
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900



Chapter 3

Spatial and Temporal Assessment of Brassica napus L.
Maintaining Genetic Diversity and Gene Flow
Potential: An Empirical Evaluation

Vladimir Meglič and Barbara Pipan

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/intechopen.74570

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons 
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, 
distribution, and reproduction in any medium, provided the original work is properly cited. 

Vladimir Meglič and Barbara Pipan

Additional information is available at the end of the chapter

Abstract

Unpredicted persistence of all forms of B. napus present in the agro-ecosystem is the 
most common consequence of preservation and self-recruitment of seeds originating 
from soil seed bank. In nature, spontaneous intra- and inter-specific hybridization of  
B. napus is possible with sexually compatible species from the Brassicaceae family. The 
aim of this chapter is (a) to identify the distribution pattern and population dynamics 
of volunteers and feral populations along statistical regions in Slovenia; (b) to assess 
the global diversity of naturally appearing B. napus plants; (c) to evaluate the genetic 
differentiation between volunteers and feral populations; (d) to obtain the spatial and 
temporal distribution of spontaneous pollination potential and estimation of gene flow 
conservation; (e) to find the empirically assigned out-crossing rate of B. napus under a 
fragmented landscape structure, during 4-year monitoring; and (f) to observe that eco-
logically, evolutionary, and agronomically oriented studies could be conducted at the 
DNA level using short sequence repeat (SSR) markers. In total, we collected 261 samples 
of volunteer and feral populations. Our results showed that alleles from both volunteer 
and feral populations were distributed in three genetic clusters with relatively similar 
levels of diversity. Naturally occurring out-crossing rate is 13.71%. The global Mantel 
correlation coefficient of genetic and spatial relatedness between genotypes is 0.044.

Keywords: Brassica napus L., feral populations, volunteers, spontaneous pollination, 
out-crossing rate, temporal and spatial distribution, SSR markers, genetic diversity, 
population structure
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1. Introduction

Pollination relations occur among all existing forms of Brassica napus L. from different habitats; 
crops (mainly oilseed rape varieties), volunteers (grown from seed losses in previous years 

inside cultivated areas), and feral populations (appearing outside cultivation areas, mainly 

along the transportation infrastructure) [1, 2]. In the case of coexistence of different cropping 
systems which includes genetically modified (GM) oilseed rape production, introduction of 
transgenes in B. napus or related species is possible [3–7]. In nature, spontaneous inter-specific 
hybridization of B. napus is possible with sexually compatible species (relatives that have high 

pollination affinity with B. napus) from the Brassicaceae family. Villaseñor and Spinosa-Garcia 
[8] reported 7.3% of alien flowering plants in Mexico including 45 species and 25 genera from 
Brassicaceae family compared with 5.1% of its alien floras of the world determined by Pysek 
[9]. The relatives of B. napus are cultivated as field crops, but can also appear as weeds or wild 
outside cultivated areas (e.g., field edges, shelterbelts, road verges, slag heaps, embankments) 
[4, 6, 10]. Unpredicted persistence of all existing forms of B. napus in the agro-ecosystem is the 

most common consequence of preservation and self-recruitment of seeds originating from soil 

seed bank [11–15]. Because of its physical characteristics, the seed is very mobile and there-

fore disposed to spillage. Uncontrolled seed loss represents the potential for the appearance of 

volunteer and feral populations of B. napus inside and outside production areas; B. napus seed 

remains viable in the soil for several years [16, 17]. The population dynamics of these plants is 

dependent on the soil seed bank potential and on the complex interactive characteristics of the 

genotype, soil, and agro-climatic factors [18–23]. Pollen transfer is a primary source of gene flow 
and has direct influence on the level of genetic exchange within and among plants, depending 
on the landscape context within which it occurs [24, 25]. Non-native B. napus invasions and 

migrations are possible by vehicles, which act as vectors of long-distance dispersal [26, 27]. 

The spread of biological propagules, both pollen and seeds, plays a pivotal role in a number of 

fundamental ecological and evolutionary processes [28]. Dispersal is a process of central impor-

tance for the ecological and evolutionary dynamics of populations and communities, because 

of its diverse consequences for gene flow and demography [29]. The presence of undefined pol-
lination in both natural and agricultural systems presents the potential for spontaneous intra- 

and inter-specific hybridization, reflected in the genetic structure and biodiversity of B. napus.

B. napus originated through spontaneous inter-specific hybridization (followed by polyploidi-
zation) between turnip rape (B. rapa L.; genome AA, 2n = 20) and cabbage (B. oleracea L.; 

genome CC, 2n = 18), resulting in an allotetraploid genome comprising the full chromosome 

complements of its two progenitors. Spontaneous hybridization between B. rapa and B. oleracea 

(from Europe and Asia) occurred due to contemporary cultivation of both species in a small 

geographic area in the Mediterranean region [30].

B. napus is a self-pollinated plant species with a variable out-crossing rate, influenced by geno-

type and environmental conditions. Due to the variable out-crossing rate, intra- and inter-

specific gene flow may occur in nature [30–32]. Inside cultivation areas, the common rate of 

out-crossing is from 20 to 30% [23]. The out-crossing rate between different varieties with full 
fertility is up to 0.1% on the field-to-field scale, while in varieties with incorporated male steril-
ity (bait plants; they produce no pollen on their own and represent the worst case scenario on 
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the out-crossing rate), it is higher than 1% [23, 33]. Out-crossing potential is most prominent on 

field margins and starts diminishing after 10 m; however, pollination at greater distances is not 
excluded. This is more frequent in cases where there are no other flowering plants in the sur-

roundings of the donor plant/cultivated crop. The out-crossing rate is significantly influenced 
by proportions between donor and recipient plants [23].

Different marker systems including short sequence repeat (SSR) markers are used for genetic 
characterization of agro-economically important plant species [10, 34–37]. To assess the 

molecular variation, genetic structure and gene flow potential among B. napus genome on a 

spatial and temporal scale, proved to be best suitable applying several molecular marker sys-

tems (RAPD, AFLP, SINE, ISSR, and SSR) [1, 6, 38–40]. There are also newly developed DNA 

marker types (e.g., SNP, KASP-SNP) and NGS (Next Generation Sequencing) based applica-

tions (e.g., GWS, GBS, RAD) [41–44] for genotyping and breeding purposes of B. napus.

Fragmented landscape and small-sized field structure reflect the heterogeneous growth con-

ditions in several parts of Europe and world. The presence of ecological barriers like landscape 

structural elements (small woods, hedges, overgrown paths, and hills) and the influence of 
different agro-climatic conditions manage pollen and seed distribution [45]. Consequently, 

the persistence of B. napus plants originating from seed in soil seed banks enables gene flow 
potential on a spatial and temporal scale, reflecting in the crop quality, seed purity, and long-
term biodiversity. Therefore, the aim of this study is to empirically estimate the out-crossing 

potential of B. napus gene transfer, under a fragmented landscape (10 statistical regions) in 
Slovenia and study the conservation of spontaneous gene flow into B. napus genome on a 

temporal level (4-year period). Through analysis of genetic diversity and calculation of popu-

lation genetics parameters, implemented by advanced bioinformatics procedures, this study 

represents the important agronomical, biological, and ecological baselines. The presented 

results are provided on a DNA level, which is the most reliable way to determine changes 

in the genetic composition of B. napus genome on a spatial and temporal scale. Our goals 

were (a) to identify the distribution pattern and population dynamics of volunteers and feral 
populations along statistical regions in Slovenia; (b) to assess the global diversity of naturally 

appearing gene pool structure of B. napus; (c) to evaluate the genetic differentiation between 
volunteers and feral populations; (d) to obtain the spatial and temporal distribution of spon-

taneous pollination potential and estimation of gene flow conservation; (e) to find the empiri-
cally assigned out-crossing rate of B. napus under a fragmented landscape structure during 

a 4-year period of monitoring; (f) to observe that due to genetic diversity and population 

genetics parameters, ecologically, evolutionary, and agronomically oriented studies could be 

conducted at the DNA level using highly informative SSR markers.

2. Materials and methods

2.1. Study area

For the purpose of the study, we have selected macro-locations on a regional level—regions 

along Slovenia with high crop production share of B. napus (as oilseed rape) [2]. Therefore, from 

all statistical regions (12) of Slovenia, 10 were included in our research (Osrednjeslovenska-OSR, 
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Gorenjska-GOR, Jugovzhodna Slovenia-JVS, Notranjsko-kraška-NTK, Obalno-kraška-OBK, 
Podravska-POD, Pomurska-POM, Savinjska-SAV, Spodnjeposavska-SPS, and Zasavska-
ZAS) (Figure 1). Inside those regions, we identified agrotopes (field edges, meadows, loess 
slopes, shelterbelts, field margins, field paths, etc.) and ruderal habitats (road verges, rail-
way embankments, slag heaps, construction sites, rest areas by the roads, uncultivated areas, 

mounds, roundabouts, etc.) as main orientation points for field survey. Meanwhile, volunteer 
populations were sampled inside field margins as weedy plants in other cultivated crops.

2.2. Field survey

Field survey was conducted in a 4-year period from 2007 to 2010 every year during the flower-

ing time of the biennial B. napus (third week of April and first week of May). We sampled five 
young leaves from each individual plant per population from each micro-location on an area 

of approx. 5m2 including a minimum of five plants of B. napus. Sampled leaves were frozen 
(−20°C) and stored for DNA analysis.

2.3. DNA extraction

The leaf apex of each sample from the five young plants was bulked for DNA extraction with 
BioSprint 15 DNA Plant Kit (Qiagen) on a KingFisher (Thermo) isolation robot following the 
optimized method according to manufacturer’s instructions.

Figure 1. Sampling locations of feral and volunteer populations of B. napus in 2007–2010 along Slovenian statistical 
regions.
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2.4. Genotyping procedure

A total of 45 nuclear SSR markers originating from different Brassicaceae family species, with 
various nucleotide repeat motives (listed in Table 1) were used. Thirty-seven SSR markers (with 

Na, Ol, Ni, Ra) were developed by Lowe et al. [46]; two SSR markers (with BRMS) were pub-

lished by Suwabe et al. [47]; two SSR markers (with MR) were by Uzanova and Ecke [48]; one SSR 

marker (named BN83B1) was developed by Szewc-McFadden et al. [49]; and two SSR markers 

(with RES) were published by Wang et al. [50]. PCR reactions were performed on a final volume 
of 11.5 μl, containing 30 ng of genomic DNA and the following reagents with initial concentra-

tions of: 10 x PCR buffer (Biotools), 10 mM of each dNTPs, 50 mM MgCl
2
 (Biotools), 10 μM of 

each primer, 10 μM 5′ fluorescently labeled universal primer (6-FAM, NED, HEX), and 0. 5 U of 
Taq DNA polymerase (Biotools). The forward primer of each SSR was appended with 18 bp tail 

sequence 5’-TGTAAAACGACGGCCAGT-3′ (M13(−21) as described by Schuelke [51]. PCR anal-

yses were performed on ATC 401 (Apollo Instrumentations) under the following “touch-down” 
conditions, dependent on each primer pair: 94°C for 4 min; 15 cycles at 94°C for 1 min; auto decre-

ment temperature from 60 (62)°C at 0.7°C per cycle for 30 s; 72°C for 1 min, followed by 23 cycles 
at 94°C for 30 s; 53°C for 30 s; 72°C for 1 min; and final extension for 5 min at 72°C. Fragment 
analysis was performed on a 3130XL genetic analyzer (ABI); the allele lengths were determined 
by comparison to a size standard GeneScan-350 ROX (ABI) using GeneMapper 4.0 (ABI).

2.5. Data analysis

Parameters of genetic diversity among loci including ranges of allele lengths (Ra), numbers 

of alleles (n), frequencies of null alleles (No), and probability of identity (PI) were calculated 

using Identity v.1.0 [52]. MsToolkit [53] was used to evaluate expected heterozygosities (He), 
observed heterozygosities (Ho), and polymorphic information content (PIC). Locus-specific 
fixation indices and deviations of volunteer and feral populations from the Hardy–Weinberg 
equilibrium (HWE) were calculated using the GenAlEx v.6.4. [54]. Detecting the loci under 

selection was performed using Arlequin v.3.5.1.2 software [55] with 20,000 simulations. FSTAT 
v.2.9.3.2 [56] was used to determine allelic richness (R) as a measure of the number of alleles 

independent of sample size after 2000 permutations. The calculations of population statistics 
parameters at the spatial and temporal level including numbers of different alleles (Na), num-

bers of private alleles (Np), numbers of effective alleles (Ne), number of locally common alleles, 
fixation indices (F), population-specific expected heterozygosities (He), Shannon’s informa-

tion index (I), and pairwise Nei’s genetic correlations were obtained using GenAlEx v.6.4 [54]. 

The out-crossing rate (t) was calculated from the fixation index using the equation t = (1 – F) 

/ (1 + F) described by He et al. [57]. Gene flow among volunteer and feral populations was 
estimated by calculating the effective number of migrants (m) using the private allele method 
of Slatkin [58], implemented by Genepop v.4.1 [59]; the corrected estimated value of Barton 

and Slatkin were reported [60]. Two common estimators of volunteer and feral population 

differentiation (Fst and Rst as standard parameters of genetic distance) are Fst, based on allele 
identity, and Rst, which incorporates the SSR-specific stepwise mutation model. Calculations 
of both estimations were performed using GenAlEx v.6.4 [54], where the estimation of RST 

was evaluated by AMOVA with 999 permutations. Pairwise genetic and geographic (log10 
[lat, long]) uniformity between genotypes in the 4-year period, was established by 999 per-

mutations with the Mantel test [61]. The mean within region pairwise values (r), according 
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Locus Repeat motif Ra[bp] n He Ho N
0

PI PIC F

Na12-A07 (GT/CA)
11

160–190 13 0.601 0.473 0.077 0.197 0.573 0.003

Na12-B05 (GA/CT)
18

135–221 27 0.862 0.767 0.034 0.030 0.845 0.005

Na12-C08 (GA/CT)50 259–349 21 0.711 0.388 0.169 0.107 0.691 0.008

Na12-E05 (GT/CA)10 102–176 21 0.730 0.866 −0.078 0.099 0.704 0.003

Na12-G05 (GA/CT)50 144–254 22 0.876 0.749 0.069 0.027 0.858 0.005

Na14-E11 (GA/CT)
29

108–184 16 0.722 0.871 −0.077 0.117 0.678 0.001

Na14-G02 (GA/CT)
17

139–215 16 0.817 0.729 0.045 0.059 0.791 0.008

Ni3-G04b (GA/CT)
18

99–171 20 0.690 0.747 −0.033 0.138 0.641 0.002

Ni4-D09 (GA/CT)25 162–246 22 0.911 0.932 −0.008 0.016 0.899 0.002

Ni4-E08 (GA/CT)
47

105–195 11 0.422 0.436 −0.017 0.394 0.388 0.005

Na12-A08 (GA/CT)
28

137–205 17 0.778 0.415 0.203 0.066 0.753 0.003

Na12-E06a (GA/CT)
23
, 162–252 12 0.816 0.730 0.052 0.055 0.790 0.006

Na12-C06 (GA/CT)
37

153–285 19 0.895 0.702 0.095 0.213 0.880 0.002

Na10-A08 (GA/CT)
21

107–217 21 0.700 0.723 −0.012 0.118 0.677 0.002

Na14-H11 (GT/CA)10 102–182 15 0.758 0.969 −0.120 0.091 0.725 0.005

BN83B1 (GA)
11

 (AAG)
4

135–232 13 0.414 0.201 0.139 0.393 0.396 0.011

MR183 (TG)
11

80–116 12 0.743 0.938 −0.106 0.108 0.699 0.001

Ni4-G04 (GA/CT)60 260–348 10 0.619 0.350 0.147 0.205 0.562 0.007

Ni4-H04 (GT/CA)
14

132–134 16 0.872 0.253 0.334 0.026 0.848 0.029

Ol10-D03 (GA/CT)20 106–190 21 0.793 0.938 −0.089 0.067 0.767 0.003

Ol11-D12 (GA/CT)52 111–209 32 0.931 0.685 0.145 0.009 0.920 0.007

Ol11-G11 (GGC/CCG)5 99–197 15 0.831 0.959 −0.065 0.051 0.806 0.004

Ol11-H02 (AAT/AAG)
18

128–218 12 0.802 0.713 0.047 0.070 0.772 0.003

Ol12-A04 (GA/CT)
17

120–202 15 0.449 0.410 0.023 0.328 0.428 0.002

Ol12-B05 (GA/CT)
36

122–244 20 0.516 0.405 0.069 0.256 0.493 0.004

Ol12-D05 (GA/CT)
32

101–193 17 0.770 0.665 0.048 0.068 0.745 0.003

Ol12-D09 (GGC/CCG)
4

103–193 11 0.703 0.875 −0.095 0.118 0.653 0.007

Ol12-E03 (GGC/CCG)
9

94–257 13 0.854 0.921 −0.045 0.039 0.832 0.001

Ol12-F11 (GT/CA)
14

124–254 17 0.707 0.660 0.023 0.130 0.678 0.016

Ol13-E08 (GA/CT)
11

126–232 17 0.729 0.770 −0.043 0.118 0.684 0.002

Ra2-A01 (GA/CT)
19

98–144 12 0.671 0.910 −0.149 0.171 0.611 0.001

Ra2-A10 (GT/CA)107 170–296 13 0.648 0.313 0.195 0.177 0.608 0.007

Ra2-E03 (GA/CT)
18

187–319 19 0.589 0.334 0.165 0.226 0.555 0.010

Ra2-E04 (GA/CT)
19

96–218 18 0.657 0.925 −0.155 0.174 0.593 0.002

Ra2-E12 (GA/CT)
32

115–281 24 0.782 0.769 0.018 0.069 0.757 0.002

Brassica Germplasm - Characterization, Breeding and Utilization32



to geographic and genetic distance, was calculated by 999 permutations and 1000 bootstraps 
using GenAlEx v.6.4 [54]. To assess the genetic structure of volunteer and feral populations, 

a Bayesian method was used. This analysis was performed using the model-based software 

Structure v.2.3.3 [62] that infers the number of genetic groups K present in a sample by com-

paring the posterior probability for different numbers of putative populations specified by the 
user and assigning individuals, giving a percentage of membership (Q value), for these clus-

ters. The admixture model with 100,000 MCMC (Markov chain Monte Carlo) repetitions and 
10,000 burn-in periods were used. Eleven independent runs were performed without prior 
information on groups assuming correlated allele frequencies. Temporal changes of genetic 

structure among volunteer and feral populations were estimated in PCoA (principal coor-

dinate analysis) via covariance matrix with data standardization using GenAlEx v.6.4. [54].

3. Results

3.1. The dataset

In the 4-year period, 261 samples were collected in total—66 samples of volunteer populations 

and 195 samples of feral populations within 10 statistical regions in Slovenia (Figure 1).

3.2. Evaluation of genetic diversity

Genotypic results for 45 analyzed loci are summarized in Table 1. All loci were 100% polymor-

phic in both volunteer and feral populations. The selected set of SSR markers is highly appli-

cable for genetic differentiation analysis within B. napus genome, suggesting high mean PIC 

Locus Repeat motif Ra[bp] n He Ho N
0

PI PIC F

Ra2-F11 (GA/CT)
34

151–307 29 0.797 0.929 −0.068 0.065 0.768 0.003

Ra2-G09 (GA/CT)
19

168–266 21 0.740 0.461 0.159 0.096 0.717 0.007

Ra3-E05 (GT/CA)65 183–285 11 0.656 0.735 −0.038 0.165 0.607 0.003

Ra3-H10 (GA/CT)
23

122–202 13 0.779 0.823 −0.025 0.072 0.760 0.006

BRMS-036 (CA)10(GA)
4

100–178 15 0.813 0.976 −0.082 0.055 0.786 0.001

BRMS-050 (AAT)
4
(TC)

19
(TTC)

3
143–215 14 0.361 0.292 0.047 0.473 0.345 0.013

MR187 (AG)
23

(AGG)5 101–189 18 0.600 0.450 0.103 0.175 0.579 0.001

RES1 (CCT)5 104–199 16 0.812 0.912 −0.058 0.064 0.782 0.002

RES6 (ATG)
7

148–223 10 0.373 0.244 0.088 0.426 0.352 0.003

BN6A2 (GATT)
4

93–133 9 0.596 0.415 0.116 0.191 0.556 0.003

Total 756 2.480×10−46

Mean 16.8 0.709 0.661 0.028 0.679 0.005

*Range of allele lengths (Ra), number of alleles (n), expected heterozygosity (He), observed heterozygosity (Ho), estimated 
frequency of null alleles (No), probability of identity (PI), polymorphic information content (PIC), and fixation index (F).

Table 1. Parameters of genetic diversity within volunteer and feral populations among loci*.
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value (0.679) and low total PI value (2.480 × 10−46) (Table 1). The most informative locus with the 

highest PIC value was Ni4-D09, which originated from B. nigra genome (Table 1). Global genetic 
diversity (mean He value, Table 1) between all naturally present volunteer and feral populations 

in Slovenia is 0.709. Positive and low mean N0 value (Table 1) suggests that there was negligible 

mutation activity within the included SSR regions in B. napus genome, during the 4-year period.

According to the exact HWE test, both volunteer and feral populations do not meet HWE 
conditions (P < 0.05) for any of the 45 loci, which is confirmed by the mean positive value of 
F (0.005) (Table 1), indicating spontaneous random mating and inbreeding potential. These 

findings reflect the characteristics of natural populations during the 4-year monitoring of 
non-cultivated B. napus populations. Significant changes (P < 0.05) in genetic structure of all 
included genotypes at each locus were detected for loci Ra3-H10 and NA10-A08; it is assumed 
that the level of gene flow for those loci was influenced by microevolution and natural selec-

tion. The calculated values of different alleles (Na = 12.40), private alleles (Np = 1.13), and fixa-

tion index (F = 0.072) within volunteer populations were lower compared to feral populations, 
where Na was 15.67, Np reached 4.40, and F was 0.074. Naturally occurring out-crossing rate 
among feral populations during the 4-year period on the national level is 13.71%; the global 

out-crossing rate among volunteer populations is lower (13.47%). These comparisons indi-

cate the favorable introduction and conservation of new alleles via spontaneous gene flow in 
nature in self-recruited generations of feral populations.

The MCMC structure of 45 SSRs showed moderate genetic structure. When Evanno’s [63] ad 

hoc estimator of the real number of clusters was used, it indicated modes at K = 3 (Figure 2). 

The average genetic distances between genotypes in the first cluster is 0.794 (Fst = 0.062), fol-
lowing 0.627 (Fst = 0.169) in the second cluster and 0.646 (Fst = 0.092) in the third genetic cluster.

3.3. Regional-spatial assessment of gene flow in fragmented field landscapes

Genetic diversity and allelic structure of volunteer and feral populations along statistical 
regions are presented in Figure 3 and Table 2. According to the highest values of expected het-

erozygosity (He) and Shannon’s information index (I), the most genetically diverse genotypes 
are from JVS (He = 0.731; I = 1.779), SAV (He = 0.726; I = 1.729), OSR (He = 0.688; I = 1.627), and 
POM (He = 0.662; I = 1.482) regions (Figure 3). The highest number of private alleles, Np = 0.867, 
was detected among genotypes from OSR (Figure 3); the out-crossing rate inside this region 

reached 10.45%. The highest out-crossing rate was calculated within SAV (t = 18.75%) and 

Figure 2. Genetic structure of volunteer and feral populations, according to three genetic clusters.
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JVS (t = 18.31%) regions. The differences between the highest Np and low t values in the OSR 

region indicate the favorable potential of gene flow conservation in feral and volunteer popu-

lations; this is in contrast with the JVS and SAV regions, where the level of spontaneous gene 
flow was high, but conservation into naturally occurred populations, was low.

The estimation of R
ST

 (using stepwise mutation model) using AMOVA showed 4% molecular 

variability among statistical regions. High genetic relatedness between genotypes from  different 

Figure 3. Genetic patterns according to spatial distribution of volunteer and feral populations.

GOR JVS NTK OBK OSR POD POM SAV SPS ZAS

GOR * 0.032 0.020 0.076 0.006 0.010 0.010 0.017 0.012 0.070

JVS 0.857 * 0.034 0.096 0.026 0.027 0.030 0.015 0.038 0.066

NTK 0.919 0.850 * 0.093 0.019 0.019 0.022 0.020 0.022 0.072

OBK 0.820 0.724 0.761 * 0.073 0.079 0.077 0.085 0.088 0.122

OSR 0.977 0.874 0.921 0.826 * 0.009 0.009 0.012 0.013 0.067

POD 0.958 0.874 0.921 0.801 0.963 * 0.010 0.015 0.016 0.063

POM 0.963 0.865 0.911 0.813 0.963 0.955 * 0.014 0.017 0.067

SAV 0.929 0.923 0.915 0.772 0.941 0.934 0.940 * 0.021 0.061

SPS 0.957 0.842 0.913 0.788 0.951 0.937 0.936 0.919 * 0.068

ZAS 0.770 0.763 0.764 0.711 0.774 0.789 0.774 0.785 0.778 *

*Upper (U) and lower (L) confidence limits bound the 95% confidence interval about the null hypothesis of “No 
difference” across the regions as determined by permutation. The lowest mean r value was calculated across POD 
region (63.3%), where r was outside U and L limits reflecting the highest genetic and geographic difference of included 
genotypes along this region.

Table 2. Values of pairwise comparisons of feral and volunteer populations according to statistical regions, Nei’s genetic 
identity (under diagonal) and F

ST
 values (above diagonal).
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regions was also confirmed with pairwise comparisons between genotypes from different geo-

graphical areas, based on Nei’s genetic identity and F
ST

 values (Table 2). The highest pairwise 

genetic correlation was calculated between genotypes from the OSR and GOR regions (0.977), 
which corresponds to the lowest F

ST
 values, based on allele frequencies between these two geo-

graphic areas (F
ST

 = 0.006) (Table 2). These two regions are geographically neighboring areas 

(Figure 1).

According to the results from Table 2, the included genotypes are relatively homogenously 

dispersed along all geographic areas and no grouping of genetically similar genotypes within 

statistical regions was observed. This finding was confirmed by a global Mantel test, which 
compares the genetic and geographic distance matrix of all 261 genotypes. The Mantel cor-

relation coefficient of genetic and spatial relatedness between genotypes was low, but positive 
(rxy = 0.044, P = 0.01), due to minor spatial linkage on the basis of genetic structure. The sum-

mary of the mean within region pairwise values, based on genetic and geographic distance, 

is presented in Figure 4.

3.4. Temporal distribution of landscape gene flow and conservation of genetic 
variation

Temporal distribution of genetic variation, according to 100% polymorphic loci during the 
4-year monitoring is presented in Table 3. Increasing values of Np, m, and molecular variance 

for every successive year, signify the gene flow potential, distribution, and conservation of 
new alleles into B. napus genome in a relatively short period. However, for allelic richness, the 
highest contribution was determined in 2010 (see Table 3).

According to PCoA results, there is a decreasing pattern of genetic linkages between all geno-

types from 2007 to 2010 (Figure 5). This genetic differentiation reflects the spontaneous gene 
flow through the 4-year period in the surveyed agro-ecosystem.

4. Discussion

According to the 4-year field monitoring, volunteer/feral populations appeared within sta-

tistical regions, where B. napus have been widely cultivated as oilseed rape (OSR, 56; GOR, 

Figure 4. Mean within region pairwise values (r), according to geographic and genetic distance.
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45; POD, 36; JVS, 32; POM and SAV, 29). The actual regional cultivation of B. napus in 2009 
was reported by Pipan et al. [2], where the highest proportion of oilseed rape production was 

inscribed along POM and POD regions. There was no volunteer or feral population found 

inside Goriška and Koroška region. Distribution of volunteer and feral populations (Figure 1) 

represents the highly-developed B. napus persistence under the Slovenian fragmented land-

scape structure, according to soil seed bank potential as a consequence of seed movements. The 

regional pattern of B. napus presence indicates that volunteer or feral populations most com-

monly originate from seed losses. Zhu et al. [17] report that seed losses during harvest could 

be limited to 0.7–1.1% of total seed production under Chinese farming systems. Consequently, 
uncultivated forms of B. napus colonize mostly pioneer habitats, such as waste sites, cultivated 
grounds, rubble tips, arable fields, riverbanks, road sides, and tracks [6, 64].

In this study, spatial and temporal determination of genetic changes on 45 loci inside the B. 

napus genome was proven to be useful and informative—there was low probability of identity 

value (PI = 2.480 × 10−46) and high polymorphic content value (PIC = 0.679) (see Table 1) among 

single species. These values also reflect the equal distribution of alleles among volunteer and 
feral genotypes. SSR markers are suitable to identify varieties of B. napus (e.g., [6, 39, 65]).  

A high level of genetic differentiation within the same species was obtained in our study. The 
composed structure of some SSR repeat motives, which originated from Brassica sp. (BN83B1, 

PIC = 0.396; BRMS-050, PIC = 0.345), could have a negative effect on the information content 
(Table 1). We would like to emphasize the highly distinctive loci RES1 (PI = 0.782, Table 1) 

developed from the sexually compatible relative of B. napus, Raphanussativus [50]. This study 

confirmed the finding reported by Elling et al. [38], Hasan et al. [39], Suwabe et al. [47], and 

Bond et al. [66] that SSR markers originating from related Brassica species are highly appli-

cable in investigations of B. napus gene pool.

Variable out-crossing rate, being a biological characteristic of B. napus, is 5–47% [30]. 

Likewise, empirically determined out-crossing rate in Slovenia was 13.6% and rep-

resents the spontaneous gene flow potential of B. napus under a fragmented landscape 

structure during a 4-year period. Moreover, the ability for introgression and conserva-

tion of spontaneous gene flow into B. napus genome through (self-recruited) genera-

tions in nature is possible. According to the increasing pattern of Np and m values in 
each following year during the 4-year period (Table 3), proves that genetic changes 

within volunteer/feral populations are reflected temporally. This finding is confirmed by 
PCoA distribution, where genetic relatedness between genotypes decreased (Figure 5) 

and the proportion of molecular variance during the 4-year period increased (Table 3).  

Additionally, genetic diversity within feral populations was higher, compared to vol-

unteers due to uncontrolled pollination and introduction of new genes into feral popu-

lations. Pascher et al. [6] reported that feral populations shared less than 50% of the 
SSR alleles among 8 loci, compared to commercial varieties, which were cultivated 

in the previous year along the same region. Our results showed that alleles from both 

volunteer and feral populations were distributed in three genetic clusters (Figure 2)  

with relatively similar level of diversity. Considering this, we assume that high proportion 

of spatially and temporary distributed agro-biodiversity of B. napus gene pool was observed 

(global He = 0.709, F = 0.005; Table 1). Temporal determination among volunteers and feral 

populations was described by R, a measure of independent quantitative comparison of 

genetic diversity between all years. Overall, the most genetically diverse genotypes were 

Spatial and Temporal Assessment of Brassica napus L. Maintaining Genetic Diversity and Gene…
http://dx.doi.org/10.5772/intechopen.74570

37



Figure 5. PCoA temporal distribution of genotypes.

determined in 2010, additionally confirmed with the highest Ne value (Table 3), indicat-

ing the ability and introduction of new alleles through spontaneous pollination of B. napus  

in nature.

Our study suggests that there is no specific distribution of genetically similar genotypes pres-

ent within the same statistical region. Conversely, the proportion of shared molecular variabil-

ity of volunteers/feral populations between regions is high (96%). These large-scale genetic 

similarities could be caused by common ancestry from commercial varieties of B. napus  

Parameter of population 

diversity and genetics

Ecological interpretation 2007 2008 2009 2010

Ne Allelic diversity 4.01 3.80 3.64 4.17

Np Estimation of spontaneous gene flow conservation 
into naturally appearing populations

0.58 0.93 0.98 1.64

F Estimated level of spontaneous gene flow 0.03 0.01 0.07 0.05

t (%) Actual gene flow potential 5.74 2.81 13.27 12.52

Molecular variance (%) Conservation of naturally occurring spontaneous 

gene flow
1.64 1.78 2.77 6.1

m Level of gene flow 2.16 3.36 4.41 5.47

R Basic genetic diversity parameter; allelic richness 3.41 1.67 3.23 5.64

Table 3. Ecologically important parameters of population genetics for genetic diversity distribution in 4-year sampling 

period.
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(oilseed rape), which were cultivated in the observed statistical regions. Pasher et al. [6] 

observed that genetic similarities among feral populations could be caused by selection 

favoring or eliminating certain alleles of loci linked to the markers, or by pollination and 

hybridization with sexually compatible relatives. However, Mantel correlation coefficient 
between genetic and geographic distance matrix assigned a low level of spatially and geneti-

cally related distribution among genotypes. The highest spatially distributed genetic diver-

sity was observed in the JVS and SAV regions (He >0.700; Figure 3); the highest numbers of 

locally common alleles (< 50%) with a frequency > 5% (Figure 3) were detected along the JVS 
and OSR regions. Most likely, the highest potential for gene flow conservation into natural 
B. napus populations (highest Np values) was determined within the OSR region (Figure 3)  

due to favorable agro-climatic and geographic conditions. The most genetically heterogeneous 

genotypes, according to their spatial position, were formed along the POD region (Figure 3).

5. Conclusions

Distribution of volunteer and feral populations represents the highly developed B. napus 

persistence under the Slovenian fragmented landscape structure, according to soil seed 

bank potential as a consequence of seed movements. The regional pattern of B. napus pres-

ence indicates that volunteer/feral populations most commonly originate from seed losses. In 

this study, spatial and temporal determination of genetic changes on 45 loci within B. napus 

genome was proven to be useful and informative. Empirically determined out-crossing rate in 

Slovenia was 13.6% and represents the spontaneous gene flow potential of B. napus, under a 

fragmented landscape structure during a 4-year period. This calculation reflects that the actual 
large-scale situation is an important basis for ecological, agronomical, and ecological evalu-

ation of spontaneous pollination potential of B. napus in this agro-ecosystem. Moreover, the 

ability of introgression and conservation of spontaneous gene flow into the B. napus genome 

through (self-recruited) generations in nature is possible. Our study suggests that there is no 

specific distribution of genetically similar genotypes present within the same statistical region.

Our empirically obtained results show the existing potential of large-scale spontaneous pol-

lination and gene flow conservation into the B. napus gene pool in a short time period under 

a fragmented landscape structure. Genetic diversity of naturally present B. napus plants and 

spatially and temporally determined conservation of genetic variation, is proven to be suc-

cessfully assessed using SSR markers, due to biologically, agronomically, evolutionary, and 

ecologically important parameters.
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