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Abstract

The constrained unitary formalism to fuzzy fault detection filter synthesis for one class of
nonlinear systems, representable by continuous-time Takagi-Sugeno fuzzy models, is
presented in the chapter. In particular, a way to produce the special set of matrix param-
eters of the fuzzy filter is proposed to obtain the desired H∞ norm properties of the filter
transfer function matrix. The significance of the treatment in relation to the systems under
influence of actuator faults is analyzed in this context, and relations to corresponding
setting of singular values of filters are discussed.

Keywords: multiple models, continuous-time Takagi-Sugeno fuzzy models, fuzzy fault
detection filters, fuzzy state observers

1. Introduction

Since the work of Hou and Patton [1], there has been much interest in the design of fault

residuals for linear systems that use H
∞
=H

�
optimization principle in transfer function matrix

of fault detection filter designed to scale up fault detection punctuality and high sensitivity to

faults [2]. While retaining these features, a novel class of fault detection filters are proposed in

[3, 4], preserving the unitary implementation of the fault detection filter transfer function

matrix and receipting residual signal directional properties. However, the use of this method-

ology for Takagi-Sugeno (TS) fuzzy systems hits the boundaries of the working sectors and

requires special adaptations.
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Considering the properties of TS fuzzy models [5, 6], and some specifics in frequency character-

istic evaluation of multiple model structures, the approach proposed in the chapter reformulates

the H∞ norm technique suitable in TS fuzzy fault detection filter design. The problem is solved

via unitary modal technique when every linear TS fuzzy filter part is designed to have the same

singular values of the transfer function matrix. Since working sector constraints may cause that

the stable linear filter component cannot be obtained for a linear part in TS fuzzy model, to

maintain H∞ norm of the filter, the LQ modal control principle [7] is used for additional stabili-

zation. Because additional stabilization aggravates directional properties of the applied linear

part, in general, if additional stabilization is necessary, the residuals are only quasi-directional. It

is immediately apparent that the formulated problem is related to forcing the singular values

conditioned as state observer dynamics. The chosen model of the system is selected for this

chapter to be sufficiently complex in illustration of all these specifics of synthesis.

Throughout the chapter, the following notations are used: xT and XT denote the transpose

of the vector x and the matrix X, respectively; for a square matrix X ≥ 0 means that X is a

symmetric positive semi-definite matrix; the symbol In indicates the nth-order unit matrix; IR

denotes the set of real numbers; and IRn and IRn�r refer to the set of all n-dimensional real

vectors and n� r real matrices.

2. System description

The considered class of the Takagi-Sugeno dynamic systems with additive faults is described

as the following:

_q tð Þ ¼
X

s

i¼1

hi θ tð Þð Þ Aiq tð Þ þ Biu tð Þ þ Fif tð Þ
� �

(1)

y tð Þ ¼ Cq tð Þ (2)

where q tð Þ∈ IRn, u tð Þ∈ IRr, and y tð Þ∈ IRm stand for state, control input, and measurable output,

respectively; f tð Þ∈ IRp is an additive fault vector; Ai ∈ IRn�n, Bi ∈ IRn�r, Fi ∈ IRn�p, C∈ IRm�n, and

m ¼ p and the matrix products V i ¼ CFi and V i ∈ IRm�m are regular matrices for all i.

The variables θj tð Þ and j ¼ 1, 2,…, o, bound with the sector TS model, span the o-dimensional

vector of premise variables:

θ tð Þ ¼ θ1 tð Þ θ2 tð Þ ⋯ θo tð Þ½ � (3)

and [8]

X

s

i¼1

hi θ tð Þð Þ ¼ 1 (4)

where hi θ tð Þð Þ, i ¼ 1, 2,…, s is the set of normalized membership function. It is supposed that

the measurable premise variables, the nonlinear sectors, and the normalized membership
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functions are chosen in such a way that the pairs Ai;Bið Þ are controllable and the pairs Ai;Cð Þ

are observable for all i.

3. Basic preliminaries from linear systems

Let the state-space description of a linear continuous-time dynamic systems take the form with

equivalent meanings and dimensions as they are described in Section 2. The nature of the

characterization of expected solutions to the system [(5), (6)] is given by the following results.

_q tð Þ ¼ Aq tð Þ þ Bu tð Þ þ Ff tð Þ (5)

y tð Þ ¼ Cq tð Þ (6)

Definition1 [9, 10] IfA has no imaginary eigenvalues, theH∞ norm of the system transfer functionmatrix

G sð Þ ¼ C sIn � Að Þ�1B (7)

is

∥G sð Þ∥
∞
¼ sup

ω∈ IR

σ1 G jωð Þð Þ ¼ sup
ω∈ IR

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ε1 G∗ jωð ÞG jωð Þð Þ
q

(8)

while the kth singular value σh of the complex matrix G jωð Þ is the nonnegative square root

of the kth largest eigenvalue εk of G∗ jωð ÞG jωð Þ, G∗ jωð Þ is the adjoint of G jωð Þ, and σ1 is the

largest singular value. The singular values of the transfer function matrix G sð Þ are evaluated

on the imaginary axis, and it is assumed that the singular values are ordered such that

σk ≥σkþ1, k ¼ 1, 2,…, n� 1.

To apply in design methodology, the following result from [4] is quoted.

Lemma 1 If m ¼ p and V ¼ CF are regular matrices, then the system matrix factorization can be

realized such that

C ¼ V 0½ �T, TF ¼
Im

0

� �

(9)

and the transform matrix T ∈ IRn�n takes the form

T ¼
V�1C

F⊥

" #

, (10)

where V�1C∈ IRm�n, F⊥ ∈ IR n�mð Þ�n, and F⊥ are the left orthogonal complements to F.

The idea of the following condition was derived originally as an approximation in the fre-

quency domain for the fault transfer function matrix reflecting Eqs. (5) and (6) from [12]. Here,

it is demonstrated that it can be simply adapted for fault residual filter design.
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Theorem 1 A linear fault detection filter to the system [(5), (6)] is stable and unitary if for regular

V ¼ CF and a given positive scalar so ∈ IR the square transfer function matrix Gr sð Þ of the fault

detection filter satisfies the conditions

P sð Þ ¼ det sIn � A� JCð Þð Þ ¼ sþ soð ÞmPo sð Þ, (11)

σ1 ¼ σ2 ¼ ⋯ ¼ σm, lim
ω!0

σh ¼ so, (12)

Gr 0ð Þ ¼ diag s�1
o s�1

o ⋯ s�1
o

� �

, (13)

Gr sð Þ ¼ V�1C sIn � A� JCð Þð Þ�1
F ¼ sþ soð Þ�1

Im, (14)

Ao ¼ TAT�1 ¼
Ao11 Ao12

Ao21 Ao22

� �

, (15)

J ¼ T�1LoV�1, Lo ¼
soIm þ Ao11

Ao21

� �

, (16)

where J ∈ IRn�r is the residual filter gain matrix, σ1 is the maximal singular value of Gr sð Þ, the

polynomial Po sð Þ of order n�mð Þ is stable, and Gr 0ð Þ∈ IRm�m.

Proof. Considering the fault transfer function matrix of dimension m�m as

Gf sð Þ ¼ C sIn � Að Þ�1
F (17)

and then regrouping terms using Eqs. (9) and (10), it yields immediately the expressions

Gf sð Þ ¼ CT�1T sIn � Að Þ�1
T�1TF ¼ CT�1 sIn � TAT�1

� ��1
TF,

	

(18)

Gf sð Þ ¼ V 0½ � sIn � Aoð Þ�1 Ip

0

� �

, (19)

respectively, where Ao is given in Eq. (15).

Specifying the following matrix product Ao ¼ TMV�1CT�1, whereM ∈ IRn�m is a real matrix, it

yields

Ao ¼ TMV�1CT�1 ¼
V�1C

F⊥

" #

MV�1 V 0½ � ¼
V�1CM 0

F⊥M 0

" #

(20)

and, with the block matrix structure of Eqs. (15) and (21), it can be defined as

ΔAo ¼ Ao � Ao ¼
Ao11 � V�1CM Ao12

Ao21 � F⊥M Ao22

" #

: (21)
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Presetting

Ao11 � V�1CM ¼ �soIm, Ao21 � F⊥M ¼ 0, (22)

where so ∈ IR is a prescribed positive real value. The plus sign is introduced for the

purposes that come to light in the stability ensuing development of the observer system

matrix.

Then,

ΔAo ¼
�soIm Ao12

0 Ao22

� �

(23)

and it is evident that ΔAo is stable if Ao22 is Hurwitz, denoting here that

Po sð Þ ¼ det sIn�m � Ao22ð Þ: (24)

Rewriting the set of Eq. (22) to admit a stable solution

soIm þ Ao11

Ao21

� �

¼
V�1C

F⊥

" #

M ¼ TM ¼ TT�1Lo ¼ Lo
, (25)

where

M ¼ T�1Lo
, (26)

then Eqs. (20) and (21) must satisfy the following conditions:

Ao ¼ TMV�1CT�1 ¼ TJCT�1
, (27)

ΔAo ¼ Ao �Ao ¼ T A� JCð ÞT�1 ¼ TAeT
�1

: (28)

Therefore, the observer system matrix Ae takes the form

Ae ¼ A� JC ¼ A�MV�1C (29)

and

J ¼ MV�1 ¼ T�1LoV�1 (30)

implies Eq. (16).

Regarding the transfer function matrix Ge sð Þ of the state error estimate as follows

Ge sð Þ ¼ C sIn � Aeð Þ�1
F, (31)

then with Eq. (29), it is
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Ge sð Þ ¼ CT�1 sIn � TAeT
�1

� ��1
TF ¼ V 0½ � sIn � ΔAoð Þ�1 Ip

0

� �

: (32)

Since

sIn � ΔAo ¼
sþ soð ÞIm �Ao12

0 sIn�m � Ao22

� �

, (33)

sIn � ΔAoð Þ�1 ¼
sþ soð Þ�1Im sþ soð Þ�1Ao12 sIn�m � Ao22ð Þ�1

0 sIn�m � Ao22ð Þ�1

" #

, (34)

Substituting Eq. (34) into Eq. (32), it can obtain

Ge sð Þ ¼ V sþ soð Þ�1Im ¼
V

sþ so
: (35)

Thus, defining the fault detection filter transfer function matrix as Gr sð Þ ¼ V�1Ge sð Þ, then

Gr sð Þ ¼ V�1Ge sð Þ ¼ sþ soð Þ�1Im (36)

and Eq. (36) implies Eq. (14). This concludes the proof.

Corollary 1 Evidently, writing the fault residual vector as

r tð Þ ¼ V�1Ce tð Þ ¼ V�1C q tð Þ � qe tð Þ
� �

, (37)

where

e tð Þ ¼ q tð Þ � qe tð Þ (38)

and r tð Þ∈ IRm is the vector of residual signals, then based on the following observer structure

_qe tð Þ ¼ Aqe tð Þ þ Bu tð Þ þ JC q tð Þ � qe tð Þ
� �

, (39)

ye tð Þ ¼ Cqe tð Þ, (40)

the autonomous observer error equation is

_e tð Þ ¼ A� JCð Þe tð Þ, (41)

where qe tð Þ∈ IRn is the observer state, ye tð Þ∈ IRm is the estimated system output, and J ∈ IRn�m is

the observer gain matrix; the fault detection filter (37), (39) is stable and unitary if for given

positive scalar so ∈ IR and the Hurwitz matrix Ao22 the conditions (15) and (16) are satisfied.

Practically, with understanding Eq. (30), the observer sensor subsystem for the fault detection filter can

be designed as follows:

Nonlinear Systems - Modeling, Estimation, and Stability184



ez tð Þ ¼ z tð Þ � ze tð Þ ¼ V�1C q tð Þ � qe tð Þ
� �

(42)

and, consequently, it yields

_qe tð Þ ¼ Aqe tð Þ þ Bu tð Þ þMC q tð Þ � qe tð Þ
� �

: (43)

Another option is to design the observer sensor subsystem so that V ¼ Im.

With existence of the system parameter transformation, the above structures really mean

that the subset of transformed state variables whose dynamics is explicitly affected by the

additive fault f tð Þ and the second one, whose dynamics is not affected explicitly by the fault

f tð Þ, exists.

Remark 1 It is important to note the fact that the eigenvalues of A and of Ao are the same whenever

Ao is related to A as Ao ¼ TAT�1 for any invertible T [11]. But this does not mean that if

eigenvalues of the matrix Ao are stable then eigenvalues of the matrix Ao22 are also stable. Thus, as

well as for a stable system, it can lead to an unstable matrix Ao22, and any additional stabilization is

required.

To apply the above results, it is necessary to be able to design fault residual filter if an unstable

Ao22 results such that Ae be stable without loss of unitarity.

Lemma 2 [7, 12] To change signs of unstable eigenvalues of the system matrix A, the gain matrix

K ∈ IRn�r of the state feedback additive stabilization

u tð Þ ¼ �Kq tð Þ (44)

is a solution of the continuous-time algebraic Riccati equation (CARE)

PAþ ATP� PBR�1BTPþQ ¼ 0, (45)

where the matrix Q∈ IRn�n is null matrix and R∈ IRr�r and R ¼ RT
> 0 are positive definite

symmetric matrices.

Then, K is given as

K ¼ R�1BTP: (46)

It is in that form that is able to be exploit for specific properties of the problem in TS fuzzy fault

detection filter design.

In view of the above, these results hold for continuous-time linear systems, and, in principle,

Theorem 1 gives a practical method to design unitary fault residual filters for the given linear

system. Similar results are obtained for unitary TS fuzzy fault detection filter design in the

following section.
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4. TS fuzzy fault detection filters

Using the same set of membership functions, the fuzzy fault detection filter is built on the TS

fuzzy observer

_qe tð Þ ¼
X

s

i¼1

hi θ tð Þð Þ Aiq tð Þ þ Biui tð Þ þ J iC q tð Þ � qe tð Þ
� �� �

(47)

ye tð Þ ¼ Cqe tð Þ (48)

where qe tð Þ∈ IRn is the observer state vector, ye tð Þ∈ IRm is the estimated system output vector,

and J i ∈ IRn�m and i ¼ 1, 2,…, s are the sets of the observer gain matrices. Additionally, the

output vector of the residual TS fuzzy filter is defined as

r tð Þ ¼
X

s

i¼1

hi θ tð Þð Þri tð Þ ¼
X

s

i¼1

hi θ tð Þð ÞV�1
i Ce tð Þ (49)

ri tð Þ ¼ V�1
i Ce tð Þ (50)

e tð Þ ¼ q tð Þ � qe tð Þ (51)

where r tð Þ, ri tð Þ∈ IRm, V i ∈ IRm�m. Evidently, V i ¼ CFi has to be a regular matrix for all i.

Formally, the following result can be simply derived.

Theorem 2 A TS fuzzy fault detection filter to the system [(1), (2)] is stable and unitary if for the set of

regular matrices V i ¼ CFi and i ¼ 1, 2,…, s, and a given positive scalar so ∈ IR every square transfer

function matrix Gri sð Þ of the fault detection filter satisfies for all i the conditions

σ1 ¼ σ2 ¼ ⋯ ¼ σm, lim
ω!0

σh ¼ so, (52)

Gri 0ð Þ ¼ diag s�1
o s�1

o ⋯ s�1
o

� �

, (53)

Gri sð Þ ¼ V�1
i C sIn � Ai � J iC

� �� ��1
Fi ¼ sþ soð Þ�1Im, (54)

while

T i ¼
V�1

i C

F⊥

i

" #

, (55)

Aoi ¼ T iAiT
�1
i ¼

Ao11i Ao12i

Ao21i Ao22i

� �

, (56)

J i ¼ T�1
i Lo

iV
�1
i , Lo

i ¼
soIm þ Ao11i

Ao21i

� �

, (57)
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Pi sð Þ ¼ det sIn � Ai � J iC
� �� �

¼ sþ soð ÞmPoi sð Þ, (58)

Poi sð Þ ¼ det sIn�m � Ao22ið Þ: (59)

J i ∈ IRn�r is the residual filter gain matrix, σ1 is the maximal singular value of Gri sð Þ, the polynomial

Poi sð Þ of order n�mð Þ is stable, and Gri 0ð Þ∈ IRm�m and F⊥
i ∈ IR n�mð Þ�n are left orthogonal comple-

ments to the fault input matrix Fi.

Proof. Because every sub-model in Eq. (47) is described by linear equations, Eqs. (15) and (16)

imply directly the conditions (56) and (57), and Eq. (58) is given by Eq. (11). This concludes the

proof.

Corollary 2 In practice, an additive fault typically enters through a matrix F that does not depend on

the sectoral boundaries defining the TS model. In this case, the synthesis is substantially simplified

because V is a constant matrix, and so it yields

T ¼
V�1C

F⊥

" #

, (60)

Aoi ¼ TAiT
�1 ¼

Ao11i Ao12i

Ao21i Ao22i

� �

, (61)

J i ¼ T�1Lo
iV

�1, Lo
i ¼

soIm þ Ao11i

Ao21i

� �

: (62)

Corollary 3 Since, independently on i, the condition (52) is satisfied (σ1 ¼ σ2 ¼ ⋯ ¼ σm), all

sub-filter transfer function matrices have the same H
∞
norm, i.e.,

∥Gri sð Þ∥
∞
¼ ∥Gro sð Þ∥

∞
for all i: (63)

Moreover, considering that
P

s

i¼1

hi θ tð Þð Þ ¼ 1, then

∥Gr sð Þ∥
∞
¼

X

s

i¼1

hi θ tð Þð Þ∥Gri sð Þ∥
∞
¼ ∥Gro sð Þ∥

∞
(64)

That is, the H
∞
norm of the transfer function matrix of such defined TS fuzzy fault detection filter is

independent on the system working point. Of course, this cannot be said about the dynamics of the time

response of the sub-filter components.

Moreover, Gri 0ð Þ implies that all residual components of TS fuzzy fault detection filter have the same

directional properties, which ensure unitary properties of the filter.
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Remark 2 Sectoral boundaries may cause a matrix Ai to be such, when transformed using T i that Ao22i

will not be Hurwitz matrix. Because the transfer function matrix of the corresponding filter linear

component in this case is unstable, maintaining the unitary property requires changes in the signs of the

unstable eigenvalues of the associated A
�

ei ¼ Ai � J iC.

Applying the duality principle and inserting the additive observer gain component KT
si obtained as a

solution of the Riccati equation (45) for A
�T
ei , according to the scheme given in Lemma 2, the observer

gain matrix is changed as

J
�

i ¼ J i þ KT
si, A

�

ei ¼ Ai � J
�

iC: (65)

This additive stabilization results that the consequential characteristic polynomial, taking also the form

Pi sð Þ ¼ det sIn � Aeið Þ ¼ sþ soð ÞmPoi sð Þ, (66)

is stable since Poi sð Þ is now stable.

The price for such an additional stabilization is that if j signs are changing in eigenvalues of Ao22i to

obtain the stable Ao22i, also j eigenvalues so of Gri 0ð Þ change their signs and the resulting matrix Gri 0ð Þ

will not be diagonal. According to Eq. (8), this does not result in a change in H
∞
norm, but such filter

component will arrive at the unitary directional residual properties.

5. Illustrative example

The three-tank system is described by the set of Eqs. [13, 14] as

dq1 tð Þ

dt
¼

u1 tð Þ

F1
�
α1sign q1 tð Þ � q2 tð Þ

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2g ∣q1 tð Þ � q2 tð Þ∣
p

F1
P

3

i¼1

λiqi tð Þ

X

3

i¼1

λiqi tð Þ,

dq2 tð Þ

dt
¼

u2 tð Þ

F2
�
α2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2gq2 tð Þ
p

F2q2 tð Þ
q2 tð Þ þ

α1sign q1 tð Þ � q2 tð Þ
� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2g ∣q1 tð Þ � q2 tð Þ∣
p

F1
X

3

i¼1

λiqi tð Þ

X

3

i¼1

λiqi tð Þ

þ
α3sign q3 tð Þ � q2 tð Þ

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2g ∣q3 tð Þ � q2 tð Þ∣
p

F3
X

3

i¼1

ηiqi tð Þ

X

3

i¼1

ηiqi tð Þ,

dq3 tð Þ

dt
¼

u3 tð Þ

F3
�
α3sign q3 tð Þ � q2 tð Þ

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2g ∣q3 tð Þ � q2 tð Þ∣
p

F3
P

3

i¼1

ηiqi tð Þ

X

3

i¼1

ηiqi tð Þ,

yk tð Þ ¼ Fkqk tð Þ, k ¼ 1; 2; 3,
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where the measured output variables yk tð Þ are water levels in tanks qk tð Þ m½ �, k ¼ 1; 2; 3 and

the incoming flows are considered as the inputs variables uk tð Þ m3=s
� �

, k ¼ 1; 2; 3; the bounds

of the state and input variables are

qmax
1 ¼ qmax

3 ¼ 1:00 m½ �, qmax
2 ¼ 0:90 m½ �, umin

1;2;3 ¼ 0 m3=s
� �

,

qmin
1 ¼ qmin

3 ¼ 0:02 m½ �, qmin
2 ¼ 0:01 m½ �, umax

1;2;3 ¼ 0:005 m3=s
� �

:

λk, ηk ∈ IR are positive scalars and sign �ð Þ is the sign function.

The model parameters of the system are considered as:

g

Fk

α1

α3

α2

-the gravitational acceleration 9:80665 m=s2
� �

,

-the sameð Þ section of tanks 0:25 m2
� �

,

-the equivalent section of the pipe between the first and second tank 6:5� 10�4 m2
� �

,

-the equivalent section of the pipe between the third and second tank 6:5� 10�4 m2
� �

,

-the equivalent section of the outlet pipe from the second tank 6:5� 10�3 m2
� �

,

Minimizing the number of premise variables and excluding switching modes in controller

work, the premise variables are chosen as follows

θ1 tð Þ ¼
α1sign q1 tð Þ � q2 tð Þ

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2g ∣q1 tð Þ � q2 tð Þ∣
p

F1
X

3

i¼1

λiqi tð Þ

,

θ2 tð Þ ¼
α2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2gq2 tð Þ
p

F2q2 tð Þ
¼

α2

F2

ffiffiffiffiffiffiffiffiffiffi

2g

q2 tð Þ

s

,

θ3 tð Þ ¼
α3sign q3 tð Þ � q2 tð Þ

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2g ∣q3 tð Þ � q2 tð Þ∣
p

F3
X

3

i¼1

ηiqi tð Þ

:

Computed from the input variable bounds, the sector bounds of the premise variables imply

the numbering:

i ¼ 1 θmax
1 ;θmax

2 ;θmax
3

� �

, i ¼ 2 θmax
1 ;θmax

2 ;θmin
3

� �

,

i ¼ 3 θmax
1 ;θmin

2 ;θmax
3

� �

, i ¼ 4 θmax
1 ;θmin

2 ;θmin
3

� �

,

i ¼ 5 θmin
1 ;θmax

2 ;θmax
3

� �

, i ¼ 6 θmin
1 ;θmax

2 ;θmin
3

� �

,

i ¼ 7 θmin
1 ;θmin

2 ;θmax
3

� �

, i ¼ 8 θmin
1 ;θmin

2 ;θmin
3

� �

,

which is used in the system state matrix construction
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Ai ¼

�λ1θ
i
1 �λ2θ

i
1 �λ3θ

i
1

λ1θ
i
1 þ η1θ

i
3 λ2θ

i
1 þ η2θ

i
3 � θi

2 λ3θ
i
1 þ η3θ

i
3

�η1θ
i
3 �η2θ

i
3 �η3θ

i
3

2

6

4

3

7

5
,B ¼

F�1
1 0 0

0 F�1
2 0

0 0 F�1
3

2

6

4

3

7

5
,C ¼

F1 0 0

0 F2 0

0 0 F3

2

6

4

3

7

5

and prescribed, moreover, that the matrix C is given in such a way that the product CB is

the identity matrix. This regularizes the residual design conditions if B and C are diagonal

matrices.

The sector functions are trapezoidal, and the membership functions are constructed as product

of three sector functions with the same ordering as Ai.

The set of real scalars, λk, ηk, and k ¼ 1; 2; 3, is interactively optimized under limitations that all

couples Ai;Bð Þ and Ai;Cð Þ are controllable and observable for the given set of indices i, where

λ1 ¼ 0:1992, λ2 ¼ 0:6894, λ3 ¼ 0:1618,

η1 ¼ 0:6891, η2 ¼ 0:3646, η3 ¼ 0:0569:

Consequently, the TS model matrix parameters are

A1 ¼

�0:0163 �0:0563 �0:0132

0:1225 �1:0392 0:0220

�0:1062 �0:0562 �0:0088

2

6

6

6

4

3

7

7

7

5

, A2 ¼

�0:0163 �0:0563 �0:0132

�0:0054 �1:1069 0:0114

0:0217 0:0115 0:0018

2

6

6

6

4

3

7

7

7

5

,

A3 ¼

�0:0163 �0:0563 �0:0132

0:1225 �0:0089 0:0220

�0:1062 �0:0562 �0:0088

2

6

6

6

4

3

7

7

7

5

, A4 ¼

�0:0163 �0:0563 �0:0132

�0:0054 �0:0766 0:0114

0:0217 0:0115 0:0018

2

6

6

6

4

3

7

7

7

5

,

A5 ¼

0:0034 0:0119 0:0028

0:1028 �1:1073 0:0060

�0:1062 �0:0562 �0:0088

2

6

6

6

4

3

7

7

7

5

, A6 ¼

0:0034 0:0119 0:0028

�0:0251 �1:1750 �0:0046

0:0217 0:0115 0:0018

2

6

6

6

4

3

7

7

7

5

,

A7 ¼

0:0034 0:0119 0:0028

0:1028 �0:0771 0:0060

�0:1062 �0:0562 �0:0088

2

6

6

6

4

3

7

7

7

5

, A8 ¼

0:0034 0:0119 0:0028

�0:0251 �0:1447 �0:0046

0:0217 0:0115 0:0018

2

6

6

6

4

3

7

7

7

5

:

B ¼

4 0 0

0 4 0

0 0 4

2

6

4

3

7

5
, C ¼

0:25 0 0

0 0:25 0

0 0 0:25

2

6

4

3

7

5
:

Since the orthogonal complement to a square matrix does not exist, three fault detection filters

can be considered for single actuator fault detection. To illustrate the design procedure, the TS

fuzzy fault detection filter for the pair (C23, B23) is considered, i.e.,
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C ( C23 ¼
0 0:25 0

0 0 0:25

� �

, F ( B23 ¼

0 0

4 0

0 4

2

6

4

3

7

5
,

with the derived parameters

V ¼ CF ¼
1 0

0 1

� �

, V�1C ¼
0 0:25 0

0 0 0:25

� �

, F⊥ ¼ 1 0 0½ �, T ¼

0 0:25 0

0 0 0:25

1 0 0

2

6

4

3

7

5
:

Note that in this case all Ai with index higher than 4 lead to an unstable structure of A
�

o22i and

the resulting observer matrices Aei need to be additionally stabilized, applying the principle

given in Lemma 2.

Applying Eq. (56), the following structure of Ao1 for the initial matrix A1 is computed:

Ao1 ¼

�1:0392 0:0220 0:0306

�0:0562 �0:0088 �0:0266

�0:2250 �0:0528 �0:0163

2

6

6

6

4

3

7

7

7

5

,
Ao111 ¼

�1:0392 0:0220

�0:0562 �0:0088

2

4

3

5, Ao121 ¼
0:0306

�0:0266

2

4

3

5,

Ao211 ¼ �0:2250 �0:0528½ �, Ao221 ¼ �0:0163½ �,

and Ao221 ¼ �0:0163 implies that the associated TS fuzzy fault detection filter linear compo-

nent can be designed directly.

Choosing so ¼ 5, it is resulting from Eqs. (57) and (58) that

L
�

1 ¼

3:9608 0:0220

�0:0562 4:9912

�0:2250 �0:0528

2

6

4

3

7

5
, J1 ¼

�0:2250 �0:0528

15:8432 0:0879

�0:2248 19:9649

2

6

4

3

7

5
,Ae1 ¼

�0:0163 0 0

0:1225 �5:0 0

�0:1062 0 �5:0

2

6

4

3

7

5
,

where the eigenvalue spectrum of Ae1 and the steady-state value of the TS fuzzy fault detection

filter transfer function matrix Gr1 0ð Þ are

r Ae1ð Þ ¼ �0:0163 �5:0 �5:0f g, Gr1 0ð Þ ¼ �V�1CA�1
e1 F ¼

0:2

0:2

� �

,

respectively. It is evident that all diagonal elements ofGr1 0ð Þ take the value s�1
o ¼ 0:2. The same

structure of Gr∗ 0ð Þ is obtained solving with Al for l ¼ 1; 2; 3; 4.

Analogously, designing for the matrix A5, it can be seen that

Ao5 ¼

�1:1073 0:0060 0:0257

�0:0562 �0:0088 �0:0266

0:0475 0:0111 0:0034

2

6

6

4

3

7

7

5

,
Ao511 ¼

�1:1073 0:0060

�0:0562 �0:0088

" #

, Ao512 ¼
0:0257

�0:0266

" #

,

Ao521 ¼ 0:0475 0:0111½ �, Ao522 ¼ 0:0034½ �:
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Since Ao222 ¼ 0:0034, evidently, the associated TS fuzzy fault detection filter linear component

with the unitary transfer function matrix has to be stabilized additively.

Solving also for so ¼ 5, then

L
�

5 ¼

3:8927 0:0060

�0:0562 4:9912

0:0475 0:0111

2

6

4

3

7

5
, J5 ¼

0:0475 0:0111

15:5707 0:0239

�0:2248 19:9649

2

6

4

3

7

5
,Ae5 ¼

0:0034 0 0

0:1028 �5:0 0

�0:1062 0 �5:0

2

6

4

3

7

5
:

It is evident that matrix Fe5 is not Hurwitz and has to be additively stabilized.

Thus, defining the weighting matrices of appropriate dimensions as

Q ¼ 0, S ¼ 0, R ¼ VVT ¼ I2

and solving the dual LQ control problem to change the sign of unstable eigenvalue of Fe5 using

the MATLAB function Ks5 ¼ care FT
e2;Q;R; S; I3

� �

, then

KT
s5 ¼

0:6456 �0:6671

0:0133 �0:0137

�0:0137 0:0142

2

6

4

3

7

5
, Aes5 ¼ Ae5 � KT

s5C ¼

0:0034 �0:1614 0:1668

0:1028 �5:0033 0:0034

�0:1062 0:0034 �5:0035

2

6

4

3

7

5
:

It can be easily verified that

r Aes5ð Þ ¼ �0:0034 �5:0 �5:0f g,

Gr5 0ð Þ ¼ �V�1CA�1
es5F ¼

�0:0066 �0:1999

�0:1999 0:0066

� �

, r Gr5 0ð Þð Þ ¼ �0:2000 0:2000f g:

while, evidently, Gr5 0ð Þ is not diagonal and the eigenvalues of Gr5 0ð Þ are �0:2 ¼ �s�1
0 .

Note that the same structure of Grl 0ð Þ is obtained solving with the system matrices Al and

l ¼ 5; 6; 7; 8 when additional stabilization is required. Evidently, elements of this set of TS

fuzzy residual filter linear components are stable, non-unitary, and without directional resid-

ual properties. Nevertheless, these properties guarantee the same singular values of the linear

transfer function matrix components; as follows the result of Definition 1, the TS fuzzy residual

filter will have all the singular values the same. To document this, the singular value plot of the

TS fuzzy fault detection filter, as well as of all its linear parts, is equal to that presented in

Figure 1. With respect to the structure of the matrices B and C, the comparable results are

obtainable for the matrix pairs C12ð , B12Þ and (C13, B13).

The rest of gain matrices of the stable TS fault detection filter is as follows:

J2 ¼

�0:2250 �0:0528

15:5725 0:0456

0:0459 20:0072

2

6

4

3

7

5
, J3 ¼

�0:2250 �0:0528

19:9643 0:0879

�0:2248 19:9649

2

6

4

3

7

5
, J4 ¼

�0:2250 �0:0528

19:6935 0:0456

0:0459 20:0072

2

6

4

3

7

5
,
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J5 ¼

0:6930 �0:6560

15:5840 0:0102

�0:2385 19:9791

2

6

4

3

7

5
, J6 ¼

�3:0809 2:7126

15:3157 �0:0319

0:0324 20:0189

2

6

4

3

7

5
,

J7 ¼

0:6930 �0:6560

19:7051 0:0102

�0:2385 19:9791

2

6

4

3

7

5
, J8 ¼

�3:0809 2:7126

19:4367 �0:0319

0:0324 20:0189

2

6

4

3

7

5
:

Since the matrices Ai of the TS fuzzy system are not Hurwitz, the system in simulations is

stabilized using the local-state feedback control laws, acting in the forced modes. Adapting the

method presented in [14] to design the control law parameters, the local controller parameters

are computed as

K1 ¼

0:1780 0:0083 �0:0150

0:0083 �0:0701 �0:0041

�0:0150 �0:0043 0:1798

2

6

4

3

7

5
,K2 ¼

0:1780 �0:0079 0:0008

�0:0075 �0:0869 0:0028

0:0008 0:0027 0:1824

2

6

4

3

7

5
,

K3 ¼

0:1780 0:0084 �0:0150

0:0082 0:1842 �0:0041

�0:0150 �0:0042 0:1798

2

6

4

3

7

5
,K4 ¼

0:1780 �0:0078 0:0008

�0:0076 0:1675 0:0027

0:0008 0:0028 0:1824

2

6

4

3

7

5
,

K5 ¼

0:1829 0:0142 �0:0131

0:0141 �0:0870 �0:0061

�0:0130 �0:0063 0:1798

2

6

4

3

7

5
,K6 ¼

0:1829 �0:0020 0:0027

�0:0017 �0:1037 0:0008

0:0027 0:0007 0:1824

2

6

4

3

7

5
,

Figure 1. TS fuzzy fault detection filter singular value plot.
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K7 ¼

0:1829 0:0143 �0:0131

0:0140 0:1674 �0:0061

�0:0130 �0:0063 0:1798

2

6

4

3

7

5
,K8 ¼

0:1829 �0:0019 0:0027

�0:0018 0:1507 0:0007

0:0027 0:0007 0:1824

2

6

4

3

7

5
,

W1 ¼

0:1821 0:0224 �0:0117

�0:0223 0:1897 �0:0096

0:0115 0:0098 0:1820

2

6

4

3

7

5
,W2 ¼

0:1821 0:0062 0:0041

�0:0061 0:1899 �0:0001

�0:0047 �0:0002 0:1819

2

6

4

3

7

5
,

W3 ¼

0:1821 0:0225 �0:0117

�0:0224 0:1865 �0:0096

0:0115 0:0098 0:1820

2

6

4

3

7

5
,W4 ¼

0:1821 0:0063 0:0041

�0:0062 0:1867 �0:0001

�0:0047 �0:0001 0:1819

2

6

4

3

7

5
,

W5 ¼

0:1820 0:0112 �0:0138

�0:0116 0:1899 �0:0076

0:0135 0:0077 0:1820

2

6

4

3

7

5
,W6 ¼

0:1820 �0:0049 0:0021

0:0046 0:1901 0:0019

�0:0027 �0:0022 0:1819

2

6

4

3

7

5
,

W7 ¼

0:1820 0:0114 �0:0138

�0:0117 0:1867 �0:0076

0:0135 0:0078 0:1820

2

6

4

3

7

5
,W8 ¼

0:1820 �0:0048 0:0021

0:0045 0:1869 0:0019

�0:0027 �0:0021 0:1819

2

6

4

3

7

5
,

where

W i ¼ � C Ai � BKið Þ�1B
	 
�1

,

ui tð Þ ¼ �Kiq tð Þ þW iwo,

while wo ∈ IRn is the vector of the desired steady-state system outputs.

If necessary for any more complex system, PDS controller principle can be applied to stabilize

the plant (see, e.g., authors’ publications [15, 16] or other references [17, 18]).

To display simulations in the MATLAB and Simulink environment, the forced mode control is

established with local controller parameter given as above for the system initial conditions

qT 0ð Þ ¼ 0:2 0:3 0:2½ � andwT
o ¼ 0:6 0:5 0:4½ �. Fault detection filter is constructed on the couple

(C23, B23) and the set of matrices Ai and i ¼ 1, 2…, 8.

As the results, Figure 2 shows the TS fuzzy system output responses, illustrating their asymp-

totic convergence to the steady states, and Figure 3 presents the TS fuzzy fault detection filter

response, reflecting a steplike 90% gain loss of the second actuator at the time instant t ¼ 60s.

These examples illustrate the power that can be invoked through the prescribed H
∞
norm

properties.

It can verify that TS fuzzy fault detection filters created for the couple pairs (C12, B12) and (C13,

B13) have similar properties as that defined for the couple (C23, B23). The difference is, for
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example, that in the occurrence of a single fault of the second actuator the responses of TS

fuzzy fault detection filter defined for the couple (C13, B13) naturally do not have directional

properties, since the second column of K is not included in its construction.

As can be seen from the solution, the sector functions defined in this way cannot create a

unitary TS fuzzy fault detection filter, but the obtained orthogonal properties of the residual

signals are sufficient to detect and isolate actuator faults.

Figure 2. System output responses.

Figure 3. Residual signal responses.
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6. Concluding remarks

The problem of designing the TS fuzzy fault detection filters for highly nonlinear mechanical

systems representable by the TS fuzzy model is considered, to achieve the desired filter H
∞

norm property in all working point belonging to the assigned work sectors. The proposed

method exploits features offered in TS fuzzy system models to design TS fuzzy fault detection

filters. The rules and formulation are developed to generate residual signals with quasi-

directional properties and to make the TS filter transfer function matrix with prescribed H
∞

norm properties. By a convenient choose of the sector functions, this purpose is reached using

a relative small number of membership functions. If unitary definition for TS fuzzy fault

detection filters is satisfied, the design methodology provides new opportunities for fault

detection and isolation rules in fault tolerant nonlinear control systems, their analysis, and

optimization.
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