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Abstract

The search for clean and low-cost fuels as alternative for petroleum is a popular research
focus in the energy field. The demand of natural gas as an energy source has increased
steadily. The high H:C ratio and the absence of heteroatoms make natural gas an attractive
feedstock for synthetic fuels and chemicals that can replace those that are typically
petroleum-derived. The search for efficient routes to convert methane to other higher
added-value products is a challenge for the scientific community. In addition, new fields
of oil and gas contain associated CO2 (8–18%), and, in some specific fields, the associated
gas encloses a higher CO2 content (79%). In this context, the tri-reforming process com-
bines two of the most problematic greenhouse gases (CH4 and CO2) to generate syngas for
the synthesis of clean liquid fuels and valuable chemicals. Developments in tri-reforming
processes, which include the new catalysts, are presented in this chapter.

Keywords: tri-reforming, syngas, catalysts, carbon dioxide, hydrogen production

1. Introduction

Significant efforts are being directed nowadays towards finding alternatives that could restrain

the climate change. The consistent rise of CO2 concentration in the atmosphere is known to be

significantly detrimental to the environment. Thus, mitigating CO2 is becoming an urgent need.

Current methods involving CO2 mitigation can be broadly divided into two major categories,

which involve (1) CO2 capture and sequestration (CCS) and (2) CO2 capture and utilization

(CCU). Since the production of fuels/chemicals is an added feature along with mitigation in

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



CO2 valorization-based methods, they could be economically favorable. An energy-intensive

CO2 capture step is a common drawback of most CO2 valorization methods that aim to

mitigate CO2 from major CO2 emission sources (such as industrial flue gases).

Different methane-rich gas streams can be found, both of natural and of anthropogenic origin.

A decrease in fossil fuels and environmental concerns across the globe enforced researchers to

work on energy resources like methane, which is the most abundant natural gas on earth [1].

Therefore, it is of utmost importance to seek for technologies that could convert two of the

main product gases responsible for the greenhouse effect, methane and carbon dioxide,

avoiding their massive release into the atmosphere.

Reforming of methane is one of the most important industrial processes, which convert natural

gas into synthesis gas. Syngas is an intermediate feedstock for the production of hydrocarbons

and hydrogen for fuel cells. Synthesis gas is produced from natural gas via catalytic processes

based on dry reforming of methane (DRM), steam reforming of methane (SRM) and partial

oxidation of methane (POM) [2]. In fact, the available natural gas can be exploited for the

production of chemicals and fuels.

The reforming processes are classified based on the energetic demand of the process and the

type of reforming agent. Steam reforming of methane (SRM) produces a high ratio of syngas

(H2/CO = 3), suitable for the production of ammonia. This process is endothermic and requires

high investments. The partial oxidation of methane, an exothermic reaction, is an alternative

process with reduced capital and operation costs. However, the partial oxidation of methane

(POM) needs oxygen, and the cost of its production is about 50% of the investment of the

whole process. There is a high risk of explosion at an elevated temperature [3]. On the other

hand, the dry reforming of methane (DRM) is a valuable reaction for biogas utilization and

transformation of greenhouse gases (CH4 and CO2) in high-valued products. DRM produces a

low syngas ratio (H2/CO = 1), which is suitable for the syntheses of oxygenates [4–6].

Tri-reforming of methane (TRM) is nowadays of great interest, because it combines the steam

and dry reforming and partial oxidation of methane (CH4 + O2 + CO2 + H2O) processes;

however, it holds the main advantages and disadvantages of all processes, to some extent [7].

It is well known that themajor limitation ofmethane-reforming processes is the rapid deactivation

of the catalyst, which has been commonly attributed to coke deposition and catalyst sintering.

The tri-reforming of methane may drastically reduce the carbon deposition. Furthermore, the

presence of O2 in the feed allows the generation of energy in situ, due to the exothermal

oxidation of methane, which increases the energy efficiency of the process. Besides, the possi-

bility of changing the reactants’ compositions, allows for a versatile synthesis of gas composi-

tion, which can be suitable for different applications of synthesis gas [8, 9].

2. Tri-reforming process

Energy is the most important issue to modern economies, and it is predicted that a fast-

rising energy demand will require US $45 trillion for new infrastructure investment by 2030.

Biofuels - State of Development274



In particular, natural gas processes increase the options for the production of high added-

value chemicals and energy demand. The Fischer-Tropsch (FT) technology is the main

technology for the production of liquid fuels, named GTL process, but this technology is

yet very expensive, due to the high costs of syngas production using steam reforming of

methane (SRM) [7]. The tri-reforming process (TRM), introduced by Song et al. [10], allows

to use flue gas and methane to produce syngas, which can be converted to methanol and

higher hydrocarbons. This new process is a synergic combination of the endothermic CO2

and steam-reforming reactions with the exothermic oxidation of methane, as shown in

Eqs. (1)–(4) [11], which are carried out in a single reactor.

H2Oþ CH4 ! COþ 3H2;ΔH
0
298K ¼ 206:3kJ:mol�1 (1)

CO2 þ CH4 ! 2COþ 2H2;ΔH
0
298K ¼ 247:3kJ:mol�1 (2)

CH4 þ
1

2
O2 ! COþ 2H2;ΔH

0
298K ¼ �35:6kJ:mol�1 (3)

CH4 þ 2O2 ! CO2 þ 2H2O;ΔH0
298K ¼ �880kJ:mol�1 (4)

In addition, during the tri-reforming process, methane cracking (Eq. (5)), CO disproportion-

ation or Boudouard (Eq. (6)), water-gas shift (Eq. (7)) and complete oxidation of carbon

reactions (Eq. (8)) occur simultaneously [12].

CH4 ! Cþ 2H2;ΔH
0
298K ¼ 75kJ:mol�1 (5)

2CO ! Cþ CO2;ΔH
0
298K ¼ �172kJ:mol�1 (6)

COþH2O ¼ CO2 þH2;ΔH
0
298K ¼ �41kJ:mol�1 (7)

CþO2 ¼ CO2;ΔH
0
298K ¼ �393:7kJ:mol�1 (8)

The heat released during the POM reaction is used to supply the heat needed for the SRM and

DRM reaction, and therefore the TRM reaction is energetically more efficient [13]. In addition,

TRM offers several advantages for syngas production compared to the single reactions [14].

TRM does not require pure CO2 supply in the reaction. This implies that the flue gas from the

combustion processes of power plants or the coke oven gas (COG) from iron-making indus-

tries can be used directly as a CO2 source for TRM process [15–17]. TRM can also be used to

upgrade the syngas quality produced from biomass or coal gasification [18, 19]. The H2/CO

ratio in syngas produced from tri-reforming can be adjusted varying the amounts of reactants

to satisfy the requirement for further processes, such as methanol and Fischer-Tropsch synthe-

sis [20, 21]. In addition, integrating steam reforming and partial oxidation with CO2 reforming

could dramatically reduce or eliminate carbon formation on a reforming catalyst, thus increas-

ing the catalyst life and process efficiency [14] due to the addition of O2 in the feed, which also

generates heat that increases the energy efficiency. Therefore, the tri-reforming has the advan-

tage of using natural gas and flue gases from power plants. The syngas from tri-reforming is

used for the production of chemicals (such as MeOH and dimethyl ether by oxo-synthesis),

fuels (for the Fischer-Tropsch synthesis) and electricity in fuel cells, as shown in Figure 1 [14].

Syngas Production Using Natural Gas from the Environmental Point of View
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Table 1 shows the advantages and disadvantages of tri-reforming compared to other

reforming technologies [7, 18, 22].

However, due to the inherent problems of the reforming processes, there is a need to improve

catalysts for optimizing the TRM process, improving the oxygen tolerance, resistance to coke

formation and sintering of the metal-active sites at a high temperature.

Figure 1. Tri-reforming of natural gas using flue gas from fossil fuel-based power plants.

Advantages Disadvantages

Direct use of flue gases Usually requires oxygen plant

High methane conversion No existing industrial process

Elimination of CO2 separation No existing commercial catalysts

Different H2/CO ratios Would require high GHSV

Minimization of coke formation Heat management

Use of waste H2O/O2 Mass management

Simplifying the processing system

Table 1. Advantages and disadvantages of tri-reforming [7, 18, 22].
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3. Catalysts for methane-reforming reactions

The drawback of methane-reforming processes is mainly the severe tendency to carbon forma-

tion that deactivates the catalysts [23–25]. Noble metal-based catalysts (Rh, Ru, Pt, Pd and Ir)

presented a high activity and stability against coke formation [26, 27]. However, their costs are

still highly prohibitive for feasible application in this process. In fact, nickel-based catalysts are

more preferable in the CH4 reforming, due to their availability and lower costs [28–30].

However, the stability of the nickel catalysts at elevated temperatures and the coke formation

are the main obstacles for industrial applications [31, 32].

The addition of promoters to Ni-containing catalysts led to the reduction of coke deposition,

better metal dispersion or smaller particle size, and the synergic effect between Ni and the

promoter [33–36]. In fact, bimetallic catalyst exhibits a higher activity compared to noble

metals but not totally eliminate the carbon deposition.

The metal dispersion influences the coke deposition, since this process is structure-sensitive.

The build-up of carbon involves quite large active metal particles, which are usually formed at

high reforming temperatures.

Alumina-based supports have been investigated mainly due to the high specific surface area,

increasing the metal dispersion [37]. Nevertheless, the alumina supports easily deactivate due

to the coke deposition and sintering. The formation of coke has been associated with the

dehydration, cracking and polymerization reactions, occurring on the acid sites, while

sintering is due to the transition of crystalline phase during reaction [37].

Additional improvement can be achieved using well-developed supports. An effort to over-

come these problems is to search for basic additives or promoters, such as CeO2, SiO2, La2O3,

BaO, CaO, SrO, MgO and ZrO2 [37, 38].

Sintering of metal clusters can be prevented with supports having a strong interaction with the

active component. In fact, ceria-based catalysts can minimize sintering and coke formation [39]

compared to MgO, TiO2, Al2O3, SiO2 and ZrO2 supports [40–46]. On the contrary, these supports

facilitate sintering when submitted to higher temperatures. Moreover, ceria-based catalysts

present good redox properties and high oxygen mobility, and as reported in the study, without

noticeable oxygen mobility, the deactivation of the catalyst occurs very fast [47]. On the other

hand, the thermal stability of pure ceria under the typical reforming conditions is quite poor.

3.1. Promising catalysts

Although tri-reforming has not yet been implemented commercially, similar to steam or to dry

reforming, Ni catalysts supported on a wide range of different supported materials, such as

Al2O3, ZrO2, MgO, TiO2, CeO2, TiO2, CeZrO and SiO2, are the most popular catalysts for tri-

reforming of methane [48].

Song et al. [14] suggested that the supports should have a high oxygen storage capacity that

promotes CO2 adsorption. They proposed a simplified mechanism for the CO2 reforming

Syngas Production Using Natural Gas from the Environmental Point of View
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reaction. The first step occurs with the activation of methane, followed by the surface reaction

and the adsorbed surface CO2 species or adsorbed oxygen atoms (Eq. (9)); CO2 is more acidic,

and basic supports may preferentially interact with CO2. Therefore, the CO2 adsorption at the

surface facilitates the reaction with CH4 producing CO and H2. Moreover, supports with a

high oxygen storage capacity may also facilitate the dissociative adsorption of CO2 into CO

and adsorbed oxygen, according to Eq. (9) [14]

CO2 þ □ ¼ COþO
□ (9)

where □ denotes an active site.

Perovskite-type oxides have attracted significant interest as promising catalytic materials with

applications in a wide range of reactions, including total oxidation and partial oxidation of

hydrocarbons, carbon monoxide oxidation, alkenes hydrogenation, alkanes hydrogenolysis,

alcohol synthesis, dry reforming and water-gas shift reaction [49–51]. The perovskites contain

metallic and non-metallic elements, with a well-defined crystal structure. In general, the

molecular formula is represented by ABO3, where A refers to an alkali metal, an alkaline earth

metal or a lanthanide and B to a transition metal. These solids exhibit interesting properties

such as superconductivity, ferromagnetism, appreciable thermal stability and conductivity and

finally a high catalytic activity. The intrinsic properties of each perovskite are dependent on the

type of inserted element and principally on the preparation method. In fact, perovskites as

catalysts showed a reductive capacity under appropriate conditions. The metal particles are

highly dispersed in the oxide matrix (AOX), inhibiting sintering of metal particles and carbon

deposition. In fact, the high thermal stability makes the perovskites promising catalysts for the

reforming of methane. Therefore, they are attractive alternatives to classic catalysts tradition-

ally used in these reactions such as supported nickel and noble metals.

Various perovskites, including LaFeO3, LaNixFe1-xO3, LaNiO3 or La1-xCexFe0.7Ni0.3O3, have

been found to exhibit a high activity in the steam reforming of methane with a minimal coke

deposition under low steam-to-carbon ratios [52–67]. However, the need for high-operating

temperatures (e.g. T ≥ 600�C) of methane-reforming reactions provokes irreversible structural

changes, including structural collapse and dissolution of (reactive or inactive) metal particles

from the perovskite lattice [57–60, 63, 64].

Choudhary et al. [63] verified that the oxygen from the La1-xSrxFeO3 perovskite-type oxides

surface was responsible for the complete oxidation of CH4–CO2 and H2O, while the bulk

lattice oxygen was responsible for the deep reduction of Fe3+–Fe2+, and this was suitable for

the partial oxidation of CH4–H2 and CO. The La1-xSrxFeO3 has had good repeatability in the

catalytic performance, and no significant deactivation was observed over five redox cycles.

The LaCrO3 and LaFeO3 oxides doped with alkaline earth (AE = Ba, Ca, Mg and Sr) metals

were prepared and studied on how the atomic oxygen influences the partial oxidation of

methane to syngas [66]. A-site doping with AE metals generally increases the mobility of

lattice oxygen ions and thus decreases the temperature for the hydrogen and CO production,

when compared with the non-doped LaCrO3 and LaFeO3 oxides. There are minor structural

changes during the partial oxidation of methane of LaCrO3, which can be regenerated by
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oxidation at 950�C. However, the LaFeO3 presented negligible structural modifications. The

stability of the perovskites occurs during repeated reaction cycles of generation-regeneration.

The LaFeO3, La0.8Sr0.2FeO3 and La0.8Sr0.2Fe0.9Co0.1O3 perovskite-type oxides were investigated

in a continuous flow and sequential redox reaction [67] for the partial oxidation of methane in

the absence of gaseous oxygen. The authors observed that methane reacted with sub-surface

oxygen species of perovskite oxides in the absence of gaseous oxygen. The sequential redox

reaction revealed that the structural stability is attributed to the continuous oxygen supply in

the redox reaction, which evidences an excellent structural stability of the perovskite materials.

Other perovskites were employed for the DRM, SRM and POM reactions [68–72]. The effect of

replacing cobalt by iron in LaCo1�xFexO3 (x = 0.0, 0.5 and 1.0) perovskite-type oxides over its

physical properties and catalytic performance in the partial oxidation of methane (POM) was

investigated. The product distribution varying with space time and with perovskite-type

catalyst employed is found to be remarkable. For lower W/F values, the major product was

H2 for the LaCoO3 (55.8%) and LaCo0.5Fe0.5O3 (59.2%), with similar ratios H2/CO (1.8–1.9) and

a low CO2 formation [73].

We studied the combined dry and partial oxidation reaction on LaCrO3 and perovskites, fed

with CH4:CO2:O2 = 1:1:0.5 and using a GSVH 60,000 h�1 at 700�C for 4 h. The conversions

were 17% CH4 and 94% O2, respectively, and no conversion of CO2. Results showed an

increasing formation of CO2 and a H2/CO ratio equal to 2.7, which suggests that the partial

and total oxidation of methane initially takes place, producing CO, CO2 and H2O, and subse-

quently the steam and dry reforming occur to produce syngas. In fact, the water-gas shift

reaction also takes place due to the high H2:CO ratio.

3.2. Effect of O2 and H2O concentration

Steam reforming of methane is the only large-scale industrial process currently available for

the production of synthesis gas, producing high-purity hydrogen with a H2/CO ratio equal to

3. The partial oxidation of methane produces synthesis gas with a H2/CO ratio of 2, as required

for methanol synthesis. However, the POM reaction is exothermic, and the control of the

temperature of this process is difficult. Tri-reforming of methane is energetically favorable

compared to the steam reforming of methane and partial oxidation of methane. The process is

energetically thermal neutral. Compared to the SRM and POM reactions, the tri-reforming

process has the advantage to produce different H2/CO ratios.

Singha et al. [74] found the optimum feed ratio and the effect of O2 and H2O concentration (mole

ratio) conditions for the reaction, by monitoring the feed mixture and keeping the methane to

CO2 mole ratio constant. The addition of oxygen in the feed helps to attain a thermal-neutral

balance and compensate the heat necessary for the endothermic reactions occurring during the

whole process [75]. A high oxygen concentration in the reaction feed inhibits the CO2 reforming

and lowers the CO2 conversion [13] because the reaction between oxygen and methane is

thermodynamically favored over the reaction between methane and CO2. The higher concentra-

tion of oxygen in the feed allows a maximum methane consumption, and the available methane

for the dry and steam reforming is very low [76]. Table 2 shows the effect of O2 concentration

Syngas Production Using Natural Gas from the Environmental Point of View
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over methane, CO2 and H2O conversions and H2/CO ratios [74]. The effect of concentration of O2

over the reactant conversion was mainly due to the heat generated by the partial oxidation and

complete oxidation of methane and the enhanced coke removal process [76, 77]. Increasing O2

concentration, the total oxidation of methane also increases, due to the exothermic reaction, and

the amount of energy is released. The heat generated is useful for the steam- and dry-reforming

reactions, which are endothermic, minimizing the required temperature to obtain a higher CH4

conversion [78] and external energy. On the opposite, lower O2 concentrations led to lower

conversion; however, increasing the temperature, H2O and CO2 react with methane to produce

synthesis gas [77]. The higher H2/CO ratio was attributed to the steam reforming of methane,

producing a H2/CO ratio of 3, attributed to the water-gas shift reaction, which produces only

hydrogen, without the production of CO [79]. On the other hand, with increasing temperature,

one observes that the RWGS (reverse water-gas shift) reaction outweighs other reactions [77].

3.3. Effect of space velocity and methane/oxygen ratio

The effect of replacing cobalt by iron in LaCo1-xFexO3 (x = 0.0, 0.5 and 1.0) perovskite-type

oxides on its catalytic performance in the partial oxidation of methane (POM) process was

investigated, varying the space velocity and methane/oxygen ratio. The inlet methane to

oxygen proportion was fixed at 2:1. The methane conversion increased with the space time

and the maximum conversion was 31% at 0.67 kg.s.mol�1 for the LF perovskite. In terms of

product selectivity, the catalysts produced mainly H2 and CO, CO2, C2H4 and/or C2H6, as

shown in Table 3. The product distribution varying with space time and perovskite type

catalyst is found to be remarkable. The H2 production decreased by about a half and the CO

decreased four times for both LC and LCF catalysts. However, the CO2 formation increased by

a factor of about 10, and the H2/CO ratio also increased by a factor of 2. Different was the

product distribution of the LF perovskite presenting low H2 and CO formations and a high

production of CO2, but a significant higher formation of C2 hydrocarbons compared to the

other samples as W/F increases [73].

Catalytic tests with the LF and LCF perovskites were also performed with a methane/oxygen

ratio of 4 (W/F = 0.67 kg.s.mol�1). Table 4 shows that increasing the CH4/O2 ratio to 4,

the methane conversion was halved, compared to the previous condition at a CH4/O2 ratio

of 2 [73].

The formations of ethane and ethylene are attributed to secondary reactions. In particular, the

oxidative coupling of methane reaction takes place, which increased the C2H4 and C2H6 to

C2H4 at high temperatures (2CH4 + 1/2O2 ! H2O + 1/2C2H6). Parallel reactions of oxidative or

non-oxidative dehydrogenation of ethane would occur, converting also C2H6 to C2H4 and then

Catalyst GHSV (ml.g�1.

h�1)

Feed ratio, O2:CO2:H2O:CH4:

He

CH4 conv.

(%)

CO2 conv.

(%)

H2O conv.

(%)

H2/CO

ratio

4.8NiZrO2 80,000 0.75:1:2.1:5:18 60 50 55 2.3

1:1:2.1:5:18 83 81 82 2.0

1.25:1:2.1:5:18 90 38 89 3.0

Table 2. The effect of O2 concentration (mole ratio) on the reactant conversions verified by reference [74].
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ethane could be oxidized to CO2. This last hypothesis is reinforced due to the increasing CO2

concentration at higher temperatures, most likely due to the oxidation of part of C2H6 (which

leads to H2O and CO2), according to the following reactions, suggesting different reaction

paths: C2H6 + 1/2O2 ! C2H4 + H2O and C2H6 ! C2H4+ H2.

4. Discussion

Different reactions may occur in the whole process; the formation of the desired product with

maximum selectivity depends on the input feed mixture. Steam increases the methane

reforming and the water-gas shift (Eq. (7)) (WGS) reaction. It also helps to reduce the carbon

deposition, which occurs during the dry reforming of methane [75]. Therefore, the addition of

H2O is thermodynamically more favorable for the methane reforming than for the dry

reforming [13]. For a lower H2O concentration, the methane conversion was lower than the

CO2 conversion, which is assigned to the competition between H2O and CO2 molecules with

methane. Increasing the H2O concentration input, the CO2 conversion decreases. Both WGS

and steam reforming are equally important at a temperature below 650�C; however, with

W/F (kg.s.mol�1) Catalysts X CH4 (%) H2/CO Selectivity (%)

H2 CO C2 CO2

0.16 LC 13.7 1.8 55.8 31.5 5.50 7.10

LF 19.2 1.6 46.0 28.0 4.10 22.0

LCF 17.1 1.9 59.2 30.9 3.80 6.10

0.40 LC 22.0 2.8 22.2 7.90 1.50 68.4

LF 28.1 2.2 16.6 7.50 3.10 72.8

LCF 27.7 3.2 20.5 6.50 0.90 70.2

0.67 LC 28.6 3.5 25.7 7.30 0.70 66.3

LF 31.0 3.2 8.30 2.60 5.30 83.8

LCF 28.7 4.4 22.2 5.10 0.80 72.0

Table 3. Conversions and selectivity results over perovskites. Experimental conditions: P = 1 atm, inlet molar CH4/O2

ratio = 2/1, space time of reactants = 0.16, 0.40 and 0.67 kg s mol�1 and temperature of 700�C [73].

CH4:O2 Catalysts X CH4 (%) H2/CO Selectivity (%)

H2 CO C2 CO2

2 LF 31.0 3.2 8.30 2.60 5.30 83.8

LCF 28.7 4.4 22.2 5.10 0.80 72.0

4 LF 15.5 0.0 0 2.70 10.5 86.8

LCF 15.5 2.0 5.00 3.60 0.80 90.6

Table 4. Conversions and selectivities over LF and LCF perovskites. Experimental conditions: P = 1 atm, inlet molar CH4/

O2 ratio = 2/1 and 4/1, space time of reactants = 0.67 kg s mol�1, and temperature of 700�C [73].
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increasing temperature, the H2O conversion increases. Above 650�C, the RWGS reaction

prevailed, producing less H2 and decreasing the H2/CO ratio [77, 80].

The reaction mechanisms are yet unknown for oxide catalysts and in particular for perovskite

structures, which apparently are the most promising catalysts for the tri-reforming, based on the

combined SRM, DRM and POM reactions. One explanation is that these materials present

defects which promote the modification of electronic effects. Indeed, electronic effects may arise

in the presence of ions with different charges of those belonging to the ions of the network, or as

a consequence of the transition energy levels of electrons normally filled (usually the valence

band) to empty levels (the conduction band). In all cases, when an electron is missing, that is,

when there is an electron deficiency, this is usually called electronic holes. In the absence of an

electric field, the ionic networks of the oxide structures tend to be electronically neutral, which

requires that charge defects are compensated by the presence of other filler defects in order to

obtain the condition of electro-neutrality, making the structure more stable. This means that

charge defects are always present as a combination of two or more types of failures [55].

A reaction mechanism on mixed oxides can be suggested, assuming that CH4 is activated by

the metal at the surface, forming carbon and H2. The carbon atoms adsorbed at the surface can

react directly with oxygen, forming CO and H2. These intermediate species may react with the

adsorbed CO2 species or dissociated steam. Song et al. [14] claim that the different extent of

interaction between CO2 and catalysts could be responsible for this mechanism. They assumed

that the interaction between CO2 and the catalyst could change the CH4 conversion rate, based

on a simplified Langmuir-Hinshelwood (L-H) mechanism (Eqs. (10)–(12)).

CH4 þ □ ! CH
□

4 (10)

CO2 þ □ ! CO
□

2 (11)

CH
□

4 þ CO
□

2 ! 2COþH2 þ 2□ (12)

where □ are the metallic surface sites.

They observed that the reaction order of CH4 on Ni/MgO is strongly compared to the adsorp-

tion of CO2 over Ni/MgO/CeZrO which is close to zero. This suggests that the CH4 conversion

rate almost does not change with the partial pressure of CO2. However, it was found that Ni/

MgO/CeZrO has even more stronger interaction with CO2 than Ni/MgO. In fact, the sites for a

strong CO2 adsorption over Ni/MgO/CeZrO are probably not the same as for CH4 adsorption.

It is important to note that the metal is itself believed to be able to activate CH4, as suggested

by Rostrup-Nielsen [47], while the types of supports, like MgO, facilitate the adsorption of

CO2. Hence, the locations of the interfaces between Ni and supports are fundamental, where

the adsorption and reaction take place.

5. Conclusion

The energy crisis is a problem which will get exacerbated with depleting crude oil reserves

around the world. There is an urgent need for alternative fuels around the world. The conversion
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of CO2 to a high-valued product could provide the necessary economic incentive towards both

CO2 mitigation and fuel generation. The study reported new strategies of CO2 valorization. The

tri-reforming produces directly synthesis gas from flue gases using methane as a co-feed. The

utilization of CO2 without pre-separation from its sources saves energy, since a substantial

energy input is required for CO2 separation from its concentrated sources [81]. Tri-reforming of

methane can be carried out by using CO2, H2O and O2 as a co-feed with natural gas or methane,

and flue gas can be a very good source of highly concentrated feed for the tri-reforming process.

New catalysts have been suggested with suitable promoters, mixed oxides and different sup-

ports, resistant to coke formation and sintering of the metal-active sites and stable at an elevated

temperature. Stable and active catalysts for industrial application are under development, and

researches are expected to bridge the gaps in science and technology for the tri-reforming

process, providing further improvements and economically feasible.
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