinearities are the 
aerodynamic forces generated at low airspeeds and high angles of attack (especially when 
wind disturbances are present); trajectory constraints imposed due to proximity of ground 
(water) and ship installations; kinematic nonlinearities when active manoeuvring is 
required; actuator saturations and some more. 
In contrast to the linear systems, the characteristics of the nonlinear systems are not simply 
classified and there are no general methods comparable in power to those of linear analysis. 
Nonlinear techniques are quite often designed for individual cases, regularly with no 
mathematical justification and no clear idea of re-applicability of the methods.  
Some of the more popular nonlinear control techniques are covered in textbooks (Atherton, 
1975; Graham & McRuler, 1971).  
The most basic nonlinear control laws and the On-off control  and Gain scheduling, noting 
that these controllers often lack robustness when the controllers are scheduled rapidly.  
Another modern control technique remotely related to the on-off control is variable structure 
(also known as sliding mode) control (DeCarlo et al., 1988; Utkin, 1978). In this approach, a 
hypersurface (in state space) called sliding surface or switching surface is selected so that the 
system trajectory exhibits desirable behaviour when confined to this hypersurface. 
Depending on whether the current state is above or below the sliding surface, a different 
control gain is applied. Unlike gain scheduling, the method involves high speed switching 
to keep the system on the sliding surface.  
A completely different approach is to enable applicability of the well known linear control 
methods to control nonlinear systems. This can be achieved using nonlinear dynamic 
inversion. This process, also known as feedback linearisation, involves online approximate 
linearisation of a nonlinear plant via feedback. Dynamic inversion gained particular 
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attention in aviation industry in the late 1980s and 90s, aiming to control high performance 
fighters during high angle of attack manoeuvres (known as supermanoeuvres). One of the 
early applications is NASA High Angle of Attack Vehicle (HARV) (Bugajski & Enns, 1992). 
In this work, quite good simulation performance results are obtained; however, with the 
inversion based on the same simulation model, any possible discrepancies are transferred 
into the controller, leading to questionable results in physical implementation with respect 
to incorrectly modelled dynamics. 

2.1.6 Intelligent control 

Intelligent control is a general and somewhat bold term that describes a diverse collection of 
relatively novel and non-traditional control techniques based on the so called soft computing 
approach. These include neural networks, fuzzy logic, adaptive control, genetic algorithms 
and several others. Often they are combined with each other as well as with more traditional 
methods; for example, fuzzy logic controller parameters being optimised using genetic 
algorithms or a neural network driving a traditional linear controller. 
Neural network (NN), very basically, is a network of simple nonlinear processing elements 
(neurons) which can exhibit complex global behaviour determined by element parameters and 
the connections between the processing elements. The use of artificial neural networks for 
control problems receives an increased attention over the last two decades. It has been shown 
that a certain class of NN can approximate any continuous nonlinear function with any 
desired accuracy (Spooner, 2002). This property allows to employ NN for system identification 
purposes, which can be performed both offline and online. This approach is used in (Coley, 
1998; Kim & Calise, 1997) for flight control of a tilt-rotor aircraft and the F-18 fighter. 
Another area of intensive application of NN is fault tolerant control, made possible due to 
online adaptation capability of NN. In the recent work (Pashilkar et al., 2006), an ‘add-on’ 
neural controller is developed to increase auto-landing capabilities of a damaged aircraft 
with one of two stuck control surfaces. A significant increase in successful landings rate is 
shown, especially when the control surfaces are stuck at large deflections. 
Fuzzy logic control also gained some popularity among flight control engineers. This type of 
control relies on approximate reasoning based on a set of rules where intermediate positions 
between ‘false’ and ‘truth’ are possible. Fuzzy logic control may be especially useful when a 
decision must be made between several controversial conditions. For example, in 
(Fernandez-Montesinos, 1999) fuzzy logic is used for windshear recovery in order to decide 
whether energy should be given to altitude or airspeed, based upon the current situation. 
Adaptive control term covers a set of various control techniques that are capable of online 
adaptation. A good survey of adaptive control methods is given in (Astrom & Wittenmark, 
1995). The applications of adaptive control is generally biased towards control for large time 
scales so that the controller has sufficient time to learn how to behave. This makes the 
relatively short-time recovery process unsuitable for online adaptation. 
Evolutionary and genetic algorithms (EAs, GAs) are global optimisation techniques applicable to 
a broad area of engineering problems. They can be used to optimise the parameters of various 
control systems, from simple PID controllers (Zein-Sabatto & Zheng, 1997) to fuzzy logic and 
neural network driven controllers (Bourmistrova, 2001; Kaise & Fujimoto, 1999). Another 
common design approach is evolutionary optimisation of trajectories, accompanied by a 
suitable tracking controller (e.g. (Wang & Zalzala, 1996)). An elaborated study of applications 
of EAs to control and system identification problems can be found in (Uzrem, 2003). 
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Unlike the majority of other techniques, Genetic Algorithms (in the form of Genetic 
Programming) are able to evolve not only the parameters, but also the structure of the 
controller. 
In general, EAs require substantial computational power and thus are more suitable for 
offline optimisation. However, online evolutionary-based controllers have also been 
successfully designed and used. The model predictive control is typically employed for this 
purpose, where the controller constantly evolves (or refines) control laws using an 
integrated simulation model of the controlled system. A comprehensive description of this 
approach is given in (Onnen et al., 1997). 

2.2 Flight control for the UAV recovery task 

Aircraft control at recovery stage of flight can be conventionally separated into two closely 
related, but distinctive tasks: guidance and flight control. Guidance is the high-level (‘outer 
loop’) control intended to accomplish a defined mission. This may be path following, target 
tracking or various navigation tasks. Flight control is aimed at providing the most suitable 
conditions for guidance by maintaining a range of flight parameters at their optimal levels 
and delivering the best possible handling characteristics.  

2.2.1 Traditional landing 

In a typical landing procedure, the aircraft follows a defined glide path. The current position 
of the aircraft with respect to the glidepath is measured in a variety of ways, ranging from 
pilot’s eyesight to automatic radio equipment such as the Instrument Landing System (ILS). 
Basically, the objective of the pilot (or autopilot) is to keep the aircraft on the glidepath, 
removing any positioning error caused by disturbances and aircraft’s dynamics. This stage 
of landing is known as approach. Approach may be divided into initial approach, in which the 
aircraft makes contact with (‘fixes’) the approach navigation system (or just makes visual 
contact with the runway) and aligns with the runway; and final approach, when the aircraft 
descends along a (usually) straight line. In conventional landing, final approach is followed 
by a flare manoeuvre or nose-up input to soften the touchdown; however, flare is typically 
not performed for shipboard landing due to random ship motion and severe constraints on 
the landing space. 
The guidance task during final approach involves trajectory tracking with both horizontal 
and vertical errors (and their rates) readily available. It is important to note that the errors 
being physically measured are angular deviations of the aircraft position (Fig.2) as seen from 
the designated touchdown point (or more precisely, from where the radars or antennas or 
other guidance systems are located). They can be converted to linear errors Δh if the distance 
L to the aircraft is known. 

 

Figure 2. Angular and linear glidepath errors 
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However, in many applications precise distance measurement is unavailable. Nevertheless, 
successful landing can be carried out even without continuous distance information. This 
comes from the fact that exactly the angular errors are relevant to precise landing. Indeed, 
the goal is to bring the aircraft to a specified point on the runway (or on the deck) in a 
certain state. The choice of the landing trajectory only serves this purpose, considering also 
possible limitations and secondary objectives such as avoiding terrain obstacles, minimising 
noise level and fuel consumption and so on. The angular errors provide an adequate 
measurement of the current aircraft position with respect to the glidepath. 
However, if the landing guidance system takes no account of distance and is built around 
the angular error only, it may cause stability problems at close distances, because the 
increasing sensitivity of the angular errors to any linear displacement effectively amplifies 
the system gain.  

2.2.2 UAV control for shipboard recovery 

As it was seen from the discussion in the previous section, landing of an aircraft is a well 
established procedure which involves following a predefined flight path. More often than 
not, this is a rectilinear trajectory on which the aircraft can be stabilised, and the control 
interventions are needed only to compensate disturbances and other sources of errors. 
The position errors with respect to the ideal glidepath can be measured relatively easily. 
Shipboard landing on air carriers is principally similar; the main differences are much 
tighter error tolerances and absence of flare manoeuvres before touchdown. The periodic 
ship motion does have an effect on touchdown; however, it does not affect significantly the 
glidepath, which is projected assuming the average deck position. The choice of the landing 
deck size, glideslope, aircraft sink rate and other parameters is made to account for any 
actual deck position at the moment of touchdown. For example, a steeper glideslope 
(typically 4°) is used to provide a safe altitude clearance at the deck ramp for its worst 
possible position (i.e. ship pitched nose down and heaved up). This makes unnecessary to 
correct the ideal reference trajectory on the fly. 
For the UAV shipboard recovery, ship oscillations in high sea cause periodic displacement 
of the recovery window (the area where capture can be done) several times greater than the 
size of the window itself. This fact (and also the assumption that the final recovery window 
position cannot be predicted for a sufficient time ahead) makes it impossible to project an 
optimal flight path when the final approach starts. Instead, the UAV must constantly track 
the actual position of the window and approach so that the final miss is minimised. 
Therefore, it turns out that the UAV recovery problem resembles that of homing guidance 
rather than typical landing. While stabilisation on a known steady flight path can be done 
relatively easy with a PID controller, homing guidance to a moving target often requires a 
more sophisticated control.  
Not surprisingly, homing guidance found particularly wide application in ballistic missiles 
development, hence the accepted terminology owes to this engineering area. In the context 
of UAV recovery, the UAV moves almost straight towards the ‘target’ from the beginning 
(compared to typical missile intercept scenarios) and thus the velocity vector and the line of 
sight almost coincide. 
However, there are two major difficulties that can compromise the effectiveness of 
Proportional Navigation (PN) for UAV recovery. First, PN laws are known as generating 
excessive acceleration demands near the target. For a UAV with limited manoeuvrability, 
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such demands may be prohibitive, especially at low approach airspeeds. On the other hand, 
the PN guidance strategy does not change during the flight. Several alternative guidance 
strategies with more favourable acceleration demands exist, e.g. augmented proportional 
navigation. However, it is unlikely they can sufficiently improve the guidance to an 
oscillating target such as ship’s deck. 

2.3 UAV controller structure 

The objective is therefore to synthesise such guidance strategy that enables reliable UAV 
recovery, and to produce a controller that implements the target tracking guidance strategy. 
The evolutionary design (ED) method applied for this task allows to evolve automatically 
both the structure and the parameters of the control laws, thus potentially enabling to 
generate a ‘full’ controller, which links available measurements directly with the aircraft 
control inputs (throttle, ailerons, rudder and elevator) and implements both the guidance 
strategy and flight control (Fig. 3): 

 

Figure 3. Full controller with embedded guidance strategy 

However, this approach, even though appealing at first and requiring minimum initial 
knowledge, proves to be impractical as the computational demands of the evolutionary 
algorithms (EAs) soar exponentially with the dimensionality of the problem. It is therefore 
desirable to reduce complexity of the problem by reducing the number of inputs/outputs 
and limiting, if appropriate, possible structures of the controllers.  
Another difficulty is the evaluation of the controller’s performance. In ED, performance or 
fitness is multiobjective. Therefore, it is highly desirable to decompose this complex task 
into several simpler problems and to solve them separately. 
A natural way of such decomposition is separating the trajectory control (guidance) and 
flight control. The guidance controller issues commands ug to the flight controller, which 
executes these commands by manipulating the control surfaces of the UAV (Fig. 4). These 
two controllers can be synthesised separately using appropriate fitness evaluation for each 
case.  

 

Figure 4. UAV recovery control diagram 

2.3.1 Guidance controller  

The internal structure of the controller is defined by the automatic evolutionary design 
based on predefined set of inputs and outputs. It is desirable to keep the number of inputs 
and outputs to minimum, but without considerably compromising potential performance. 
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An additional requirement to the outputs ug is that these signals should be 
straightforwardly executable by the flight controller. This means that ug should represent a 
group of measurable flight parameters such as body accelerations, velocities and Euler 
angles, which the flight controller can easily track. 
The structure of the output part of the guidance controller is as shown in Fig. 5. With this 
scheme, the guidance laws produce general requests to change trajectory in horizontal and 
vertical planes. The kinematic converter then recalculates these requests to the form 
convenient for the flight controller. Both the bank angle and normal body load factor ny can 
be relatively easily tracked, with the sensors providing direct measurements of their actual 
values. At the same time, this approach allows to evolve the horizontal and vertical 
guidance laws separately, which may be desirable due to different dynamics of the UAV’s 
longitudinal and lateral motion and also due to computational limitations. 
Input measurements to the guidance controller should be those relevant to trajectory. First 
of all, this is all available positioning information, pitch and yaw angles and airspeed. They 
do not account for steady wind, but still provide substantial information regarding the 
current ‘shape’ of trajectory. 
The yaw angle fed into the controllers is corrected by the ‘reference’ yaw ψ0, which is 
perpendicular to the arresting wire in the direction of anticipated approach. A zero yaw 
indicates that the UAV is pointed perpendicularly to the arresting wire (ignoring ship 
oscillations), which is the ideal condition in the absence of side wind and when the UAV 
moves along the ideal glidepath. This is similar to rotating the ground reference frame 
Ogxgygzg by the correction yaw angle ψ0. The rotated frame is referred as approach ground 
reference frame. 

 

Figure 5. Guidance controller 

The derived quantities from raw measurements are the vertical and lateral velocity 
components with respect to the approach ground reference frame.  
Determination of the current UAV position and velocities with respect to the arresting wire 
is crucial for successful recovery. While previously discussed flight parameters may only 
help to improve the guidance quality, positioning carries direct responsibility for recovery. 

 

Figure 6. Positioning scheme 
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The system is based on radio distance metering and provides ten independent raw 
measurements (Fig. 6): three distances d1, d2 and d3 from the UAV to the radio transmitters 
located at both ends of the recovery boom which supports the arresting wire and at the base 
of recovery mast; three rates of change of these distances; distance differences (d1 – d2) and 
(d3 – d2); and rates of change of the differences. 
The guidance laws evolution process is potentially capable to produce the laws directly 
from raw measurements, automatically finding necessary relationships between the 
provided data and the required output. 
The target spot elevation is chosen to be a constant, and the value is determined in view of 
the expected cable sag obtained from simulation of the cable model. For normal approach 
speed, the cable sag varies between 3.5 and 4.5 m. Accordingly, the target spot elevation is 
chosen to be hT = 2 m above the arresting wire. 
The recovery procedure, if successful, lasts until the cable hook captures the arresting wire. 
This happens when the UAV have moved about the full length of the cable past the recovery 
boom. However, position measurements may be unavailable beyond the boom threshold, 
and even shortly before the crossing the readings may become unreliable. For these reasons, 
the terminal phase of approach, from the distance about 6–10 m until the capture (or 
detection of a miss), should be handled separately. 
It is possible to disconnect the guidance controller several metres before the recovery boom 
without affecting the quality of guidance. The allowed error (approximately 2 m in all 
directions, determined by the lengths of the arresting wire and the cable) should absorb the 
absence of controlled guidance in the last 0.3 to 1 second (depending on the headwind) in 
most situations. 

2.3.2 Flight controller 

Flight controller receives two inputs from the guidance controller: bank angle demand Ǆd 

and normal body load factor demand d
yn . It should track these inputs as precisely as 

possible by manipulating four aircraft controls: throttle, ailerons, rudder and elevator. 
The available measurements from the onboard sensors are body angular rates ωx, ωy, ωz 
from rate gyros, Euler angles Ǆ, ψ, θ from strapdown INS, body accelerations nx, ny, nz from 
the respective accelerometers, airspeed Va, aerial angles ǂ and ǃ, actual deflection of the 
control surfaces ǅa, ǅr, ǅe, and engine rotation speed Nrpm.  
For simplicity of design, the controller is subdivided into independent longitudinal and 

lateral components. In longitudinal branch, elevator tracks the input signal d
yn , while 

throttle is responsible for maintaining a required airspeed. In lateral control, naturally, 
ailerons track  Ǆd, while rudder minimises sideforce by keeping nz near zero. 

3. Evolutionary design 

The Evolutionary Design (ED) presented in this section, generally, takes no assumptions 
regarding the system and thus can be used for wide variety of problems, including 
nonlinear systems with unknown structure. In many parts, this is a novel technique, and the 
application of ED to the UAV guidance and control problems demonstrates the potential of 
this design method. 
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The core of evolutionary design is a specially tailored evolutionary algorithm (EA) which 
evolves both the structure and parameters of the control laws. 
Since the algorithm is used for creative work only at the design stage, its performance is 
rather of secondary importance as long as the calculations take a sensible amount of time. 
The major requirements to automatic design methods are quality of the result and exploration 
abilities.  
Although the basic framework of an EA is quite simple, there are three key elements that 
must be prepared before the algorithm can work. They are: 

• representation of phenotype (control laws in our case) suitable for genetic operations 
(genome encoding); 

• simulation environment, which enables to implement the control laws within the closed 
loop system; 

• fitness evaluation function, which assesses the performance of given control laws. 
These elements, as well as the whole algorithm outline, are addressed below. 
Parallel evolution of both the structure and the parameters of a controller can be 
implemented in a variety of ways. One of the few successfully employed variants is the block 
structure controller evolution (Koza et al., 2000). 
In this work the ED algorithm enables to evolve suitable control laws within a reasonable 
time by utilising gradual evolution with the principle of strong casualty. This means that 
structure alterations are performed so that the information gained so far in the structure of 
the control law is preserved. Addition of a new block, though being random, does not cause 
disruption to the structure. Instead, it adds a new dimension and new potential which may 
evolve later during numerical optimisation. The principle of strong casualty is often 
regarded as an important property for the success of continuous evolution (Sendhoff et al., 
1997). 
The addition of new points or blocks is carried out as a separate dedicated operation (unlike 
sporadic structure alterations in the sub-tree crossover), and is termed structure mutation. 
Furthermore, in this work structure mutation is performed in a way known as neutral 
structure mutation. That’s when the new block should be placed initially with zero 
coefficient. This will not produce any immediate improvement and may even deteriorate the 
result slightly because more blocks are used for the same approximation. However, further 
numerical optimisation should fairly quickly arrive at a better solution. The usefulness of 
neutral mutations has been demonstrated for the evolution of digital circuits (Van 
Laarhoven & Aarts, 1987) and aerodynamic shapes (Olhofer et al., 2001).  
As a result, the ED algorithm basically represents a numerical EA with the inclusion of 
structure mutations mechanism. 

3.1 Representation of the control laws 

Control laws are represented as a combination of static functions and input signals, which 
are organised as a dynamic structure of state equations and output equations in form of 
continuous representation. 
The controller being evolved has m inputs, r outputs and n states. The number of inputs and 
outputs is fixed. The algorithm allows varying number of states; however, in this work, the 
number of states is also fixed during the evolution. As a result, the controller comprises of n 
state equations and r output equations: 

www.intechopen.com



Flight Control System Design Optimisation via Genetic Programming 

 

139 

 

( )
( )

( )uxgx

uxgx

uxgx

nn ,

,

,

22

11

=

=

=

&

M

&

&

 and 

( )
( )

( )uxfy

uxfy

uxfy

nn ,

,

,

22

11

=

=

=

M
 (4) 

where u is size m vector of input signals, x = [x1,x2,…xn] is size n vector of state variables, 
y1…r are controller outputs. Initial value of all state variables is zero. All n+r equations are 
built on the same principle and are evolved simultaneously. For structure mutations, a 
random equation is selected from this pool and mutated. 

3.1.1 Representation of input signals 

Input signals delivered to each particular controller are directly measured signals as well as 
the quantities derived from them. 
Within each group, inputs are organised in the subgroups of ‘compatible’ parameters. 
Compatible parameters are those which have close relationship with each other, have the 
same dimensions and similarly scaled. The examples of compatible parameters are the pairs 

(nx, nxg), (ωy, ψ& ), (Va, VCL). As a rule, only one of the compatible parameters is needed in a 

given control law. For this reason, the probability of selection of such parameters for the 
structure mutation is reduced by grouping them in the subgroups. Each subgroup receives 
equal chances to be selected. If the selected subgroup consists of more than one input, a 
single input is then selected with uniform probability. 
Therefore, every controller input may be represented by a unique code consisting of three 
indices: the number of group a, the number of subgroup b and the number of item in the 
subgroup c. The code is designated as u(a,b,c). 

3.1.2 Representation of control equations and the structure mutation 

Each of the control equations (4) is encoded as described above. To this end, only one single 
output equation of the form y = f(u) will be considered in this section. State variables x are 
considered as special inputs and have no effect on the encoding. 
This is done to speed up the search, which could otherwise be hampered by the multitude of 
possible operations. It proved to be more effective to include all meaningful quantities 
derived from source measurements as independent inputs than to implement all the 
functions and operations which potentially allow to emerge all necessary quantities 
automatically in the course of evolution. 
The encoding should allow a simple way to insert a new parameter in any place of the 
equation without disrupting its validity and in a way that this insertion initially does not 
affect the result, thus allowing neutral structure mutations. 
Conceptually, the equation is a sum of input signals, in which: 

• every input is multiplied by a numeric coefficient or another similarly constructed 
expression; 

• the product of the input and its coefficient (whether numeric or expression) is raised to 
the power assigned to the input; 

• a free (absolute) term is present. 
The simplest possible expression is a constant: 

 y = k0  (5) 
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A linear combination of inputs plus a free term is also a valid expression: 

 y = k2u2 + k1u1 + k0 (6) 

Any numeric constant can be replaced with another expression. An example of a full 
featured equation is 

 y = ((k4u4 + k3)u3)–0.5 + k2u2 + (k1u1)2 + k0 (7) 

This algorithm can be illustrated by encoding the example (7). The respective internal 
representation of this expression is: 

• Equation: y = ((k4u4 + k3)u3)–0.5 + k2u2 + (k1u1)2 + k0 

• Expression: { u(3,-0.5) u(4) 1 2 u(2) 3 u(1,2) 4 5 } 

• Object parameters: [ k4 k3 k2 k1 k0 ] 

• Strategy parameters: [ s4 s3 s2 s1 s0 ] 
This syntax somewhat resembles Polish notation with implicit ‘+’ and ‘*’ operators before 
each variable. The representation ensures presence of a free term in any sub-expression, 
such as k3 and k0 in the example above. 
The algorithm of structure mutation is presented below.  
1. Select an input (or a state variable) at random: u(a,b,c). 
2. Obtain the initial values of the numeric coefficient and the strategy parameter (initial 

step size). The initial coefficient k is selected as described above, it can be either 0 or 106. 
3. Append the object parameters vector with the initial coefficient, and the strategy 

parameters vector with the initial step size.  
4. Form a sub-expression consisting of the selected variable code and the obtained index: { 

u(a,b,c) n }. 
5. With 40% probability, set the insertion point (locus) to 1; otherwise, select a numeric 

value in the expression at random with equal probability among all numeric values 
present and set the locus to the index of this value. 

6. Insert the sub-expression into the original expression at the chosen locus (before the item 
pointed). 

This procedure may produce redundant expressions when the selected variable already 
exists at the same level. Thus an algebraic simplification procedure is implemented. It parses 
given expression, recursively collects the factors of each variable encountered and then 
rebuilds the expression. 

3.2 Simulation environment 

Fitness evaluation of the controllers is based on the outcome of one or more simulation runs 
of the models involved with the controller being assessed in the loop.  
Simulation environment for this study is constructed in the MATLAB/Simulink software. 
All the models are implemented as Simulink library blocks (Khantsis, 2006). The models 
participating in the evolution include: 

• The Ariel UAV model;  

• The atmospheric model;  

• The ship model; 

• The static cable model. 
The sample rate should be kept at minimum, ensuring, however, numerical stability. The 
fastest and thus the most demanding dynamics in the model is contained in 
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• sensors (both the lags and noise); 

• control actuators; 

• turbulence model; 

• and potentially, controllers. 
These components should be especially carefully examined when adjusting the sample rate. 
The experimentally determined minimum sample rate for the model is 100 Hz. The model is 
integrated using the 4th order Runge-Kutta method. 

3.3 Fitness evaluation 

Fitness evaluation is based on objectives which are individual for each controller and 
therefore is calculated individually. As discussed above having several specific controllers 
makes it easier to define their particular objectives and reduces the number of these 
objectives as compared to one all-purpose autopilot. 
Fitness evaluation of a controller can be divided into two main stages. First is the 
preparation of the sample task and simulation of the model with the controller in the loop. 
The second stage is analysis of the results obtained from the simulation and evaluation of 
the fitness as such. These steps are often repeated several times, making the controller 
perform varying tasks in order to obtain a balanced measure of its performance via multi-
task fitness evaluation. 
Fitness value may reflect different levels of performance achieved by the controller, 
including ‘hard bounds.’ For example, if the controller crashes the UAV, a high penalty 
score may be assigned.  
Other parameters of flight taken into account is control usage (or control effort): it is 
desirable to keep control usage at minimum. Tracking abilities, if applicable, can be 
estimated by the weighted sum of the tracking error. 
The total fitness value is calculated as the weighted sum of all estimates: 

 F =WcCc +WfCf +WeCe +… (8) 

The exact value of the weighting coefficients W, as well as the number of estimates taken 
into account, is individual for each controller. As a rule, the weighting coefficients are 
chosen empirically. It should be noted that the signals are dimensionalised and thus the 
coefficients may vary significantly. For example, aerodynamic surfaces deflection is 
measured in degrees and may range from –16 to 16 (for rudder and ailerons); considering 
10-fold saturation limits, the peak values may reach ±160. At the same time, throttle range is 
0.01 to 1, thus the cost for its usage will be about 30 times as low (for similar control 
dynamics). 

3.4 Evolutionary design algorithm outline 

The Evolutionary Design algorithm is implemented as a function with two input arguments: 
population size and number of generations to run. Other, more specific parameters are 
initialised within the program. The algorithm framework is as follows. 
1. Initialise all parameters. If the evolution is continued, go to step 3. 
2. Create initial population. 
3. Evaluate fitness of each individual. 
4. Save the full state to a temporary file for emergency recovery. 
5. If the required number of generations is reached, return. 
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6. Sort the population according to the fitness of each individual. 
7. If elitism is enabled, copy the best scored individual into the new population. 
8. Until the new population is filled up:  
9. Select the next individual from the sorted list (starting from the elite member). 
10. Every (ks)th generation, with probability Ps, perform structure mutation of the selected 

individual. 
11. Reproduce n offspring individuals from the selected (and possibly mutated) individual. 
12. Put these n new individuals to the new population. 
13. Continue the loop from step 8. 
14. Increase the generation counter. 
15. Continue from step 3. 
Several steps of this algorithm need further clarification. 
Initial population is created according to the specified task. By default, it is initialised with the 
control laws of the form y = const with randomly chosen constants. Most of the controllers, 
however, are initialised with more meaningful control laws. For example, tracking 
controllers may be initialised with the laws y = k1ε + k0, where ε is the respective error signal 
and the coefficients k are sampled at random (taking into account default step sizes for the 
respective signal). 
It can be seen that selection is performed deterministically. This is the most commonly used 
way in ES. The populations used in this study were of moderate size, usually 24 to 49 
members. Selection pressure is determined by the number of the offspring n of each 
individual. The smaller n, the lower the selection pressure. For nearly all runs in this work n 
= 2, which means that half of the population is selected. This is a rather mild level of 
selection pressure. 
The parameters determining structure mutation occurrence, ks and Ps, both change during the 
evolution. As discussed previously, the number of structure mutations should decrease as 
the complexity of the controllers grows and more time to optimise the coefficients is 
required. The probability of structure mutation Ps is normally high in the beginning (0.7 to 
1.0) and then decrease exponentially to moderate levels (0.4 to 0.6) with the exponent 0.97 to 
the generation number. Default value of ks is set according to overall complexity of the 
controller being evolved. For simpler single-output controllers, as a rule, ks = 10; for more 
complex controllers ks = 20. However, in the beginning of evolution, ks is reduced by half 
until the generation 20 and 100 respectively. 
Reproduction is performed simultaneously with mutation, as it is typically done in ES, with 
the exception that this operation is performed separately for each selected member. 

4. Controller synthesis and testing 

The UAV control system is synthesised in several steps. First, the flight controller is 
produced. This requires several stages, since the flight controller is designed separately for 
longitudinal and lateral channels. When the flight controller is obtained, the guidance 
control laws are evolved. 
Application of the ED algorithm to control laws evolution is fairly straightforward: 1) 
preparation of the sample task for the controller, 2) execution of the simulation model for 
the given sample task and 3) analysis of the obtained performance and evaluation of the 
fitness value. When both the model and fitness evaluation are prepared, the final evolution 
may be started. Typically, the algorithm is run for 100–200 generations (depending on 
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complexity of the controller being evolved). The convergence and the resulting design is 
then analysed and the evolution, if necessary, is continued. 

4.1 Step 1: PID autothrottle 

Initially a simple PID variant of autothrottle is evolved - to ensure a more or less accurate 
airspeed hold. At the next stage, its evolution is continued in a full form together with the 
elevator control law. The PID structure of the controller may be ensured by appropriate 
initialisation of the initial population and by disabling structure mutations. Therefore, the 
algorithm works as a numerical optimisation procedure. The structure of the autothrottle 
control law is following: 
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where a
d

a VVV −=Δ is the airspeed error signal, tδ is the throttle position command and 

k1…6 are the coefficients to be optimised. 
A 30-second flight is allocated for performance measurement. Such a long flight is needed 
because throttle response is quite slow. Since robustness of the PID controller to 
discrepancies in the UAV model is not topical at this stage (it will be addressed in further 
evolution), and because structure of the controller is fixed so that irrelevant measurements 
cannot be attracted, only a single simulation run for each fitness evaluation is performed. 
Elevator inputs provide the main source of disturbances for training the autothrottle. A 2.5-
degree nose-up step input is executed at time t = 5 s. It produces nearly steady climb 
without reaching stall angles of attack and saturation on the throttle (except for, possibly, 
dynamic transition moments).  
At t = 14 s, a similar nose-down elevator step is commanded, entering the UAV into glide 
with small descent angle. In addition, a 3 m/s tailwind gust is imposed at t = 23 s. 
Generally, manoeuvres and wind disturbances are the most prominent sources of airspeed 
variations, therefore they are included for autothrottle assessment. 
Initial airspeed is set to 23 m/s, i.e. 1 m/s above the required airspeed. This provides an 
additional small scale disturbance. Initial altitude is 100 m, providing enough elevation to 
avoid crash for any sensible throttle control. 
Algorithm settings are as follows. Since the structure is fixed, large population size N is 
unnecessary. Population size of 25 members has been used in most runs. N = 13 showed 
similar results in terms of fitness evaluation demands (red line on the convergence graph in 
Fig. 7a; adjusted to the population size 25 for comparison). Fitness is evaluated 
deterministically because all random signals are repeatable from run to run. Elitism is 
enabled. Fitness is calculated with the following weighting coefficients: 

 ( ) ( ) ( )tftceet CCVCF δδ 200010002000 ++=  (10) 

It should be noted that the commanded signal tδ (which enters the actuator) is used for 

evaluation. 
Convergence graphs for three independent runs of the ED algorithm are presented in Fig. 
7a. They show the best fitness values for each generation. On average, 2000 to 2500 
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simulation runs is needed to achieve satisfactory performance. Because this is only an 
intermediate controller, full optimisation is not necessary at this stage.  
The best controller obtained in the experiments is the following:  
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Sample response of this controller is illustrated in Fig. 7b. 

 

Figure 7. PID autothrottle current-best fitness (a) and sample response (b) 

4.2 Step 2: Longitudinal control 

With a simple autothrottle available, elevator control can be developed to provide tracking 

of the normal body load factor demand d
yn .  

It is desirable that the sample training task closely reflect the conditions the controller will 
be subject to in a real guidance task. Unfortunately, this is not possible at the early stages of 
multistage design process as guidance laws can be evolved only after a capable flight 
controller has been produced. In the meantime, a replacement pseudoguidance task must be 
used for the flight controller training.  
As a suitable replacement of the guidance law, a simple static altitude hold is used: 

 ( ) θcos03.0 +−= HHn dd
y  (12) 

A low gain is chosen to ensure guaranteed stability. The θcos term takes into account 

gravity component, assuming that roll angles are small. However, real guidance in high sea 
will most likely require a more active control, especially closer to the recovery boom. For 
this reason, a synthetic ‘chirp’ signal c(t) is added starting from 10th second of flight. This 
signal represents a sine wave which frequency increases linearly from f0 = 0.01 Hz at t0 = 10 s 
to f1 = 0.5 Hz at t1 = 20 s. For t < 10 s, c(t) = 0, providing ‘training’ for smooth control. Chirp 
signal is often used for response analysis of nonlinear systems. Altogether, the reference 
input signal is 

www.intechopen.com



Flight Control System Design Optimisation via Genetic Programming 

 

145 

 ( ) ( )( ) ( ) ( )tcttHHtn dd
y 2.0cos03.0 ++−= θ  (13) 

The preset altitude Hd is 5 m above the initial altitude H0 = 100 m. This causes a small 
positive step input in the beginning of flight.  
Flight time is limited to 20 s, which is close to normal final approach flight time (10–15 s), 
but allocates more time for better ‘training’ of slow throttle control. Overall fitness of the 
controller is calculated as an average of three fitness values obtained for each flight. 
Elevator control law is initialised as follows: 
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where y
d
yy nnn −=Δ  is the load factor error and the coefficients k1…3 are sampled at random 

for the initial population. For simplicity, first-order dynamic control law is used. However, 
when combined with the throttle control, both control laws may include both state variables 
x1 and x2, forming a tightly coupled longitudinal control. 

 

Figure 8. Longitudinal control sample response 

Fitness estimation combines both throttle control fitness and elevator control fitness. They 
are constructed in a similar manner with the following weighting coefficients: 

 ( ) ( ) ( )efecyetette CCnCFFFF δδ 500050500000 +++=+=  (15) 
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The weights put slightly more emphasis on elevator control than on throttle control, because 
the former is more important for guidance. Autothrottle only supplements it to provide safe 
flight conditions. 
Relatively large population size of 49 members has been used in all runs. Initial structure 
mutation probability Ps was set to 1.0; final value Ps → 0.6. Structure mutations happened 
every (ks = 5)th generation for the first 20 generations, then ks = 10 until 100th generation, 
then ks = 20. Satisfactory controllers were obtained after about 100 to 120 generations, which 
requires approximately 15000 simulation runs. The best performing controller has the 
following form: 
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Response of this controller to the sample input (in default configuration) is presented in Fig. 
8. 

4.3 Step 3: Lateral control 

Lateral control consists of two channels: ailerons control and rudder control. As a rule, for 
an aerodynamically stable aircraft such as the Ariel UAV, lateral control is fairly simple and 
is not as vital for flight as longitudinal control. For this reason, both control laws, for 
ailerons and rudder, are evolved simultaneously in one step. 
The set-up is largely similar to that used in the previous step. The just evolved longitudinal 
control laws (16) are connected to throttle and elevator. Both ailerons and rudder control 
laws are initialised in a similar manner to (14): 
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Fitness is calculated as follows: 

 ( ) ( ) ( ) ( ) ( ) ( )rfrczeaaceraar CCnCCCFFF δδδδγ 200010200000200050000 +++++=+= K  (18) 

Algorithm settings are the same as for longitudinal control design. Fairly quick convergence 
(within 70–80 generations) was observed, with slow further progress. Considering that the 
initial state is zero, state variable x3 is always zero. The controller is obtained as follows: 
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Sample response of this controller is presented in Fig. 9. 
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Figure 9. Lateral control sample response 

4.4 Step 4: Stall prevention mechanism 

Active guidance control may produce high acceleration demands d
yn , which may lead to 

exceeding the maximum allowed angle of attack maxα  and result in stall. 

However, fitness evaluation of the control law with stall prevention would be more complex 
and time consuming. Separate estimation is required because the objectives are 
contradictory: adequate limitation of α  invariably results in tracking degradation and vice 

versa. 
Though, a separate control law which limits angle of attack is developed. The limiter should 
work only when dangerous angle of attack is reached, being deactivated in normal 
conditions. 
The control law is evolved in a similar manner to other laws described above. The objective 

of the control law is to maintain maxαα =  by correcting d
yn as long as this demand is greater 

than required for safe flight. Also, free term is disregarded in both state and output 
equations. 
Fitness is calculated similarly to all tracking controllers with respect to the command 

maxαα = . Two exceptions are made, however. First, overshoot is penalised twice as heavily 

as undershoot, because exceeding the maximum angle of attack is considered to be 
hazardous. Second, since the limiter has no direct control on elevator, the amount of 
longitudinal oscillations is taken into account as the variance of pitch rate. Altogether, the 
fitness value is calculated as 
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 ( ) ( ) ( )efzcecaa CCCCF δωδ 100010001.0106 +++=  (20) 

 

Figure 10. Angle of attack limiter current-best fitness (a) and sample responses (b) 

Algorithm settings and initialisations are similar to the case of longitudinal control 
evolution, except that smaller population of 24 or 25 members is used because only one 
control law is evolved. Both elitist and non-elitist strategies have been tried with largely 
similar results. Quick convergence, within 40–50 generations, was observed in all cases, with 
slow further progress. Examples of current-best convergence are presented in Fig. 10a. A 
simpler solution obtained in elitist strategy has been selected: 
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Where maxK  is a damping coefficient and 0d
yn  is a frozen value for d

yn . Sample responses of 

this controller are presented in Fig. 10. 

4.5 Step 5: Guidance 

At this point, flight controller synthesis is completed and guidance laws can be evolved. 
Guidance controller comprises two control laws, for the vertical and horizontal load factor 

demands, d
ykn and d

zkn  respectively. This is equivalent to acceleration demands 

 d
yk

d
yk gna =  and d

zk
d
zk gna =  (22) 

These demands are passed through the kinematic converter to form the flight controller 

inputs d
yn and dγ . 

It is important to note that when the controller is evolved in a stochastic environment with 
many random factors, the evolution progress becomes highly stochastic as well. It is 
desirable to obtain the fitness value on the basis of multiple simulation runs, reducing 
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thereby sampling errors and making fitness value more deterministic and reliable. Excessive 
number of simulation runs, however, may slow down the evolution considerably, thus an 
optimal number should be found.  
Second, for the same reason, stagnation of progress of the current best fitness is not a 
reliable indicator of stagnation of the evolution. Every generation may produce individuals 
with very good fitness which will not sustain further selections. In some cases, current best 
fitness may appear stagnated from the very first generation. Average population fitness may 
be considered as a better measure of evolution progress. 
Third, elitism has little sense in a sufficiently stochastic environment and is usually not 
employed. If it is desirable, for some reason, to use elitist strategy, fitness of the elite 
solution must be recalculated every generation. 
In the guidance task, the random factors include initial state of the UAV; Sea State, 
atmospheric parameters, and initial state of the ship. 
Fitness is calculated as follows: 

 ( ) ( ) ( )d
zkf

d
zkc

d
ykcg nCnCnCzhF 10050050025502040 11

2
1

2
1 +++++Δ+Δ= γψ  (23) 

where 1hΔ  and 1zΔ  are vertical and horizontal miss distances, and 1ψ  and 1γ  are final yaw 

and bank angles. Greater weight for vertical miss than that for horizontal miss is used 
because vertical miss allowance is smaller (approximately 3–4 m vs. 5 m) and also because 
vertical miss may result in a crash into the boom if the approach is too low. 
Three simulation runs are performed for each fitness evaluation. To provide a more 
comprehensive estimation of guidance abilities, initial positions of the UAV in these N runs 
are maximally distributed in space, maintaining, at the same time, a sufficient random 
component. 
Algorithm initialisation is the same as for longitudinal flight control laws evolution, except 
that elitism is not used and the population size is 48 members. The initial population is 
sampled with the control laws of the form 
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where all coefficients k are chosen at random. For convenience, the control laws are 
expressed in terms of accelerations, which are then converted to load factors according to 
(22). Since these control laws effectively represent ‘empty’ laws y = const (plus a low-pass 
output filter with randomly chosen bandwidth), structure mutation is applied to each 
member of the initial population. Further structure mutations are performed as specified 
above. With such initialisation, no assumption about possible guidance law is taken. 
From the final populations, the best solution is identified by calculating fitness of each 
member using N = 25 simulation runs, taking into account also success rate. The best 
performing controller is the following (unused state variables are removed) with 100% 
success rate in the 25 test runs with average fitness 69.52: 
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The other attempted approach is the pure proportional navigation (PPN) law for recovery 
which was compared with the obtained solutions (Duflos et al., 1999; Siouris & Leros, 1988). 
The best PN controller have been selected using the fitness values of each member of the 
final population averaged over 100 simulation runs. It is the following: 
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This controller received the fitness 88.85 and showed success rate 95%. 

5. Controller testing 

Testing is a crucial stage of any controller development process as the designer and end user 
must be satisfied that the controller meets its performance requirements. In addition, an 
allowable operational envelope must be obtained. Testing of a developed controller can be 
performed either within the physical system or in a comprehensive simulation environment. 
In physical implementation, the controller is working on a true model and hence there are 
no modelling errors to introduce uncertain effects into the system. In addition, physical 
testing accurately reflects the operational use of the controller. On the other hand, physical 
testing involves large time and cost demands for multiple tests. Moreover, the failure of the 
controller at any stage may lead to a dangerous situation and even to loss of the aircraft.  
Testing within a simulation environment has the benefit that many different tests may be 
applied rapidly with no severe consequences in the event of controller failure. The whole 
range of operating conditions may be tested. On the downside is that potentially large 
modelling errors may be introduced, which may bias the results and cause an otherwise 
excellent controller to fail when implemented physically. In addition, testing situations 
which cannot occur in practice are possible in the simulation environment. 
In this work, two main types of simulation tests are conducted – robustness and 
performance. Results are presented for robustness test, which is aimed at ensuring the 
controller has good robustness to modelling uncertainties and to test whether the controller 
is sensitive to specific perturbations.  

5.1 Robustness tests 

Testing the controller for robustness to model uncertainty involves perturbing the model 
and determining the effect upon controller performance. The perturbations can be 
performed in several ways. Physical quantities such as mass and wing area can be changed 
directly. Dynamics of the system can be varied by introducing additional dynamic elements 
and by changing internal variables such as aerodynamic coefficients. For a realistic test, all 
perturbations should be applied simultaneously to identify the worst case scenario. 
However, single perturbation tests (the sensitivity analysis) allow to analyse the degree of 
influence of each parameter and help to plan the robustness test more systematically. After 
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single perturbation tests multiple perturbation tests are carried out, where all parameters of 
the model are perturbed randomly within the identified limits. 

5.2 Single perturbation tests 

In this type of test, a single model variable is perturbed by a set amount and the effect upon 
the performance of the controller is determined. Performance evaluation can be measured in 
a manner similar to fitness evaluation of the guidance controller (equation (23)). 
The additional parameters taken into account in performance measurement are impact 

speed impV  and minimum altitude minH  attained during the approach. 

Altogether, the performance cost (PC) is calculated as follows: 
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Impact speed impV and minimum altitude minH are measured in m/s and metres 

respectively. Other designations are as in (23). Unlike fitness evaluation in the flight 

controller evolution, the commanded control deflections aδ , rδ  and eδ  are saturated as 

required for control actuators.  
The absolute value of the PC obtained using (27) is not very illustrative for comparison 
between the results. Smaller values indicate better performance, but the ‘ideal’ zero value is 
unreachable because a minimum level of control activity is always present even in very calm 
environment. For this reason, a Normalised Performance Cost (NPC) will be used: 

 
refPC

PC
NPC =  (29) 

where PCref is the reference Performance Cost obtained for the reference (unperturbed) 
model with the guidance controller being considered. NPC > 1 indicates deterioration of 
performance. However, the performance with the perturbed model may be better than the 
reference performance, thus NPC < 1 is also possible. 
The environment delivers a great deal of uncertainty. To obtain a reliable estimate of 
performance, several tens (up to a hundred) of simulation runs in various conditions should 
be performed at every point. However, this would imply a prohibitively high computational 
cost. Meanwhile, there is no single ‘typical’ scenario that could encompass most of the real 
flight conditions. For these reasons, in this work few different scenarios were used for 
evaluation of a single Performance Cost to cover most of the possible real world conditions. 
The range of disturbances and the initial ship phase are chosen to provide a moderately 
conservative estimation. All random parameters (which include the turbulence time history 
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and the ship initial state) are reproducible between the PC estimations, therefore PC is 
calculated deterministically. Results presented in this work are for calm environment: 
Calm environment. No wind, no turbulence; initial position of the UAV is at the ideal 
reference point: distance 300 m, elevation 14 m, zero sideways displacement. A small 
amount of ship motion corresponding to Sea State 2 (SWH)2 is, however, included. This 
scenario is useful to analyse the performance in benign environment and also to soften the 
conservative bias to the difficult conditions. 
The first test determines the robustness to time delays in the measurement signals.  
The tests are carried out for the two controllers selected in Section 4.5. The controller #1 is 
(26) (pure Proportional Navigation guidance) and the controller #2 is (25). Fig. 11a shows 
the NPC evaluated for these controllers for varying time delay.  
Time delays occur in a physical system due to several factors, which include delays 
associated with the measurement devices, delays in encoding, decoding and transmitting 
the signals to the controllers, delays in controller computation and delays in the actuator 
systems. 
The miss distance (averaged over the four scenarios) is shown in Fig. 11b. It can be seen that 
in terms of guidance accuracy, delays up to 0.07 s for the second controller and up to 0.09 s 
for the first controller cause little effect. However, considering the NPC value, which also 
takes into account control activity, sufficient degradation is observable from 0.035 second 
delay. This is expectable, because delays usually cause oscillations in the closed-loop 
system. 

 

Figure 11.10 NPC (a) and miss distance (b) for controllers with time delays 

For the selected NPC threshold, the maximum time delay can be defined as 0.065 s for the 
controller #1 and 0.06 s for the controller #2. 
It should be noted, however, that perturbation of any one of the parameters does not 
provide a comprehensive picture of the effect on performance. For this reason, the effect of 

perturbation of empty mass emptm will be closely examined as well. Unlike time delay, this 

perturbation should primarily affect the trajectory rather than the control activity.  
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emptm is varied from 50% of the reference value (20.45 kg) to 200% linearly with 2% steps. 

This is done separately for increasing and decreasing the variable until the threshold NPC = 
1.8 is crossed, or a failure occurs, or the limit (200% or 50% respectively) is reached. 
The parameters corresponding to aircraft geometry and configuration are tested in a similar 
manner. The range is increased to the scale factors between 0 and 10 (0 to 1000%) with step 
0.05. NPC is linearly interpolated at the intermediate points. The allowable perturbations (as 
factors to the original values) are summarised in Table 1, where * denotes the extreme value 
tested. 

 

Table 1. Allowable perturbations of UAV inertial properties and geometry 

Fig. 12  demonstraites results for calm environment.  Control signals for the worst two cases 
(with NPC > 3.8) are not shown, they exhibit extremely aggressive oscillations. Dashed cyan 
and green lines on the trajectory graphs represent the ‘unrolled’ along the flight path traces 
of the tips of the recovery boom (lateral position on the top view and vertical position on the 
side view). The bar on the right hand side illustrates the size of recovery window. The 
height and position of the window may be slightly different for different trajectories because 
it is determined by the shape of the arresting cable-hook. However, in most cases this is 
barely noticeable on the graphs since the difference in flight time and terminal part of 
trajectory is small. Note that the horizontal and vertical scale on the trajectory graphs is 
different. 
The other parameters evaluated in this research were the perturbations of the power unit 
parameters, the aircraft aerodynamics parameters and sensor noise (Khantsis, 2006). 
Overall, these tests have not exposed any significant robustness problems within the 
controllers. Large variations in single aircraft parameters caused very few control problems. 
However, such variations cannot realistically judge the performance of the controllers under 
simultaneous perturbations of multiple parameters. In order to compare the practical 
robustness of the aircraft, the following tests are performed. 

5.3 Simultaneous multiple perturbation tests 

These tests involve simultaneous perturbation of all the aircraft variables by a random 
amount. This style of testing requires many simulations to ensure adequate coverage of the 
testing envelope. Normally distributed random scale factors are used for perturbations. 
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Figure 12. Flight path and control signals with time delays 
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The chosen standard deviations are approximately one tenth of the maximum allowed 
perturbations identified in the previous robustness tests. 
For each of the two controllers, 1000 tests (4000 simulations considering four scenarios) have 
been carried out. Note that the perturbations were the same for both controllers in each case. 
This allows to compare the performance between the controllers in similar conditions. The 
second controller showed much poorer robustness. 90.4% of test cases showed NPC < 1.8. 
At the same time, only 69.8% of the tests reported successful recovery. Such a large 
proportion of cases which acceptable NPC value but without capture (about 20%) indicates 
that the controller delivers sufficiently inferior guidance strategy when subject to model 
uncertainty. This could be expected because this controller uses more positioning 
measurements. The majority of these cases involve a miss in the tailwind scenario, 
highlighting a potential guidance problem. The number of cases with a crash in one or more 
scenarios is 2.8%, which is a significant increase over the first controller as well. 
From these tests, the Proportional Navigation controller is clearly preferable. However, it 
must also be tested over a wide range of scenarios.  

6. Conclusions 

In this chapter, an application of the Evolutionary Design (ED) is demonstrated. The aim of 
the design was to develop a controller which provides recovery of a fixed-wing UAV onto a 
ship under the full range of disturbances and uncertainties that are present in the real world 
environment. 
The controller synthesis is a multistage process. However, the approach employed for 
synthesis of each block is very similar. Evolutionary algorithm is used as a tool to evolve 
and optimise the control laws. One of the greatest advantages of this methodology is that 
minimum or no a priori knowledge about the control methods is used, with the synthesis 
starting from the most basic proportional control or even from ‘null’ control laws. During 
the evolution, more complex and capable laws emerge automatically. As the resulting 
control laws demonstrate, evolution does not tend to produce parsimonious solutions. 
The method demonstrating remarkable robustness in terms of convergence indicating that a 
near optimal solution can be found. In very limited cases, however, it may take too long 
time for the evolution to discover the core of a potentially optimal solution, and the process 
does not converge. More often than not, this hints at a poor choice of the algorithm 
parameters. 
The most important and difficult problem in Evolutionary Design is preparation of the 
fitness evaluation procedure with predefined special intermediate problems. Computational 
considerations are also of the utmost importance. Robustness of EAs comes at the price of 
computational cost, with many thousands of fitness evaluations required. 
The simulation testing covers the entire operational envelope and highlights several 
conditions under which recovery is risky. All environmental factors—sea wave, wind speed 
and turbulence—have been found to have a significant effect upon the probability of 
success. Combinations of several factors may result in very unfavourable conditions, even if 
each factor alone may not lead to a failure. For example, winds up to 12 m/s do not affect 
the recovery in a calm sea, and a severe ship motion corresponding to Sea State 5 also does 
not represent a serious threat in low winds. At the same time, strong winds in a high Sea 
State may be hazardous for the aircraft. 
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Probably the most important consideration in the context of this research is validity of the 
Evolutionary Design methodology. Whilst it is evident that ED did produce a capable 
controller that satisfies the original problem statement, several important observations can 
be made. First of all, in the absence of similar solutions to be compared with, it is unclear 
how close the result is to the optimum. Considering remarkable robustness of EAs for 
arriving at the global optimum, it may be believed that the controller is very close to the 
optimal solution. However, comparing performance of the two generated guidance 
controllers in different configurations, it may be concluded that there is still room for 
improvement. The main reason for that is believed to be the limited scope of the testing 
conditions used in the evolution process, which is mainly due to shortage of computational 
resources. 
On the whole, Evolutionary Design is a useful and powerful tool for complex nonlinear 
control design. Unlike most other design methodologies, it tries to solve the problem at hand 
automatically, not merely to optimise a given structure. Although ED does not exclude 
necessity of a thorough testing, it can provide a near optimal solution if the whole range of 
conditions is taken into account in the fitness evaluation. In principle, no specific knowledge 
about the system is required, and the controllers can be considered as ‘black boxes’ whose 
internals are unimportant. Successful design of the controller for such a challenging task as 
shipboard recovery demonstrates great potential abilities of this novel technique. 

6.1 Limitations of the Evolutionary Design 

The first point to note is that ED, as well as any evolutionary method, does not produce 
inherently robust solutions in terms of both performance and unmodelled uncertainties. As 
noted above, behaviour of the solutions in the untested during the evolution conditions may 
be unpredictable. A sufficient coverage of all conditions included in the evolution process 
invariably requires a large number of simulations, which entails a high computational cost. 
When the amount of uncertainties in the system and the environment becomes too large, 
computational cost may become prohibitively high. At the same time, subdivision of the 
problem into smaller ones and reduction of the number of environmental factors in order to 
reduce the amount of uncertainties require good understanding of the system. This severely 
compromises one of the main advantages of ED, which states that little, if any, a priori 
knowledge of the system is needed. 
Another limitation is that evolutionary techniques have little analytical background. Their 
application is based largely on empirical experience. In particular, most algorithm settings 
such as population size, selection pressure, probability of genetic operators etc. are adjusted 
using trial and error method. Whilst EAs are generally robust to these settings, it should be 
expected that the settings used for controller synthesis in this work may be far from optimal 
for another application, and their optimisation will take a significant time. 
The main limitations of the controller produced in the ED procedure are due to limited 
validity of the system models available. For a complete control system design, higher 
fidelity models will be essential. 

6.2 Research opportunities on the Evolutionary Design 

The ED methodology proved to be easy to apply and extremely suitable for current 
application. However, the main effort has been directed towards the practical 
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implementation and application of this design method, with little investigation into its 
general functionality and efficiency. 
An investigation into the most effective algorithm settings, such as the population sizes and 
probabilities of genetic operators, will also be beneficial. Extension and optimisation of the 
control laws representation may help to expand the area of possible applications as well as 
improve efficiency of the algorithm. A large room for improvement exists in the computer 
implementation of the algorithm. Whilst every effort has been made in this work to optimise 
the internal algorithmic efficiency, significant optimisation of the coding (programming) is 
possible. 
The methodology presented in this thesis can be used to develop a highly optimal controller 
capable of autonomous recovery of the UAV in adverse conditions. The Evolutionary 
Design method, which is the core of this methodology, potentially enables to produce 
controllers for a wide range of control problems. It allows to solve the problems 
automatically even when little or no knowledge about the controlled system available, 
which makes it a valuable tool for solving difficult control tasks. 
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