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Abstract

The chapter illustrates how simple quantum mechanics can sometimes provide quite
precise description of nanophysics phenomena. From this perspective, both exact and
approximate solutions for the bound-state energy of an electron in a square well are
exposed. These results are used to improve the calculation of quantum size effects (QSEs)
in ultrathin metallic films, obtained by several authors with simpler models of quantum
wells. We show that, for a small (less than 5) number of monolayers, the differences
between the predictions of these simpler models, and our approach, are important.
Methods to improve the accuracy in the evaluation of various quantum size effects are
shortly discussed. Using quantum mechanical-electromagnetic analogies, our results can
be used in the study of light propagation in dielectric wave guides.

Keywords: ultrathin metallic films, quantum wells, finite square well, quantum size
effects, heterojunctions

1. Introduction

If the dimension of a physical system is reduced, on one or several directions, up to the

nanometric range, electron confinement generates states specific to quantum wells, quantum

dots, or to other nanostructures, studied by new branches of science, nanophysics and nano-

technology, extremely interesting from both applicative and fundamental perspectives. A

fascinating aspect of nanophysics is that it can be sometimes understood using elementary,

one-particle quantummechanics; for instance, many phenomena specific to quantum wells can

be treated using the simple model of a particle in a rectangular potential.

A class of physical systems which can be studied in the frame of this model is a particular

kind of quantum wells—the ultrathin metallic films. In the last decades, they were object for
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active investigation, mainly due to the quantum size effects (QSEs), like the oscillatory

behavior of the film stability [1], of the lattice deformation [2], of the work function [3], etc.,

in dependence of the number of atomic monolayers. The QSEs, predicted in the pioneering

papers of Sandomirskii [4] and Schulte [5], are important for both practical and theoretical

reasons. The ultrathin metallic films have a special relevance for ferromagnetic materials, as

they are responsible for the giant magnetoresistivity of the Fe/Cr antiferromagnetic lattice

[6]. Also, the possibility of obtaining ultrathin metallic films, having a specific number of

monolayers, allows the experimentalist to tune the work function, controlling the chemistry

of the metallic surface [3]. All these effects can be satisfactorily explained with a quite simple

physics, whose basic ingredient is the different quantization imposed to electrons moving on

longitudinal and transversal directions. Namely, the electrons moving parallel to the surface

of the metallic film are quantized by cyclic conditions; the result is that the wave vectors are

quasi-continuous. The electrons moving perpendicular to the film are considered as confined

in a rectangular well, so they are quantized according to the theory of quantum wells; the

result is that the spectrum is discrete.

How simple can the model of the well be, in order to provide a quantitative understanding of

the physics of ultrathin metallic films? In spite of its simplicity, even the model of the infinite

rectangular well gives sometimes good results, for instance, for the calculation of lattice

deformation [2] or of Fermi energy [7]. These successes can be explained by the fact that, if

the number of monolayers is not very small, n≳25ð Þ, the deep levels play a dominant role, and

the difference between the corresponding levels (i.e., having the same quantum number) of the

finite and of the infinite well is negligible. However, for a small number of monolayers n≲ 5ð Þ,

this approximation does not work anymore. This is why it is important to obtain the exact

value of the energy levels in the finite well or at least a precise approximation.

In this chapter, we shall present exact or approximate analytic results for the energy levels of

a finite square well and show how they can improve the simple theoretical models which

give a quantitative understanding of the behavior of ultrathin metallic films, especially the

QSEs. Its structure is the following: in the second section, we shall discuss the quantum

problem of the finite square well, mainly in order to put the eigenvalue equations in an

appropriate form. The next one is a short review of the various attempts of solving these

transcendental eigenvalue equations. The fourth section describes a simple algebraic approx-

imation of the solution of the eigenvalue equations—the parabolic approximation—men-

tioning also similar but more precise approaches. In the next one, we put the eigenvalue

equations in differential form and obtain the exact solution as a series expansion. The sixth

section is devoted to the applications in the quantum statistical physics of the ultrathin

metallic films of the analytic results obtained for the bound-state energy in a finite square

well. By analyzing the predictions of the three models frequently used in the physics of

ultrathin metallic films (infinite, semi-infinite, and finite square well) for the Fermi wave

vector, we show the key role played by the finitude of the well, in the evaluation of QSEs. In

the last section, we describe how our results can improve the current theory of this class of

metallic films.
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2. The bound states of a particle in a finite rectangular well

Until the mid-1980 of the previous century, the finite rectangular well was just an elementary

problem of quantummechanics, with applications in finding the energy levels of the quasi-free

electrons on long molecules [8] or of the Ramsauer-Townsend effect [9]. The progress of solid-

state physics, which finally led to the fabrication of quantum wells [10], quantum dots, or

ultrathin metallic films [11, 12] and to the observation of QSEs associated with them,

transformed these simple systems from problems of elementary quantum mechanics into

theoretical models of devices of great practical interest.

We shall study now the movement of a particle in a finite rectangular well. There are, in

principle, two ways of defining the potential of the well, choosing the origin of the energy

E ¼ 0ð Þ at the top or at the bottom of the well. In the first case, the advantage is that the energy

of the bound states (“inside the well”) is negative, as usual in quantum mechanics; in the

second one, that is, in the limit of a very deep well, the energy level tends to the energy of the

corresponding level of the infinite well. Even elementary, this distinction might be useful, in

order to avoid confusions. We shall examine in detail the first case, so we shall consider a

potential having the form (Figure 1):

V xð Þ ¼ �U � θ
a

2
� xj j

� �

(1)

where θ is the Heaviside function. The second case is shortly mentioned later on (Eqs. (24) and

(25)). The Schroedinger equation for a particle of mass m moving in the potential (1) is

�
ℏ
2

2m

d
2

dx
2
þ V xð Þ � E

� �

ψ xð Þ ¼ 0 (2)

x

V x

U

a a

Figure 1. The square well potential (Eq. (1)).
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As the potential is invariant at spatial inversion, V xð Þ ¼ V �xð Þ, the solutions have well-

defined parity. Let us put

E ¼ �ℏ
2
ϰ
2

2m
, U ¼ ℏ

2k20
2m

; k2 ¼ k20 � ϰ
2 (3)

where the quantities k, k0,ϰ have the dimension of wave vectors. With these notations, the

Schroedinger equation for the particle inside the well takes the form:

d2

dx2
þ k2

� �

ψ xð Þ ¼ 0, xj j < a

2
(4)

For the particle outside the well, it is

d2

dx2
� ϰ

2

� �

ψ xð Þ ¼ 0, xj j > a

2
(5)

The even solutions are

uþ xð Þ ¼ Aþ cos kx, 0⩽ x⩽ a=2

uþ xð Þ ¼ Aþ cos ka eϰ a�xð Þ, x > a=2 (6)

uþ �xð Þ ¼ uþ xð Þ

and the odd ones are

u� xð Þ ¼ A� sin kx, 0⩽ x⩽ a=2

u� xð Þ ¼ A� sin ka eϰ a�xð Þ, x > a=2 (7)

u� �xð Þ ¼ u� xð Þ

The continuity of the derivative in x ¼ a=2 gives, for even states

tan
ka

2
¼ ϰ

k
(8)

and for odd states

cot
ka

2
¼ �ϰ

k
(9)

Defining the dimensionless parameter

P ¼ k0a=2 ¼
ffiffiffiffiffiffiffiffiffiffi

2mU
p a

2ℏ
¼ 1

p
(10)
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sometimes called potential strength, which actually characterizes both the particle mð Þ and the

well a;Uð Þ, Eqs. (8) and (9) become

tan
ka

2
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k20a
2 � k2a2

q

ka
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P2 � k2 a=2ð Þ2
q

ka=2
, even states (11)

cot
ka

2
¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k20a
2 � k2a2

q

ka
¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P2 � k2 a=2ð Þ2
q

ka=2
, odd states (12)

Also, the energy is

E ¼ �U 1�
ka

2P

� �2
" #

==13 (13)

Using well-known trigonometric identities, Eqs. (11) and (12) take the form:

cos ka
2

ka
2

¼ �
1

P
even statesð Þ;

sin ka
2

ka
2

¼ �
1

P
odd statesð Þ (14)

The sign must be chosen in agreement with Eqs. (11) and (12), so to satisfy the conditions

tan ka
2 > 0 for even states and < 0 for odd states, as we shall indicate explicitly in the forthcom-

ing paragraphs.

In other words, to solve the eigenvalue, Eq. (14) means to find the functions ζ pð Þ, ξ pð Þ,

satisfying the equations:

sin ζ pð Þ

ζ pð Þ
¼ �p,

cos ξ pð Þ

ξ pð Þ
¼ �p, p ¼

1

P
(15)

This is, of course, a difficult task. If we write Eq. (15) in a slightly different form

sin x

x
¼ y xð Þ,

cos x

x
¼ y xð Þ (16)

to solve Eq. (15)means to invert the function y xð Þ defined byEq. (16), i.e., to obtain the function x yð Þ:

Clearly, x in Eq. (16)—and in the rest of the chapter—has nothing to do with the space coordi-

nate x, as initially used in Eqs. (1)–(7).

The functions ζ pð Þ, ξ pð Þ correspond to the intersections of the plots of the functions sin x=x,

cos x=x with the line y ¼ �p, which satisfy the sign rule mentioned, after Eq. (14). The number

of solutions depends on the value of p: If there is at least one solution ξ pð Þ for any p, the

solution ζ pð Þ exists only for p < 1: In Figure 2, the functions sin x=x, cos x=x and the line

y ¼ �p, for p ¼ 0:1, are plotted. The x�coordinate of the intersections corresponds to the

functions ζ pð Þ, ξ pð Þ, as we shall explain later on.
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We shall write in a more explicit form Eq. (15), taking into account both the sign of the tan

function (or of the cot function, which is, evidently, the same thing), as already mentioned, and

the intervals of monotony of the functions sin x=x, cos x=x [13]. The extremum points of the

function cos x=x are given by the roots rcn of the equation:

tan x ¼ �
1

x
(17)

where rcn is the root closest to n� 1ð Þπ: The eigenvalue equations for the even states are

x∈ 0;
π

2

� �

:

cos x

x
¼ p; x � ξ1 pð Þ (18)

x∈ rc2;
3π

2

� �

:

cos x

x
¼ �p; x � ξ2 pð Þ (19)

x∈ rc3;
5π

2

� �

:

cos x

x
¼ p; x � ξ3 pð Þ (20)

and so on.

Similarly, the extremum points of the function sin x=x are the roots rsn of the equation:

tan x ¼ x (21)

where rsn is the root closest to n� 1
2

	 


π: The eigenvalue equations for the odd states are

x

y

Figure 2. The x� coordinate of the intersection points between the functions sin x=x (solid) and cos x=x (dashed) with the

lines y xð Þ ¼ p (dots) and y xð Þ ¼ �p (dash-dots), marked with a point, corresponds to the functions ζ1 pð Þ, ζ2 pð Þ, respec-

tively, ξ1 pð Þ, ξ2 pð Þ, for p ¼ 0:1:
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x∈ rs,2; 2πð Þ :

sin x

x
¼ �p; x � ζ2 pð Þ (22)

x∈ rs,3; 3πð Þ :

sin x

x
¼ p; x � ζ3 pð Þ (23)

and so on. Each of Eqs. (18)–(20) and (22)–(23) has a unique solution, ξ1 pð Þ, ξ2 pð Þ, ξ3 pð Þ,

respectively, ζ2 pð Þ, ζ3 pð Þ: On the aforementioned intervals, the functions cos x=x, sin x=x are

monotonic and have an inverse. The inverse functions are ξ1 pð Þ, ξ2 pð Þ, ξ3 pð Þ, respectively,

ζ2 pð Þ, ζ3 pð Þ: The function ζ1 pð Þ satisfies the equation:

x∈ 0;πð Þ :

sin x

x
¼ p; x � ζ1 pð Þ (24)

According to Eq. (13), the energy eigenvalues are

En ¼ �U þU
kna

2P

� �2

(25)

If the particle moves not in potential V xð Þ given by (1), but in a potential

V 1ð Þ xð Þ ¼ V xð Þ þU (26)

then the energy levels will be given by

E 1ð Þ
n ¼ U

kna

2P

� �2

(27)

According to the parity of n, kna=2 corresponds to the functions ξ and ζ, for instance, k1a=2 ¼

ξ1 pð Þ, k2a=2 ¼ ζ1 pð Þ, etc.

As already mentioned, the advantage of using the potential (1) is that the energy of a particle

“inside the well,” so in a bound state, is negative, corresponding to the most usual convention

of quantummechanics. However, the form (26) of the potential has the advantage that its levels

approach, in the limit of a very deep well, the levels of the infinite well. Indeed, for n ! ∞, so

for very deep wells, the quantization condition for the wave vector becomes kna≃ nπ, so

kn ≃
nπ

a
(28)

and Eq. (27) gives the expression of the wave vector corresponding to the n�th state in an

infinite well:

E ∞ð Þ
n ¼

π2
ℏ
2

2ma2
n2 (29)
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3. Solving the eigenvalue equation of the finite well: a historical

perspective

The eigenvalue equations for the wave vectors (18)–(20) and (22)–(24) are transcendental

equations, and their solutions cannot be written as a finite combination of elementary func-

tions. More than this, till now, they cannot be expressed neither in terms of the special

functions of the mathematical physics. There are a large number of papers devoted to this

subject, in the last 60 years.

The first one, due to Pitkanen [14], writes the eigenvalue Eqs. (8) and (9) in the simpler form (18)–

(20) and (22)–(24), providing an interesting visualization of the solutions. The second one, due to

Cantrell [15] (who does not cite [14], producing a delay in the circulation of this paper), also

proposes the replacement of Eqs. (8) and (9) with (18)–(20) and (22)–(24)—in fact, a repetition of

Pitkanen’s contribution—and notices that the eigenvalue equation for odd states is also the

eigenvalue equation for a particle moving in a semi-infinite well, i.e., in a potential given by

U x < 0ð Þ ¼ ∞, U 0 < x < að Þ ¼ �U0, U x > að Þ ¼ 0 (30)

Graphical solutions are proposed by Guest [16], who made visible the similarities between the

bound-state energies in a finite well and the modes of a metallic wave guide ([17]; fig. (8.14));

actually, both the electrodynamic and quantum mechanical problems are equivalent forms of

the same Sturm-Liouville problem [18]. Aronstein and Stroud [19] wrote the eigenvalue equa-

tion as

ka

2
þ arcsin

ka=2

P
¼

nπ

2
(31)

This elegant form had been already given in the first edition of Landau’s textbook of

quantum mechanics, in the late 1940s of the twentieth century (for the English version of

a more recent edition, see [20]) but remained unknown to Western physicists—a minor

but significant consequence of the poor circulation of scientific information during the

Cold War.

A completely different approach was proposed by Siewert [21], who obtained an exact solu-

tion in an integral form; unfortunately, it is very complicated and of limited practical use.

Recently, Siewert’s solutions were discussed in the context of generalized Lambert functions

[22], a subject under intense investigation.

Among the papers which provide approximate analytical solutions of the eigenvalue

Eqs. (18)–(20) and (22)–(24), the most popular one, authored by Barker et al. [23], is essentially

a low-order algebraic approximation of sin x, cos x. Another interesting contribution is that of

Garrett [24], who introduced an intuitive physical concept, the characteristic depth δ of a finite

well, for a bound electron with energy E:
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δ ¼
ℏ

2m V0 � Eð Þð Þ1=2
=32 (32)

as the magnitude of the domain outside the well, where the wave function can penetrate

significantly, decreasing however exponentially. This concept is similar to the concept of

skin depth in electromagnetism [17] or to the concept of viscous penetration depth in fluids

[25], § 24.

In the context of various approximations, it is worth to mention the “algebraization” of

trigonometric functions, proposed by de Alcantara Bonfim and Griffiths [26], which trans-

forms the transcendental equations for the eigenvalues of the finite well in approximate,

tractable, algebraic equations. For instance, we can use the approximations:

tan x≃
0:45x

1� 2x
π

; cos x≃
1� 2x=πð Þ2

1þ cx2ð Þs
, 0⩽ x⩽

π

2
(33)

where the pair of constants can be chosen as

s ¼ 1=2, c ¼ 0:212 or s ¼ 1, c ¼ 0:101 (34)

4. The parabolic approximation

To solve the eigenvalue equations, or—more generally—Eq. (16), with y≷0, means, as already

mentioned, to obtain the inverse of the function y xð Þ defined by (16), i.e., to obtain the function

x yð Þ: Geometrically, the inverse of the function y xð Þ, plotted as a curve whose generic point is

x; yð Þ, is its symmetric with respect of the first bisectrix. A generic point of the inverse function

has the coordinates y; xð Þ:

Clearly, only the monotonic functions can be inverted; for instance, in our case, the function

sin x=xmust be replaced with its restriction on their intervals of monotony, and this restriction

will be actually inverted. We shall consider rsn ≃ n� 1
2

	 


π and approximate the bump of the

function sin x=x on the interval 2nπ; 2nþ 1ð Þπð Þ with a segment of parabola. It is easy to see

that the ascendant part of this parabola is given by the equation:

y ¼
4

2nþ 1
2

	 


π3

π
2

4
� x� 2nþ

1

2

� �

π

� �2
( )

, (35)

2nπ < x < 2nþ
1

2

� �

π
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Solving this equation for y

x ¼ 2nþ 1

2

� �

π�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

π2

4
� y

4
2nþ 1

2

� �

π3

s

(36)

and making the change x $ y, we get for the root ζ2n [27]:

ζ
parð Þ
2n xð Þ ¼ 2nþ 1

2

� �

π�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

π2

4
� x

4
2nþ 1

2

� �

π3

s

, (37)

0 < x <
1

2nþ 1
2

	 


π

Following exactly the same steps, similar expressions can be obtained for ζ2n x < 0ð Þ and for all

the functions ζq, ξq their parabolic approximations can be obtained. A special case is ζ1 :

ζ
parð Þ
2n xð Þ ¼ π

ffiffiffiffiffiffiffiffiffiffiffi

1� x
p

(38)

The method cannot be applied, evidently, for ξ1, as the function to be inverted has no bump.

The explicit expressions of the parabolic approximation for the functions ξn n > 1ð Þ and ζn,

obtained in [27] are simple, but cumbersome, and will not be given here.

It is possible to improve the parabolic approximation in two ways:

(1) To express the numerical coefficients in formulas similar to Eq. (36) using analytic approx-

imations for the roots of the equations tan x ¼ x and tan x ¼ �1=x: Actually, these transcen-

dental equations can be transformed in approximate, tractable, algebraic equations, using the

algebraic approximations of the tan function, proposed by de Alcantara Bonfim and Griffiths

[26] and generalized by other authors [28]. This approach is sometimes called “improved

parabolic approximation.”

(2) To approximate the bumps of the functions sin x=x and cos x=x with a cubic curve (poly-

nomial); this approach is sometimes called cubic approximation. The calculations are elemen-

tary, but cumbersome, and will not be given here [29].

For an algebraic approximation of ζ1, we can use a formula similar to the cos approximation

in Eq. (34), namely,

sin x

x
≃

1� x

π

	 
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 0:2x2
p (39)

proposed in [30].

The finite square well is a good starting point for similar quantum mechanical problems,

i.e., the asymmetric well (when the walls of the well, see Figure 1, have different heights), the
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semi-infinite well (when one of the walls is infinite), or more realistic cases, when the walls are

rounded (see [11, 12]). These potentials can model a semiconductor heterojunction (a thin

semiconductor slice sandwiched between two different, larger semiconductors), a metallic film

deposited on a semiconductor (in vacuum), and so on.

5. The differential form of transcendental equations

We shall indicate now an approach for solving the eigenvalue Eqs. (18)–(20) and (22)–(24)

providing an exact solution, written as a series expansion. We shall first illustrate this method

with the function ζ1 pð Þ:

Taking the derivative with respect to p in both sides of the equation

pζ1 pð Þ ¼ sin ζ1 pð Þ (40)

we get

dζ1 pð Þ

dp
¼

ζ1 pð Þ

cos ζ1 pð Þ � p
(41)

Using Eq. (40) and taking into account that we are in the second quadrant

cos ζ1 pð Þ ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� p2ζ1 pð Þ2
q

(42)

we obtain the differential form of the equation for ζ1 pð Þ:

dζ1 pð Þ

dp
¼ �

ζ1 pð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� p2ζ1 pð Þ2
q

þ p
, p∈ 0, 1½ �, ζ1 pð Þ∈

π

2
;π

� �

(43)

with the initial condition:

ζ1 0ð Þ ¼ π (44)

Putting

X2n pð Þ ¼ ζn pð Þ, X2n�1 pð Þ ¼ ξn pð Þ, n ¼ 1, 2,…, (45)

replacing p by x and relaxing the restriction p > 0, the equations for the eigenvalues of the

wave vectors can be written in a unitary form:

dXn xð Þ

dx
¼ �

Xn xð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� x2Xn xð Þ2
q

þ x
(46)
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with the initial condition:

Xn 0ð Þ ¼
nπ

2
(47)

With Eq. (46), we can obtain the derivatives of any order of Xn xð Þ in an arbitrary point x0 and,

consequently, write down the Taylor series for this function, with arbitrary accuracy. Choosing

x0 ¼ 0, we get the following series expansion for Xn xð Þ :

Xn xð Þ ¼
X

∞

m¼0

qm
nπ

2

� �

xm (48)

The parameters qm are polynomials in the variable

nπ

2
� b : (49)

q0 bð Þ ¼ b, q1 bð Þ ¼ �b, q2 bð Þ ¼ b (50)

q3 bð Þ ¼ �b 1þ
b2

6

� �

, q4 bð Þ ¼ b 1þ
2b2

3

� �

(51)

q5 bð Þ ¼ �b 1þ
5

3
b2 þ

3

23 � 5
b4

� �

, q6 bð Þ ¼ b 1þ
2 � 5

3
b2 þ

23

3 � 5
b4

� �

(52)

and so on. For the explicit expression of qm bð Þ, m < 17, see [13]. The first three terms corre-

spond to the Barker approximation.

Let us also remark that, in spite of the fact that the equivalence of Sturm-Liouville problems

for electromagnetic fields and for wave functions was noticed many years ago, the results

obtained for the finite rectangular well remain unused by the researchers studying wave

propagation in wave guides or in other simple geometries. Reciprocally, the very detailed

solutions of the equations for the normal modes of electromagnetic waves (see, for instance,

the references [90, 92] in [31]) were apparently overlooked by researchers working in quantum

mechanics.

6. Applications to the statistical physics of ultrathin metallic films

With few exceptions, the physics of ultrathin metallic films can be satisfactorily explained

using different types of infinite well for the potential of electrons moving normally to the film

plane. The model of the infinite well can be improved, for instance, by the phase accumulation

theory [11, 12, 32], quite popular among the scientist working in surface physics. The theory
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satisfactorily explains the quantum scale effects (QSEs) appearing in such systems and

predicted theoretically in the pioneering papers of Sandomirskii [4] and Schulte [5].

If, for thin films, such theoretical models can be successfully applied, for ultrathin films, with

only few (typically, less than 5) monolayers, obtained experimentally in the last two decades,

the approximation of the infinite well is inadequate. This is why in such cases we have to use

the exact solutions for the bound-state energy of the finite well or, at least, their analytic

approximations. In order to make clear the differences between the predictions of the two

models—the first one is based on the infinite well, and the second one is based on the finite

well—we shall evaluate some QSE for an ultrathin metallic film for three potentials: infinite,

semi-infinite, and finite wells.

6.1. The infinite well model for the quantum well in an ultrathin metallic film

Let us consider a rectangular metallic films, with edges Lx, Ly, Lz, where Lx, Ly are macroscopic

or mesoscopic and Lz is nanoscopic. If the metallic film is placed between two semi-infinite

dielectrics, we can presume that the conduction electrons move freely in the plane of the film

(defined by the axes Ox,Oy), and in transversal direction Ozð Þ, the potential can be approxi-

mated by an infinite rectangular well. The film has the volume:

V ¼ LxLyLz (53)

and the electron energy is

ℏ
2 k
!2

2m
(54)

where we put

k
!
¼ kx; ky; kz

	 


¼
2π

Lx
nx;

2π

Ly
ny;

π

Lz
nz

� �

(55)

nx, ny ¼ �1, � 2, …; nz ¼ 1, 2, … (56)

The differences between the values taken by the integers nx, ny and nz are due to the fact that,

along the directions Ox and Oy, the quantization is obtained imposing cyclic conditions, and

along the direction Oz by “rigid wall” conditions, specific to the infinite well, with impenetra-

ble walls.

For ultrathin films, the discrete spectrum of kz can be easily observed experimentally, and

the conduction electrons constitute a quasi-2D multiband electron gas, characterized by a

quasi-continuum, 2D wave vector k
!

2D ¼ kx; ky
	 


and by a quantized wave vector kz ¼ nz
π

Lz
:
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The number nz ¼ q plays the role of an subband index. So, in the 3D reciprocal space, the

spectrum is formed by planes of allowed states (subbands), parallel to the xOy plane, and

separated along the z direction, by segments of length Δkz ¼ π=Lz:

Let us consider a numeric example. For a metallic film with two atomic monolayers, the typical

values are Lz � 0:6 nm, so Δkz � 5 nm�1 and kF ¼ 16 nm�1: Therefore, only three plans cut the

Fermi (hemi-)sphere, or—in other words—only the first subbands are occupied, corresponding

to p ¼ 1; 2; 3: Let us mention that there is no band corresponding to p ¼ 0, as, in this case, the

amplitude of the wave function would be zero.

We shall compute the number of occupied electronic states and the Fermi wave vector of the

ultrathin film. The total number of subbands, which cut the Fermi sphere is Q, defined by

Q ¼ int
kF
Δkz

� �

(57)

where int x½ � is the largest integer smaller than x: In our particular case, discussed in the

previous example, Q ¼ 3, so there are only three distinct subbands, occupied at T ¼ 0: For

films with few monolayers, the subbands are separated by energies of about 1 eV, so we can

consider that T ¼ 0:

As the occupied states belonging to the subband of index q are situated inside circles cut by

the Fermi sphere, of radius kF,q ¼ k2F � qΔkzð Þ2
h i1=2

(these circles are the intersection of the

subband plane with the Fermi sphere), and the area corresponding to one electronic state k in

each subband is 2πð Þ2=LxLy ¼ 2πð Þ2Lz=V, there are

πk2F,q

2πð Þ2Lz=V
¼

V

2πð Þ2Lz
πk2F,q (58)

occupied states in the subband q. The number of electrons N inside the Fermi sphere is

obtained by summing up over the occupied subbands:

N ¼ 2
V

2πð Þ2Lz
π

X

Q

q¼1

k2F,q (59)

¼
V

2πLz
Qk2F �

π

Lz

� �2
X

Q

q¼1

q2

2

4

3

5

where the factor of 2 is due to the electron spin. Putting

Σ1 Qð Þ ¼
X

Q

q¼1

q2 ¼
1

6
Q Qþ 1ð Þ 2Qþ 1ð Þ (60)
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and introducing the number density of electrons n ¼ N=V, we get

k2F
� �

Q
¼ n

2πLz
Q

þ
π

Lz

� �2
Σ1 Qð Þ

Q
(61)

giving the dependence of the Fermi wave vector on the thickness Lz, on the number of

subbands Q, and on the electron number density n.

Introducing Eq. (61) in Eq. (57), we get

π

12
Q 4Qþ 1ð Þ Q� 1ð Þ

h i1=3 1

n1=3
⩽ Lz <

π

12
Q 4Qþ 5ð Þ Qþ 1ð Þ

h i1=3 1

n1=3
(62)

The last two equations define the QSEs on the Fermi wave vector; they can be considered as the

starting point of all other similar QSEs of various physical quantities characterizing the

ultrathin film.

Choosing n ¼ 4 � 1022cm�3 ¼ 40 nm�3, we get the expression of the Fermi wave vector for an

electronic gas 1, 2, 3, or 4 subbands:

k2F
� �

1
¼ 80πLz þ

π

Lz

� �2

, Lz < 0:5 nm (63)

k2F
� �

2
¼ 40πLz þ

5

2

π

Lz

� �2

, 0:5 nm⩽Lz < 0:8 nm (64)

k2F
� �

3
¼

80π

3
Lz þ

14

3

π

Lz

� �2

, 0:8 nm⩽ Lz < 1:1024 nm (65)

k2F
� �

4
¼ 20πLz þ 7:5 �

π

Lz

� �2

, 1:1024 nm⩽ Lz < 1:4006 nm (66)

where kF is measured in nm�1: The expressions (63)–(66) clearly illustrate the QSE on the Fermi

wave vector.

6.2. The semi-infinite well model for the quantum well in an ultrathin metallic film

As already mentioned (see Eq. (45) and the remark just below Eq. (27)), the relation between

the solutions of the eigenvalue Eq. (46), namely, the functions X, and the wave vector k is

k !
2

L
X (67)

and the bound states of the semi-infinite well are described by the odd states of a finite well

with the same length. In other words
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k2n !
2

Lz
ζn pð Þ (68)

It is convenient to define

w ¼
mU

2ℏ2

� �1=2

(69)

So, the inverse strength of the quantum well, similar to Eq. (10), can be defined as

p ¼
1

wLz
(70)

According to Eq. (68), the wave vector depends on both Lz and U (or w). As U is a material

dependent quantity, related, in principle, to the work function, we shall replace it, for this

numerical example, with the typical value of U ¼ 5 eV; in this case, Eq. (70) gives

p ¼
1

6:5� Lz
(71)

with Lz in nanometers.

An important difference which occurs at semi-infinite wells, compared to the infinite wells, is

that it keeps a finite number of bound states. Consequently, the energy spectrum of the

electron gas of the metallic film contains a finite number of subbands, in dependence of the

value of p: The well keeps at least one state if

p < 1 ) Lz >
1

6:3
¼ 0:16 nm (72)

and exactly one state ζ1 if

2

3π
¼ 0:21221 < p < 1, or 0:16 nm < Lz < 0:74794 nm (73)

This corresponds, usually, to a film with one or two monolayers. We have two states in the

well, ζ1 and ζ2, if

2

5π
¼ 0:12732 < p < 1, or 0:16 nm < Lz < 1:2467 nm (74)

This corresponds, usually, to a film with up to four monolayers, etc. These conditions are

purely mathematical, i.e., consequences of the specific form of the eigenvalue equations.

Now, we shall impose physical conditions, due to the p� or Lz� dependence of the Fermi wave

vector and of the number of subbands. Taking into account Eq. (67) and using an argument

similar to Eq. (57), we find
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k2F ¼
2πLz
Q

nþ
1

Q

2

Lz

� �2
X

Q

q¼1

ζq pð Þ
	 
2

(75)

Let us presume that the electron gas contains exactly Q subbands, which is equivalent to the

relation:

2

Q� 1=2ð Þπ
< p ¼

1

6:5� Lz
< 1, or 0:16 nm < Lz < 1:2467 nm (76)

or

1

6:5
< Lz <

Q� 1=2ð Þπ

13
(77)

Therefore, instead of Eq. (62), we have

2

Lz

� �2

ζ
2
Q pð Þ⩽ k2F ¼

2πLz
Q

nþ
1

Q

2

Lz

� �2
X

Q

q¼1

ζq pð Þ
	 
2

==78 (78)

The term corresponding to the r.h.s. of the inequality (62) is missing in this case, as the number

of roots (solutions) is completely determined by the condition imposed to Lz, according to

Eq. (77).

Replacing the electron number density with a typical value n ¼ 40 nm�3 and using Eq. (63), we

get (we took advantage of the fact that, incidentally, the numeric factor is 0:25128≃ 1=4)

ζ
2
Q pð Þ⩽

1

4Qp3
þ

1

Q

X

Q

q¼1

ζq pð Þ
	 
2

(79)

This restriction on p, which can be verified using, for instance, the cubic approximation for ζn,

must be considered together with Eqs. (71)–(73).

6.2.1. The finite well model for the quantum well in an ultrathin metallic film

The situation is quite similar to the previous one—the semi-infinite well. However, in this case,

there is at least a solution for each value of p. Eqs. (71)–(73) are replaced by

p > 1 or Lz <
1

6:3
¼ 0:16 nm, (80)

one state, X1 ¼ ξ1;

1

π
¼ 0:31831 < p, or Lz < 0:31831 nm, (81)
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two states, X1 ¼ ξ1, X2 ¼ ζ1

2

3π
¼ 0:21221 < p < 1, or Lz < 0:74794 nm, (82)

three states, X1 ¼ ξ1, X2 ¼ ζ1, X3 ¼ ξ2

and so on. In Eqs. (76) and (77), the replacement ζq ! Xq must be done. Eq. (74), with ζq ! Xq,

gives the QSE for the Fermi wave vector.

These solutions, or their analytic approximations (for instance, the cubic one), can be used

directly in the models already proposed for the infinite well [33], in order to obtain the electron

density, the surface free energy, the surface dipolar moment, or other similar quantities, in the

more realistic case of a finite rectangular well.

7. Conclusions

This chapter illustrates how solutions of a simple quantum mechanical problem can be used

for the description of certain interesting phenomena of nanophysics. Specifically, we referred

to the exact solutions of the eigenvalue equations for the eigenenergy of the bound states of a

particle in a rectangular well. If the physical problem is elementary, and the wave functions are

simply written in terms of elementary functions, the equations for the eigenvalues of energy

(or of the wave vector) are transcendental—and highly nontrivial. We obtain both exact

solutions (series expansions) of these transcendental equations and approximate ones—with

various degrees of complexity and accuracy. The value of the Fermi wave vector of the

electrons in the metallic film, calculated for the finite well model, differs drastically from those

calculated with the infinite well one.

Our results for the one-electron wave functions of the finite barrier model can be used as Kohn-

Sham state in the self-consistent calculations of surface energy [34], for more accurate calcula-

tions of the stability of the films [1] and of other QSEs [33]. They can be also used as zero-order

approximations for more realistic potentials, e.g., with rounded walls or undulate bottom—in

a Rayleigh-Schroedinger or Dalgarno-Lewis perturbation theory [35].

Using the analogy between the movement of electrons in time-independent potentials and

propagation of electromagnetic waves in dielectrics or metallic wave guides [18], mathemati-

cally, they are identical Sturm-Liouville problems; our results can be extended to several

problems of electromagnetism and optics. This analogy can be easily developed for planar

dielectric waveguides, namely, for “step-index” dielectrics, consisting of a slab of higher

refractive index (core), sandwiched between two half spaces of lower refractive index (clad-

ding). In such a situation, the quantum counterpart of the dielectric guide is a square well. This

issue is discussed in detail by Casey and Panish in the context of heterostructure lasers [36]. It

is easy to notice that the eigenvalue equations for transverse electric and magnetic modes, (2.4–

45, 54, 60, 66) in [36], are essentially identical with our Eqs. (8) and (9).
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