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Abstract

Sentiment classification has already been studied for many years because it has had many 
crucial contributions to many different fields in everyday life, such as in political activi-
ties, commodity production, and commercial activities. There have been many kinds of 
the sentiment analysis such as machine learning approaches, lexicon-based approaches, 
etc., for many years. The today tendency of the sentiment classification is as follows: 
(1) Processing many big data sets with shortening execution times (2) Having a high 
accuracy (3) Integrating flexibly and easily into many small machines or many different 
approaches. We will present each category in more details.

Keywords: sentiment classification, machine learning approaches, lexicon-based 
approaches, today tendency of the sentiment classification, big data set

1. Introduction

Many different approaches have already been developed for sentiment analysis for many 
years because a lot of researchers have already desired to find many optimal algorithms and 
optimal approaches for many surveys and commercial applications.

The sentiment classification, called opinion mining, is the computational studies of opinions, senti-
ments, evaluations, attitudes, appraisal, affects, views, emotions, subjectivity, etc., expressed in 
texts (reviews, blogs, discussions, news, comments, feedbacks, etc.)

The different approaches have been used to cross-check with each other to reform their 
accuracies.

One document (one sentence or one phrase) is classified into the positive polarity, the nega-

tive polarity or the neutral polarity.

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
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The positive polarity is a polarity of a word or a phrase (a sentence or a document) which 
performs aspects about good, nice, like, love, delicious, happiness, enthusiasm, kindness, etc. 
Examples of phrases: very good, very nice, etc. Examples of sentences: “He is very handsome”; 
“She is very beautiful.” Examples of documents: “He is very handsome. He is also good at 
Sports.“

The negative polarity is a polarity of a word or a phrase (a sentence or a document) which 
expresses aspects about bad, evil, poor, ugly, wrong, inclement, foul, shabby, sinister, rotten, ill, 
shoddy, etc. Examples of phrases: very bad, very evil, etc. Examples of sentences: “He is very 
bad”; “She is very wrong.” Examples of documents: “She is very bad. She is very stupid.”

The neutral polarity is a polarity of a word or a phrase (a sentence or a document) which is 
not both the positive polarity and the negative polarity. Examples of neutral words: eat, talk, 
drink, etc. Examples of phrases: a bucket of water, 1 kg, and etc. Examples of documents: “He 
eats a banana. He drinks a glass of water.”

The polarity (positive, negative, or neutral) of a sentence or a document has been identified 
by using many machine learning algorithms in the surveys of the sentiment classification 
in [1–83].

The sentiment polarity of a word or phrase (a sentence or a document) is also expressed 
through a valence (sentiment score or sentiment value) of this word or this phrase (this sen-

tence or this document).

The polarity and valence of a word or a phrase in English have been calculated by using many 
different approaches such as many sentiment dictionaries. Besides, the polarity and senti-
ment value of a word or a phrase have been identified by using many similarity measures in 
English and Vietnamese in [49, 50, 51, 52]. In addition, according to our opinion, the polarity 
and sentiment score of a word or phrase of all languages (Chinese, French, etc.) can be calcu-

lated easily by using the similarity coefficients.

If the valence of a word or phrase (a sentence or a document) is greater than 0, this word or phrase 
(this sentence or this document) is the positive polarity. A word or phrase (a sentence or docu-

ment) is the neutral polarity if the sentiment score of this word or phrase (this sentence or this  
document) is as equal as 0. If the sentiment value of a word or phrase (a sentence or a document) 
is less than 0, this word or phrase (this sentence or this document) is the negative polarity.

Many machine learning algorithms have already had two kinds (supervised Learning and 
unsupervised learning) comprising a lot of algorithm groups such as: deep learning group, 
ensemble group, neural networks group, regularization group, rule system group, regression 
group, Bayesian group, decision tree group, dimensionality reduction group, instance based 
group, and clustering group.

The sentiment analysis has had many machine learning approaches and lexicon-based 
approaches.

The lexicon-based approaches comprise many dictionary-based approaches and corpus-
based approaches. The corpus-based approaches include statistical and semantic.
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In this chapter, we display the dictionary-based approaches and the corpus-based approaches 
of the sentiment classification basically; and we also present the today tendency of the senti-
ment analysis in more details as follows: (1) Processing many big data sets with shortening 
execution times (2) Having a high accuracy (3) Integrating flexibly and easily into many small 
machines or many different approaches, because there have been a lot of documents, reviews, 
discussions, blogs, news, comments, feedbacks, etc., on many websites, online news sites, and 
social networks.

There have also been many big corporations in the world. The corporations have had many 
branches in many different countries in the world. Each branch of a corporation has had thou-
sands of employees. Therefore, the corporations have had a lot of big information and big data 
sets about their employees, their businesses, etc. Processing the big information and the big 
data sets is very difficult by using the old algorithms, the old surveys, and old applications; 
and sometimes the big information and the big data set cannot be processed successfully.

Thus, the researchers now find the approaches for the surveys and the commercial applica-
tions to process the big data set for shortening execution times, improve the accuracies of these 
approaches. In addition, they can flexibly be integrated, and easily into the small machines or 
the different approaches because these small machines can be used conveniently in anywhere, 
for any type of users, and for various purposes. In the near future, these small machines can 
be produced easily, and they can be very cheap and easy to carry in everywhere.

This chapter includes six sections: The first section is the Introduction section. The second 
section is the Approaches of the Sentiment Classification section. The third section is the 
Today Tendency of the Sentiment Analysis section. The fourth section is the Conclusion 
section. The fifth section is the Conflict of Interest section, and the sixth section is the 
References section.

2. The approaches of sentiment classification

This section comprises two sub-sections as follows: In the first Section 2.1, we present the 
lexicon-based approaches of the opinion analysis. The machine learning approaches are dis-
played in the second Section 2.2.

2.1. Lexicon-based approaches

The lexicon-based approaches are comprised of multiple approaches, both dictionary-based 
and corpus-based.

The dictionary-based approaches involve using a dictionary that contains synonyms and ant-
onyms of a word: for example [1], this study used seed sentiment words from a dictionary.

The approaches based on the corpus find opinion words with context-specific orientations 
according to a seed list of opinion words, to find other opinion words in a large corpus. There 
are two approaches within the category of corpus-based approaches:
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a. Statistical Approach (example in [2]): If a word appears intermittently amid positive 
texts, then its polarity is positive. If it appears frequently among negative texts, then 
its polarity can be considered negative. If it has equal frequencies in positive and 
negative texts, then it can be considered a neutral word. Seed opinion words can be 
found using statistical techniques. Most state-of-the-art methods are based on the 
observation that similar opinion words often appear together in a corpus. Thus, if 
two words appear together frequently within the same context, then the probability 
is high that they have same polarity. Therefore, the polarity of an unknown word 
can be determined by calculating the relative frequency of co-occurrence with an-
other word.

b. Semantic approach (example in [3]): This principle assigns similar sentiment values to 
semantically-close words. These semantically-close words can be obtained by getting a 
list of sentiment words, iteratively expanding the initial set with synonyms and antonyms, 
and then determining the sentiment polarity for an unknown word by the relative count 
of positive and negative synonyms of this word.

A lexicon-based method was used for the sentiment classification of Twitter data in [4]. The 
approaches were used to identify and extract sentiments from emotions and hashtags. Also 
used in [4] was the practice of converting non-grammatical words to grammatical words, and 
normalizing non-root to root words to extract sentiments.

The survey in [5] used lexicon–based classification and included two techniques: a method-
of-moments estimator for word, and a Bayesian adjustment for repeated counts of the same 
word.

A structured approach was used in [6] for domain-dependent sentiment analysis, using lexi-
con expansion aided by emoticons.

The survey [7] introduced was a new approach to lexicon extraction, which can be success-
fully used for sentiment polarity assignment. It has been shown that the accuracy obtained 
from such lexicons outperforms other lexicon-based approaches.

The lexicon–based approach that [8] used was the Semantic Orientation CALculator (SO-CAL), 
which includes dictionaries of words annotated with their semantic orientation (polarity and 
strength), and incorporates intensification and negation.

The survey in [9] proposes a framework for sentiment analysis using dictionary-based 
approach. An approach to sentiment analysis is proposed that uses dictionary-based approach 
incorporating fuzzy logic.

In the research in [10], a lexicon-based approach was proposed to calculate reputation scores 
from Twitter. A Saudi-dialect lexicon was developed from Saudi tweets, to improve address-
ing the sentiment of the Arabic tweets.

The authors of [11] propose a lexicon-based approach to sentiment classification of Twitter 
posts. Their approach is based on the exploitation of widespread lexical resources such as 
SentiWordNet, WordNet-Affect, MPQA, and SenticNet.
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The lexical or lexicon-based approach is a method for a teaching dictionary-based approach 
described by Mechael Lewis in the early 1990s in [12]. The basic concept and methods of 
this approach represent an idea that signifies how education involves the understanding and 
production of lexical phrases. This pattern of language has grammar as well as a meaningful 
collection of words.

Sentiment analysis performs a role in the lexicon-based approach in [13]. It plays a significant 
role in determining classes such as positive, negative, and neutral.

Lexicon based approach [14] is to extract and handle the sentiment as no-slang words.

The sentiments are as followed in many dictionaries which are named as lexicon based 
dictionaries which are: (1) Bing Liu’s opinion lexicon. (2) MPQA subjectivity lexicon. (3) 
SentiWordNet lexicon. (4) Semantic Evaluation (SemEval).

The acronym dictionary included in [15, 16] is very helpful in expanding tweets and improve 
overall sentiments scores.

In [17, 18, 19], the emoticons have a different combination of symbols as different abbreviations.

The lexicon-based antonym dictionary in [20] contains set of well-lexicons, such as WordNet 
dictionary in English. WordNet dictionary maintains the set of lexical datasets for English 
words and also keeps record of semantic relationship between works.

The authors in [21–35] use the equations determining Pointwise Mutual Information (PMI) 
between two words wi and wj as follows:

  PMI (wi, wj)   = log  2   (  
P (wi, wj) 

 __________ 
P (wi) xP (wj) 

  )   (1)

They use the equations determining SO (sentiment orientation) of word wi as follows:

  SO  (wi)  = PMI (wi, positive)  − PMI (wi, negative)   (2)

In [21–28], the positive and the negative of Eq. (2) in English are: positive = {good, nice, excel-
lent, positive, fortunate, correct, superior} and negative = {bad, nasty, poor, negative, unfor-

tunate, wrong, inferior}.

The AltaVista search engine (AVSE) is used in the PMI equations of [22, 23, 25], and the Google 
search engine (GSE) is used in the PMI equations of [24, 26, 28]. In addition, the authors of [24] 

also use German, the authors of [25] also use Macedonian, the authors of [26] also use Arabic, 
the authors of [27] also use Chinese, and the authors of [28] also use Spanish. In addition, the 
Bing search engine (BSE) is also used in [26].

With [29–32], the PMI equations are used in Chinese, not English, and Tibetan is also added 
in [29]. In terms of the search engine, AVSE is used in [31], and the authors of [32] use three 
search engines: GSE, the Yahoo search engine (YSE), and the Baidu search engine (BSE). The 
PMI equations are also used in Japanese with GSE in [33]. The authors in [34, 35] also use the 
PMI equations and Jaccard equations with GSE in English.
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The Jaccard equations with GSE in English are used in [34, 35, 37]. The authors in [36, 41] 

use the Jaccard equations in English. The authors in [40, 42] use the Jaccard equations in 
Chinese. The authors in [38] use the Jaccard equations in Arabic. The Jaccard equations with 
the Chinese search engine (CSE) in Chinese are used in [39].

The authors in [48] use the Ochiai Measure through GSE with the AND and OR operators, to 
calculate the sentiment values of the words in Vietnamese. The authors in [49] use the Cosine 
Measure through GSE with the AND and OR operators, to identify the sentiment scores of the 
words in English. The authors in [50] use the Sorensen Coefficient through GSE with the AND 
and OR operators, to calculate the sentiment values of the words in English. The authors in [51] 

use the Jaccard Measure through GSE with the AND and OR operators, to calculate the sentiment 
values of the words in Vietnamese. The authors in [52] use the Tanimoto Coefficient through GSE 
with the AND and OR operators, to identify the sentiment scores of the words in English.

With the above proofs of the surveys in [21–52], according to our evaluation, all the similarity 
coefficients (or the similarity measures) can be applied with certainty to identify valences (or 
the sentiment scores) of all the words in many different languages.

2.2. Machine-learning approaches

The supervised learning algorithms and the unsupervised learning algorithms of the machine 
learning algorithms have been developed for the sentiment classification in Figure 1.

For the deep learning group of the sentiment analysis, deep learning (also known as deep 
structured learning or hierarchical learning) is based on learning data representations. 
Learning can be supervised, semi-supervised, or unsupervised. Examples of deep learning 
include deep neural networks, deep belief networks, and recurrent neural networks. They 
have been applied to many fields, including computer vision, speech recognition, natural lan-

guage processing, audio recognition, social network filtering, machine translation, bioinfor-

matics, and drug design.

In the survey in [54], the deep learning techniques showed promising accuracy in this domain 
on English tweet corpus. The authors conducted the first study that applies deep learning 

Figure 1. The machine learning algorithms.
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techniques to classifying sentiment of Thai Twitter data. Two deep-learning techniques are 
included in the study: Long Short Term Memory (LSTM) and Dynamic Convolutional Neural 
Network (DCNN).

The authors of [55] used a new model to initialize the parameter weights of the convolutional 
neural network. They also used an unsupervised neural language model to train initial words.

Deep learning and micro-blog sentiment analysis were proposed in [56].

The authors in [57] fine-tuned a convolutional neural network (CNN) for image sentiment  
analysis and train a paragraph vector model for textual sentiment analysis. The authors conducted 
extensive experiments on both machine weakly-labeled and manually-labeled image tweets.

Ensemble approaches in statistics and machine learning use multiple learning algorithms to 
get better predictive performance than constituent learning algorithms. A machine learning 
ensemble, unlike a statistical ensemble in statistical mechanics, comprises only a concrete, 
finite set of alternative models, but typically allows for much more flexible structures to exist 
among those alternatives.

A comparative study of the effectiveness of ensemble technique for sentiment classification was 
proposed in [58]. This survey used the ensemble framework for sentiment classification, with 
the aim of efficiently integrating different feature sets and classification algorithms in order to 
synthesize a more accurate classification procedure. The research in [59] presents an ensemble 
learning method for sentiment classification of reviews. The ensemble learning framework, 
or stacking generalization, is introduced based on different algorithms with different settings, 
and compared with the majority voting. An ensemble sentiment classification strategy in [60] 

was applied based on Majority Vote principle of multiple classification methods, including 
Naive Bayes, SVM, Bayesian Network, C4.5 Decision Tree, and Random Forest algorithms.

The simplest definition of a neural network—more properly referred to as an “artificial” neural 
network (ANN)—is provided by the inventor of one of the first neurocomputers, Dr. Robert 
Hecht-Nielsen. The neural networks (NN)-based method in [61] combines the BPN and SO 
indexes to classify bloggers’ sentiment. The NN-based method can reduce training time when 
classifying textual data. The NN-based method outperforms the traditional sentiment classifi-

cation methods (BPN and SO index) in experimental results.

In mathematics, statistics, and computer science—particularly in the fields of machine learn-

ing and inverse problems—regularization is the process of introducing additional informa-

tion in order to solve an ill-posed problem or to prevent over-fitting. The authors in [62] 

discussed a relation between Learning Theory and Regularization of linear ill-posed inverse 
problems. The authors showed that a notion of regularization (defined according to what is 
usually done for ill-posed inverse problems) allows derivation of learning algorithms that are 
consistent and that provide a fast convergence rate.

The authors in [48, 50, 51] used the rules of rule systems for the sentiment classification in 
Vietnamese and English.

Regression analysis in statistical modeling is a set of statistical processes for estimating the 
relationships among variables, and it comprises many techniques for modeling and analyzing 
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several variables. In regression analysis, we can see how the typical value of the dependent 
variable (or “criterion variable”) changes when any one of the independent variables is varied 
while the other independent variables are held fixed. Regression analysis is a form of predic-

tive modeling technique, which investigates the relationship between a dependent (target) 
and an independent variable (s) (predictor). The study in [63] analyzed the effect of using 
regression on sentiment classification of Twitter data.

Sentiment analysis was used in [64] to predict the Indonesian stock market. This study used 
the Naive Bayes and Random Forest algorithms to calculate sentiment regarding a company. 
The results of sentiment analysis were used to predict the company stock price. A linear 
regression method was used to build the prediction model.

Naïve Bayes classifiers in machine learning are a family of simple probabilistic classifiers accord-

ing to Bayes’ theorem, with strong (naive) independence assumptions between the features. 
Naïve Bayes was developed in 1950, and it was introduced under a different name to the text 
retrieval community in the early 1960s. It remains a popular (baseline) method for text categori-
zation, considering the problem of judging documents as belonging to one category or the other 
(such as spam or legitimate, sports or politics, etc.), with word frequencies as the features. It is 
competitive in this domain, with more advanced methods including support vector machines, 
and it also finds application in automatic medical diagnosis.

The authors in [65] explored different methods of improving the accuracy of a Naive Bayes classi-
fier for sentiment analysis. The supervised learning algorithm was used to classify a review docu-

ment as either positive or negative in [66]. The authors also improved the Naïve Bayes algorithm.

A decision tree is a tool supporting a decision, and it uses a tree-like graph or model of decisions 
and their possible consequences, including chance event outcomes, resource costs, and util-
ity. Operation research commonly uses decision trees, specifically in decision analysis, to help 
identify a strategy that is most likely to reach a goal; it is a popular tool in machine learning.

The authors in [67] proposed a new model using C4.5 Algorithm of a decision tree to classify 
semantics (positive, negative, neutral) for the English documents. A novel model using an ID3 
algorithm of a decision tree was used to classify sentiments for the documents in English in 
[68]. This survey was based on many rules which are generated by applying the ID3 algorithm 
to 115,000 English sentences of our English training data set.

Dimensionality reduction, or dimension reduction in machine learning and statistics, is the  
process of reducing the number of random variables under consideration by obtaining a set of 
principal variables. Dimensionality reduction comprises feature selection and feature extraction.

Naive Bayes and Support Vector Machine were used in [69] to analyze the sentiments of huge 
amount of tweets generated from Twitter users (they are stored in Twitter database). Unigram 
and bigram as feature extractors along with Chi2 and Singular Value Decomposition were 
also used for dimensionality reduction.

A novel, semi-supervised Laplacian eigenmap (SS-LE) was proposed in [70]. Redundant fea-

tures were removed by decreasing its detection errors of sentiments. It enabled visualization 
of documents in perceptible, low-dimensional embedded space, to provide a useful tool for 
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text analytics. The authors evaluated the novel approach by comparing it to other dimension-

ality reduction methods.

Instance-based learning (memory-based learning) in machine learning is a family of learn-

ing algorithms that, instead of performing explicit generalization, compare new problem 
instances with instances seen in training, which have been stored in memory.

Naive Bayes, Instance Based Learning, Decision Tree, SVM, and IB1 (Instance Based Learning 1) were  
implemented for sentiment classification of the class of reviews from Rotten Tomatoes in [71].

Clustering data concerns a set of objects processed into classes of similar objects. One cluster 
is a set of data objects that are similar to each other and are not similar to objects in other 
clusters. A number of data clusters can be clustered, which can be identified by following 
experience or can be automatically identified as part of the clustering method. The authors of 
[72] proposed a new model for big-data sentiment classification in the parallel network envi-
ronment. The authors’ proposed model used the Fuzzy C-Means (FCM) method for English 
sentiment classification, with Hadoop MAP (M) /REDUCE (R) in Cloudera. The authors [73] 

proposed a new model for Big Data sentiment classification in the parallel network environ-

ment. Our new model uses the STING Algorithm (SA) (in the data mining field) for English 
document-level sentiment classification with Hadoop Map (M)/Reduce (R), based on the 
90,000 English sentences of the training data set in a Cloudera parallel network environ-

ment—a distributed system.

Furthermore, many approaches have combined several machine-learning and dictionary-
based approaches. The authors in [74] proposed a system for sentiment analysis and classifica-

tion using NLP, machine-learning technique, and dictionary-based approach; our proposed 
methodology classifies peoples’ sentiments into different polarity classes (positive, negative, 
and neutral).The main objective of the proposed system is to address and solve the polarity 
shift problem and to provide feasible solutions to the BOW model in sentiment classification; 
we achieved that objective by Detecting, Eliminating, and Modifying negation polarity shifter 
from a given text.

Two main approaches (lexical approach and machine learning) were applied to sentiment 
analysis in [75]. The lexicon-based method was used to create emotional dictionaries for each 
domain, as well as the algorithm that calculates the weight of texts. The Maximum Entropy 
method and the Support Vectors Machines were used in the machine learning approach to cre-

ate a dictionary and an algorithm for the construction of the feature vector for the Maximum 
Entropy method.

3. The today tendency of the sentiment analysis

According to a testing data set and a training data set, the opinion classification has been clas-

sified into different categories in Figure 2.

With the category (1), the authors [49] used two testing data sets in English and they did not 
use any training data set. Each testing data set has the 25,000 English documents. The authors 
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[51] used one testing data set in Vietnamese and they did not use any training data set. The 
testing data set has the 30,000 Vietnamese documents. The survey [83] used one testing data 
set in English and it did not use any training data set. The testing data set has the 5,000,000 
English documents.

The category (1) uses the lexicon-based approaches in [1–52, 77]. In addition, category (1) 
uses a Self-Organizing Map Algorithm—The Self-Organizing Map is based on unsupervised 
learning.

a. With one document of the testing data set, the SOM is used to cluster all the sentences of 
this document into either the positive or the negative sections on a map. The sentiment clas-

sification of this document is identified completely based on this map. There is no training 
data set in this category.

b. With many documents of the testing data set, the SOM is used to cluster all the documents 
into either the positive or the negative sections on a map. The sentiment classification of 
all the documents is identified completely based on this map. There is no training data set 
in this category.

Category (1) uses many similarity coefficients (or similarity measures) to classify one document 
of the testing data set into either the positive polarity or the negative polarity. According to our 
opinion, all the similarity measures can be used for the sentiment analysis of category (1).

In addition, category (1) also uses many rules for the sentiment classification in [48- 52], in 
many different languages.

The category (2) has used a testing data set and a training data set. This testing data set has 
the documents, and this training data set has the documents. The authors [82] used one test-
ing data set including 1,000,000 documents and one training data set comprising 2,000,000 
documents in English. This category has used many machine learning algorithms (super-

vised learning, unsupervised learning, semi-supervised learning, etc.). The authors in [78] use 
a Machine Learning algorithm, Support Vector Machines, for their sentiment classification. 
Latent semantic analysis (LSA) has proven to be extremely useful in information retrieval in 
[79]. A novel approach based on LSA and support vector machine (SVM) aims to improve 
the sentiment classification performance. Three machine learning approaches (Naive Bayes, 
maximum entropy classification, and support vector machines) were used for sentiment  

Figure 2. Categories of the sentiment classification based on the data sets.
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classification with movie reviews in [80]. The vote algorithm in [81] was used in conjunction 
with three classifiers, namely Naive Bayes, Support Vector Machine (SVM), and Bagging.

The category (3) uses a testing data set and a training data set. This testing data set has the 
documents, and this training data set has many sentences. The authors in [67] used one train-

ing data set that included 140,000 sentences and two testing data sets in English. Each testing 
data set has 25,000 documents. The research in [68] used one training data set that included 
115,000 sentences and two testing data sets in English. Each testing data set has 25,000 docu-

ments. The authors in [72] used one training data set that included 60,000 sentences and two 
testing data sets in English. Each testing data set had 25,000 documents. The survey in [73] 

used one training data set that included 90,000 sentences and two testing data sets in English. 
Each testing data set had 25,000 documents.

This category also uses many machine-learning algorithms (supervised learning, unsuper-

vised learning, semi-supervised learning, etc.). The authors in [67] used a decision tree—a 
C4.5 algorithm to generate many association rules for English sentiment classification. The 
authors in [68] also used a decision tree—an ID3 algorithm to generate many association rules 
for English sentiment classification. The authors in [72, 73] used the clustering algorithms of 
machine learning to cluster the documents of the testing data set into either the positive polar-

ity or the negative polarity, based on the training data set. The authors in [76] used a SVM 
algorithm of machine learning to classify the documents of the testing data set into either the 
positive polarity or the negative polarity, according to the sentences of the training data set.

Paying attention to the current statuses of the economies of the world (we have presented 
information about big corporations, many documents, etc., in the Introduction section), we 
show the today tendency of the opinion analysis in Figure 3.

1. Processing many big data sets with shortened execution times: As we have presented the 
information about big corporations, many documents, etc., in the Introduction section, 
many old approaches (methods or models) cannot process the big data sets with certainty, 
or they can process the big data sets but only with long times and high costs. The process-

ing of big data sets can be implemented in many parallel network systems. The authors’ 
proposed model in [72] used the Fuzzy C-Means (FCM) method for English sentiment 
classification, with Hadoop MAP (M) /REDUCE (R) in Cloudera, a parallel network envi-
ronment. The authors in [73] used a STING Algorithm for English Sentiment Classification 

Figure 3. The today tendency of the sentiment analysis.
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in A Parallel Environment. The authors of [76] used a SVM algorithm for English Seman-
tic Classification in Parallel Environment. Furthermore, lexicon-based approaches can be 
performed in the distributed network systems with certainty. In the near future, there will 
be many small machines that can implement the parallel systems. The execution time of 
the proposed model is dependent on many factors: (1) the parallel network environment, 
such as the Cloudera system; (2) the distributed functions, such as Hadoop Map (M) and 
Hadoop Reduce (R); (3) the algorithms in the approach; (4) the performance of the distrib-
uted network system; (5) the number of nodes of the parallel network environment; (6) the 
performance of each node (each server) of the distributed environment; and (7) the sizes of 
the training data set and the testing data set.

2. Having high accuracy: A high accuracy is crucial for surveys and commercial applications. 
We can use the works of sentiment classification to cross-check in order to improve their 
accuracies. The accuracy of the proposed model is dependent on several factors: (1) the 
algorithms in the approach; (2) the testing data set and the training data set; (3) whether 
the documents of the testing data set are standardized carefully; and (4) whether the docu-
ments (or the sentences) of the training data set are standardized carefully.

3. Integrating flexibly and easily into many small machines or many different approaches: 
This category is very important for surveys, researchers, and commercial applications. The 
small machines used in many different fields can be conveniently used anywhere, for any 
type of users, and for various purposes. These small machines can be produced easily, 
and can be very cheap and easy to carry. The easy and flexible integration of sentiment 
classification into the small machines helps save a lot of time and cost. The lexicon-based 
approaches and the rules-based approaches can be integrated into the small machines, 
because the small machines have the space to store their data. In addition, the lexicons and 
the rules can be implemented easily in the small machines. We will not spend much time 
studying and implementing the surveys that currently exist.

4. Conclusion

In summary, we have presented the dictionary-based approaches and the corpus-based 
approaches of the sentiment classification basically; and we have also shown the today ten-
dency of the sentiment analysis in more details.

We have displayed the information about the surveys in each section of this chapter. We have 
also displayed the advantages of the studies in more details.

According to the above proofs and our opinion, three tendencies of the sentiment classifica-
tion will strongly have developed more and more in the near future because they have the 
advantages in the different fields and commercial applications.

There will be the surveys developed for the sentiment analysis.
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