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1. Introduction 

Complete paraplegia is a condition where both legs are paralyzed and usually results from a 
spinal cord injury which causes the interruption of motor and sensorial pathways from the 
higher levels of central nervous system to the peripheral system. One consequence of such a 
lesion is the inability for the patient to voluntary contract his/her lower limb muscles 
whereas upper extremities (trunk and arms) remain functional. In this context, movement 
restoration is possible by stimulating the contraction of muscles in an artificial way by using 
electrical impulses, a procedure which is known as Functional Electrical Stimulation (FES) 
(Guiraud, et al., 2006a; 2006b).  
When attempting to control posture and locomotion through FES, an important issue is the 
enhancement of the interaction between the artificial FES system controlling the deficient 
body segments and the natural system represented by the patient voluntary actions through 
his valid limbs motion. In most FES-systems, voluntary movements of valid limbs are 
considered as perturbations. In the case of valid persons, the trunk movements strongly 
influence the postural equilibrium control whereas legs have an adaptive role to ensure an 
adequate support base for the centre of mass projection. Collaboration between trunk and 
legs sounds therefore necessary to ensure postural balance, and should be taken in account 
in a FES-based control system. Indeed, generated artificial lower body movements should 
act in a coordinated way with upper voluntary actions. The so-obtained synergy between 
voluntary and controlled movements will result in a more robust postural equilibrium, a 
both reduced patient's fatigue and electro-stimulation energy cost. 
At the moment, in most FES systems, controls of valid and deficient limbs are independent. 
There is no global supervision of the whole body orientation and stabilization. Instead, it 
would be suitable to: 1) inform the FES controller about valid segments state in order for 
it to perform the necessary adaptations to create an optimal and safe configuration for the 
deficient segments and 2) give to the patient information about the lower or impaired 
body orientation and dynamics in order for him to behave adequately. The patient could 
therefore use his valid body limbs to somehow "teleoperate" the rest of his body (see Fig.1.). 
Involving valid segment movements in the control of the artificial system, and therefore 
voluntary action of the person is also a way to give the patient an active role in the control 

Source: Human-Robot Interaction, Book edited by Nilanjan Sarkar,
ISBN 978-3-902613-13-4, pp.522, September 2007, Itech Education and Publishing, Vienna, Austria
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of his/her movements which would have positive psychological effect. The FES-assistance 
system should adapt to patient behaviour and intentions expressed through his valid 
limbs motions, instead of imposing an arbitrary motion on the deficient limbs (Heliot et 
al., 2007). 
The need for cooperation between healthy and deficient limbs led us to the idea that valid 
limbs should be observed in order to improve the artificial control as well as deficient limb 
states should be somehow fed back to the patient in order for him to be able to behave 
efficiently.

Figure 1. From no interaction to an efficient collaboration between artificial and natural 
controllers of patient deficient and valid limbs 

These considerations led us to investigate the feasibility of characterizing and estimating 
patient posture and movement by observing the valid limbs by means of a reduced amount 
of information. Indeed, to be viable in everyday life context, the sensors involved have to be 
non obtrusive, easy and fast to position by the patient. On the contrary, laboratory-scale 
classical systems such as optoelectronic devices or force plates restrict the user to a 
constrained working volume and thus are not suitable.  
In this chapter, we will develop two approaches for non-obtrusive observation: 
1. The first one takes advantage of the available walker which is today still necessarily 

used by the patient. Hence, two six-degrees-of-freedom force sensors can be mounted 
onto the walker’s handles in order to record upper limbs efforts. However, for safety 
reasons, the walker will be replaced in the sequel by parallel bars.  

2. The second one disposes on patient's body, miniature sensors such as accelerometers. 
These sensors will be wireless and maybe implantable in the future.  

We will illustrate the possible applications of these approaches for the estimation of posture 
while standing, for the detection of postural task transition intention and for the monitoring 
of movement's phases.  
All the patients and subjects gave their informed consent prior to the experiments presented 
in this chapter. 

2. Estimating posture during patient standing 

In this section, we will show how one can reconstruct the posture of a patient, while 
standing, by using the measurement of the only forces exerted on the handles of parallel 
bars  (Ramdani, et al., 2006 ; Pagès, et al., 2007). 

Artificial  
controller

Natural 
controller
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2.1. The experimental procedure 

2.1.1. Participants 

Four spinal cord injured male subjects, with complete spinal lesions between T6 and T12, 
participated in the standing study program. The main selection criteria were the following: 
(1) participants show high motivation to the study, (2) post-injury standing experience, (3) 
appropriate contractions of the leg muscles in response to electrical stimulation, (4) 
sufficient upper body arm support strength to lift oneself up and maintain standing, (5) no 
cardiac or respiratory illness, (6) no previous stress fractures of upper and lower extremities, 
(7) no excessive body weight, (8) acceptable amount of spasticity and contracture in legs, (9) 
no psychological pathology.  

2.1.2. Materials and Instrumentation: 

For leg muscle stimulation during standing, an eight channel stimulator was used (see 
Fig.2). The self-adhesive surface electrodes were placed over the motor point areas of the 
quadriceps, the gluteus maximus, the tibialis anterior and the biceps femoris muscles of each 
leg. The stimulation device was driven directly in real time through a serial link by a PC. 
During active standing, patients were stimulated to predetermined FES constant currents, 
set up for each channel, in order to ensure safe standing. A video motion analysis system 
which included four infrared cameras was used to acquire kinematics data. The reaction 
forces measuring system, comprising two six-axis transducers, was attached to handles on 
adjustable supporting parallel bars. The six components of the handle reactions were 
measured and displayed throughout a real time implemented force sensor interface 
software. The handles height and separation were set to comfort for each patient. 

2.1.3. Description of the protocol 

In a first session, the subjects have been exposed to daily FES exercises, for up to 1 hour per 
day during 5 days, in order to strengthen their quadriceps, gluteal maximus/medius, biceps 
femoris and tibialis anterior muscles. In a second session, following a thorough explanation 
of the study procedure, the patients, under FES, were instructed to stand up from a chair, 
assisted by parallel bars, and stay in standing position and sit back down. The standing 
phase was as long as one minute. This training phase has been repeated several times in 
order for the participants to become familiar with the testing equipment. At session three, 
measurements were performed.

2.2. Modelling the human body and arm support 

According to observations from human gait, most of joint movements during locomotion 
appear to take place in the sagittal plane. In our study, motion in the frontal plane during 
standing occurs at very low velocities. Moreover, stimulation on the different muscle groups 
of the lower limbs predominantly generates movement in the sagittal plane. For these 
reasons, the design of a two-dimensional model of the human body in the sagittal plane is 
sufficient for this study. During FES-standing, stimulation of the quadriceps and the 
hamstring locks the knee in extension, and therefore prevents knee movement. During 
stance, we consider that the distance between the thigh and the handle is constant, which 
allows us to assume that the ankle is immobilized. Hence, the lower limbs are here treated 
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as a single rigid link. The human body is thus regarded as a four bar linkage with a three 
degrees of freedom dynamic structure defined in the sagittal plane, as shown in Fig. 3. 

Figure 2. The experimental arrangement and placement of electrodes 

Figure 3. The four bar linkage human model (left). Actual captured image (right) 
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All links are assumed to be rigid bodies. We define q = [q1 q2 q3]T as the joint angle vector, 
which is a function of time. It is expressed as a column vector with indices 1, 2 and 3 
referring to the hip, the shoulder and the elbow joints respectively. The segments lengths are 
denoted by lj. In Fig. 3, the variables q1 and q2 indicate positive angle directions while q3

indicates a negative one, with respect to the zero position. Denote Px and Pz the coordinates 
of the handle in the sagittal plane. The segmental model is given by (Khalil & Dombre, 2002) 

Px = l2sin(q1) + l3sin(q1+q2) + l4sin(q1+q2+q3) (1) 

and Pz = l1 + l2cos(q1) + l3cos(q1+q2) + l4cos(q1+q2+q3)  (2)

During FES-supported movements, paraplegic patients need their arms to maintain balance 
and sustain desired movement. Support is taken in charge by two handles, each equipped 
with the six axis force/torque sensor, mounted on the supporting frame. 
Contact between the human hand and the handle creates a closed chain kinematics linkage. 
This interaction is described by the components of the resultant force vector Fc measured in 
the x and z directions. Under the assumption of working in the sagittal plane and 
considering that the orientation of the forearm is colinear to the resultant force Fc, which is 
true when the x-axis component of the resultant force satisfies Fx  0 and the z-axis
component satisfies Fz < 0 (see Fig.3), it is reasonable to write the following hypothesis : 

q1 + q2 + q3 π  arctan(Fx/Fz) (3) 

2.3. A Set membership identification of posture 

Equations (1)-(3) can be re-written as 

 g(q) = y  (4) 

where y = [Px, Pz, arctan(Fx/Fz)]T.
The patient’s posture is given by the q vector, which can be obtained by solving (4). If the 
measured quantities y and anthropometric parameters lj were known with no uncertainty, 
then the problem could be solved analytically through state-of-the-art tools by using inverse 
kinematics. Solving (4) when y is subject to uncertainty with classical techniques based on 
possibly weighted least squares optimisation for instance, derives reliable results only if the 
errors are stochastic and with known probability laws. In fact the measured data are subject 
to either stochastic or deterministic uncertainties and it is not easy to derive a reliable 
characterization of the probability distribution for these errors. Moreover, the model used 
may be based on some simplifying hypotheses for which a full probabilistic description 
might not be reliable. Consequently, it is more natural to assume all the uncertain quantities 
as unknown but bounded with known bounds and no further hypotheses about probability 
distributions. In such a bounded error context, the solution is no longer a point but is the set 
of all acceptable values of the q vector, which makes the model output g(q) consistent with 
actual data y and prior error bounds. 
Denote E a feasible domain for output error and Y = y + E the feasible domain for model 
output. The set S to be estimated is the set of all feasible postures: 

S = {q ∈ Q | g(q) ∈ Y} (5) 

where the set Q is an initial search space for the q vector. Characterizing the set S is a set 
inversion problem which can be solved in a guaranteed way using a set inversion algorithm 
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based on space partitioning, interval analysis and constraint propagation techniques (see 
(Jaulin, et al., 2001) and the references therein). This algorithm explores all the search space 
without losing any solution. It makes it possible to derive a guaranteed enclosure of the 
solution set S as follows: 

 Sinner ⊆ S ⊆ Souter (6)

The solution set S is enclosed between two approximation sets. The inner enclosure Sinner

consists of the boxes that have been proved feasible. To prove that a box [q] is feasible it is 

sufficient to prove that g([q]) ⊆ Y. If, on the other hand, it can be proved that g([q])∩Y=∅,
then the box [q] is unfeasible. Otherwise, no conclusion can be reached and the box [q] is said 
undetermined. It is then bisected and tested again until its size reaches a threshold to be 

tuned by the user. The outer enclosure Souter is defined by Souter = Sinner∪ΔS where ΔS is given 
by the union of all the undetermined boxes. The outer enclosure Souter contains all the 
solutions, if they exist, without losing any of them. It contains also some elements that are 
not solution. 

2.4. The estimated posture  

Posture estimation was done during the standing phase. The subject’s actual posture during 
that time interval were measured as :  

 q1  0°, q2  192°, q3  -36° (7) 

representing respectively the hip, shoulder and elbow joint angles. The body segment 
lengths were directly measured on the patient and are given by : 

 l1   0.954 m, l2   0.518 m, l3   0.334 m, l4   0.262 m (8) 

The feasible domain for model output are taken as: 

Px ∈ [ 0.02, 0.02] m 

 Pz ∈ [0.895, 0.995] m (9) 

arctan(Fx/Fz)] ∈ [ 18.63, 15.63]° 

The prior search space Q, corresponding to the joints articular motion limit, is taken as: 

[ 11, 90]° × [90, 210]° × [ 103, 0]°.

The projections of the computed inner and outer solution sets, Sinner  and Souter  onto the qi × qj

planes are given in Fig.4. Contrary to any optimization based techniques, there are no 
optimal solution, therefore any posture taken within the solution set is an acceptable one. 
Extreme postures taken from solution set are also plotted in Fig.5. These figures clearly 
show that the solution sets contain the actual posture (see also Table 1). 

Joints Projection of inner enclosure Projection of outer enclosure 

q1

q2

q3

[-1.35 , 25.52] 
[192.5 , 213.66] 
[-74.10 , -31.05] 

[-4.14 , 28.79] 
[190.34 , 215.32] 
[-77.81 , -28.28] 

Table 1. Projection of solution posture 
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Figure 4. Projection of solution set onto q1 × q2 (left) and q1 × q3 (right) 

Figure 5. Postures taken from the solution sets:  
(a) Patient leaning back, (b) Actual patient posture, (c) Patient leaning forward 

Indeed, the experimental method introduced in this section is capabale of reconstructing the 
posture of a patient but with fairly large uncertainties. This reflects the fact that for a fixed 
position of the forearm taken within the feasible domain calculated by force measurements 
in the sagittal plane only, the hip, the shoulder and the elbow joints still have the possibility 
to reach other positions, while being consistent with the defined geometrical constraints. In 
order to further reduce the solution set, and hence have a more precise estimation of 
patient’s posture, new constraints has to be introduced by using dynamic modelling and 
ground reaction forces measurements, for instance. 
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3. Observing valid limbs to detect patient intention  

In this section, we propose an approach for the recognition of the "signature" of the postural 
task the subject intends to realize (sit-to-stand, object grasping, walking, stair climbing, gait 
initiation/termination...) through voluntary movement observation. This detection should 
occur as soon as possible after the subject has decided to initiate the task. It is particularly 
important to detect the transitions between activity modes as soon as possible after the 
patient has taken the decision to modify his functioning mode, in order to allow for optimal 
posture preparation and execution. 
A good illustration for this is the transfer from sit to stand. In our FES context it is essential 
to optimize this task, muscle fatigue being a major issue. Minimizing efforts of rising up 
could improve the following activities of the patient. For this reason, classical techniques 
consisting of maximum stimulation of knee extensors throughout the rising process are not 
suitable and involve an over-use of arm support.  
Two approaches are considered in the following to estimate patient attitude: the 
instrumentation of the walker and body-mounted micro-sensors. 

3.1. Sit to stand dynamics analysis 

Assuming that the body structure is rigid, continuous dynamics can be expressed under the 
Lagrangian form: 

M(q)q”+N(q,q’)q’+G(q)=Γ+Γext (10) 

where: q stands for the parametrization vector of the whole configuration space of the biped 

considered as free in 3D, Γ is the joint actuation torque, M is the inertia matrix, N is the 
matrix of centrifugal, gyroscopic and Coriolis effects, G is the generalized gravity force 

vector. Γext are torques generated by external forces such as ground contacts, interaction 
with a chair, a thrust, etc. They can be expressed as: 

Γext =C(q)Tλ(q,q’) (11) 

C(q) is the Jacobian matrix of the points of the biped to which the external forces are applied 

and λ corresponds to the amplitudes of these forces. Biped dynamics are characterized by 
the existence of variable constraints resulting from interaction with the ground. Ground 
efforts correspond to a set of forces applied to the points of the biped in contact with the 
ground (Azevedo et al., 2007a). 
Using this framework, we propose to express the sit-to-stand transfer as an optimization 
problem, where the posture configuration q minimizes a cost function over a time horizon 
h:

 J=(Hcom-Hcomd)T(Hcom-Hcomd) (12)

where Hcom(t)=[Xcom(t); Ycom(t); Xcom(t+1); Ycom(t+1);…; Xcom(t+h); Ycom(t+h)]T is the sequence 
of centre of mass positions over the time horizon h, Hcomd =[Xcomd; Ycomd;…; Xcomd; Ycomd]T is a 
vector made of the repetition of the desired position of the centre of mass (standing posture) 
over the time horizon h. The solution to this problem is illustrated in Figs.6 & Fig.7-a. The 
biped goes directly from seated posture to standing. 
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Figure 6. Illustration of the problem of sit to stand consisting in transferring the centre of 
mass projection from seat to feet 

a- no constraint b- constrains on torques 

Figure 7. Simulation of sit to stand transfer by solving an optimization problem minimizing 
distance between actual and desired center of mass position over a sliding time horizon 

Figure 8. Description of the experimental protocol 

If now some constraints are added to the problem in terms of limitation of joint torques, i.e.  

Γmin Γ Γ max  (13) 
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the result is that the system has to use its trunk inertia to achieve the movement (fig.7-b), 
upper body bends forward before legs initiate movement. This simulation results explain 
clearly the important need of coordination between upper and lower limbs to execute a 
transfer from seat to stand when available torques are limited, which is obviously the case 
for muscles. Without this coordination additional external efforts are needed, such as arm 
support.
Based on these preliminary considerations, we propose two approaches for the detection of 
sit-to-stand movement. 

3.2. Walker instrumentation 

We first investigate the possibility of considering body supportive forces as a potential 
feedback source for FES-assisted standing-up control (Azevedo et al., 2007b). The six-
degrees of freedom force sensors were mounted onto handles fixed on parallel bars in order 
to record upper limbs efforts and insoles were fitted in the patient’s shoes to record plantar 
pressure distribution (Fig.8). Eight volunteer complete paraplegic patients (T5-T12) were 
verticalized by means of adapted FES. The same training protocol as presented in the 
previous section was used. A video motion analysis system recorded the positions of 
passive markers placed on the body allowing us to measure kinematics. The results show 
that the transfer (phase 1) is mainly ensured by arm support in all our patients (Fig.9). We 
gave instruction to the patients to bend their trunk in preparation to the chair rising. An 
important observation when looking at trunk, knee and ankle angles is the low intra-
variability between trials of one given patient (Fig.10). A main difference between valid 
subjects and patients is the onset of leg movement in regards to trunk bending (Fig.10). To 
be efficient, trunk bending forward should start before and last during knee and ankle 
movement. This was never the case in our trials on FES-assisted standing. 
Minimizing arm support contribution is possible only if trunk inertia is used. This implies a 
good triggering of muscle contraction regarding limb movements. Trunk behaviour could 
be indirectly observed by analyzing efforts applied by arm support (Fig.11). Indeed, normal 
force decreases (pulling) while momentum around transversal axis increases. From these 
results we can say that proper threshold detection based on these signals could be used to 
initiate the leg stimulation and improve greatly the sit to stand. The same may be used for 
stand to sit as shown in Fig.11.  

3.3.1. Body-mounted instrumentation 

In parallel to the approach presented in the previous section, we have also worked on 
demonstrating the pertinence of observing the trunk using a movement sensor placed on the 
back of valid subjects (Azevedo & Héliot, 2005). Indeed, as seen before, the trunk normally 
initiates the sit-to-stand transfer. We have placed on the back of 10 valid subjects, at 
anatomical C7 level, an accelerometer. Trunk acceleration patterns present low intra and 
inter-variability as well as a high temporal reproducibility and are therefore a nice 
characteristic “signature” of the sit-to-stand transfer (see Fig.12).  
It is possible to apply techniques such as abrupt changes theory (Basseville & Nikiforov, 
1993) to detect the pattern of sit to stand “intention”. This technique allows detecting 
robustly the transfer initiation with a good sensitivity. The algorithm is able to reject a 
“false” sit-to-stand movement involving trunk movements such as grasping an object placed 
in front of the person.  Indeed, the acceleration pattern signs selectively the motion.  
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Figure 9. Patient #3, trial 6. Total feet and arm support. Phase labelled 1 corresponds to sit to 
stand phase, 2+3 corresponds to standing, and  4 to knee flexion 

Figure 10. Posture coordination during sit to stand. Top: Patient #1, over 4 trials, Bottom:
valid subject. The red dot indicates the maximum trunk bending 

It is important to notice here that the detection of transfer has to occur as soon as possible 
before the legs should start moving to displace the body centre of mass from the seat to the 
feet (Fig.12). Around 600ms separate the instant when the trunk starts bending forward and 
the instant when the legs enter in extension movement. It is also necessary to recall here, 
that lower limb muscles start to contract before the legs move in order to prepare the 
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motion. These so-called anticipative postural adjustments should take place ideally together 
with trunk movement. 
In order to apply these results on patient FES-assisted sit to stand it is necessary to train 
paraplegic patients in executing an optimal trunk movement in order to benefit from its 
inertia in the standing transfer. The detection algorithm should then be able to recognize 
patient intention to stand and trigger the proper stimulation sequences. 

Figure 11. Correspondence between trunk angle and handle information. Patient #1, Trial 1. 
Top: angle, Bottom: right side vertical force and momentum around hip axis 

Figure 12. Principle of the detection of sit-to-stand based on the observation of trunk 
acceleration 
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The results presented in this section of the article clearly demonstrate the need for 
collaboration between lower and upper limbs in FES-assisted sit to stand. Triggering FES on 
arm support observation appears to be possible. A more anticipated timing of FES would be 
possible by detecting sit to stand trough trunk accelerations.  

4. Classifying patient motor activities 

In this section, we will address the issue of online classification of patient postures and 
motor activities, such as standing, sitting or walking for instance. Such a technique could be 
used to design a discrete-event based controller whereas the state estimation of the different 
joint angles could be used for a continuous controlling system. Both may be used in a hybrid 
controller where the best control strategy could be selected depending on the movement to 
be achieved. 
Online classification can be performed by using neural networks and sensors such as 
accelerometers, when the purpose is only to detect phases of movements. It has been 
successfully applied with ageing persons in order to detect falling and to perform global 
activity monitoring (Fourty, et al., 2006 ; 2007) and thus could be used with disabled patients 
employing FES systems. 
The classification algorithms described in the literature (Rumelhart & Mac Clelland, 1986) 
are generally implemented on desk computers. In biomedical engineering, and more 
specifically in the domain of ambulatory monitoring (Iwata, et al., 1990), classification is 
performed "off-line" from data collected on wearable systems. Our approach to the 
ambulatory monitoring of human activities is based on the design of wearable devices for 
automatic labeling. The aim of the procedure is to save time, reduce memory size and obtain 
relevant data. This constitutes a pattern recognition problem under specific constraints. 
Before describing the classification implementation, we briefly present the portable 
acquisition system. 

Figure 13. Hardware architecture 
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4.1. Materials 

We use a microcontroller-based board with an ultra low power MSP430F169. One ADXL320 
bi-axial accelerometer from Analog Device will sense activity. In order to quantify the 
patient's activity, some basic movements have to be recognised: steady-state movements 
(standing upright, sitting, walking, etc.) and transitional movements (sitting to standing, 
leaning to standing, etc.). This recognition in the system is done by the learning phase of an 
artificial neural network. Optimized learning can be done "off-line" on a classical computer, 
and only the pattern recognition algorithm and its associated memory have to be 
downloaded to the system. The Fig.13 describes the hardware system architecture.   

4.2. A specific Artificial Neural Network (ANN) 

To implement this classification we use hypersphere clustering with an incremental neural 
network. It is based on the evaluation of distances between the input vector and stored 
vectors in the memory. One n-dimension vector can be represented by a point in an n-
dimensional space. Each component is a feature of the pattern to be recognized. Features can 
be raw data, or much more representative values given by feature-extraction procedures. A 
reference vector, the centroid, with its associated threshold, the radius, is labelled with a 
class. This defines a "prototype" which is represented by a hypersphere in an n-dimension 
space. A prototype is fired when an input point is situated within the hypersphere. Thus, 
fired prototypes participate in the final decision. This is the general functioning of 
hypersphere clustering-based methods. 

4.2.1. Global structure and state dynamics 

We are going to use some notations in this section: 
- I0 = (I01,…,I0n) and I1 = (I11,…,I1n) are input vectors, 
- I2j, I3j are output values of the second layer cell,  
- Rj, Wj = (Wj1,…,Wjn) are radius (threshold) and coordinates of the centroid (reference 

vector) of the hypersphere (cell of the second layer)  
Input layer (normalisation-saturation): The input layer performs a normalisation-saturation 
of the inputs in an eight bit resolution. An input value between Imin and Imax is 
transformed in the range of 0-255. Unexpected data below Imin or above Imax are set to 0 or 
255, respectively. Each input comes from one real input datum, and each output is 
connected to all the cells in the hidden layer. 
Hidden layer (prototypes): The hidden layer consists in prototype cells that compute 
distances between a normalised input vector and reference vectors (the centroids of the 
hyperspheres in the n-dimension space). Then, each cell makes a comparison between the 
computed distance and a threshold (the radius of the hypersphere) in order to obtain the 
following outputs: Output I2 is connected to a special cell that stores the minimum distance 
obtained, with the corresponding class. Output I3 is connected to only one output cell 
corresponding to the labelled class. The prototype is fired if the distance is less than the 
radius. The output also depends on the fact that the radius is set to the minimum, which 
means that during the learning phase it was reduced to the minimum value by examples 
from wrong classes. This situation occurs within an uncertain decision zone. 
Norm: We will now consider the norm used to compute distances. In a continuous space the 
norms are strictly equivalent in a mathematical sense. But in a discrete space, things are 
different because parameters and data are integers. We can show that norm 1 is the best one 
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because it ensures the finest space clustering with the smallest step of number of points 
included in the hypersphere, with a unit increment or decrement of R. For a given radius the 
smallest number of points included within the hypersphere is also observed for norm 1. In 
terms of classification abilities, the radius can be tuned more precisely. Moreover, this norm 
requires only additions, subtractions, and comparisons. Norm 1 proves clearly to be the 
best, and was implemented on our algorithm. 
Output layer (classes): Each cell of the output layer corresponds to one class and all the 
prototypes of the previous layer labelled with the same class are connected to it. Then, the 
operation carried out consists in a logical OR so that the output can be 0, 1, 2, or 3. Thus, the 
discriminent elements are only the types of prototype fired for each class :
0 : no prototype fired 
1 : only reduced (R=Rmin) prototypes fired  
2 : non-reduced prototypes fired 
3 : both types of prototype fired 
The most important characteristic of this algorithm is that it does not take into account 
statistical criteria (for instance the number of prototypes fired is not evaluated). This ensures 
the recognition of rare but well-defined events, a situation which frequently occurs in 
biomedical applications.  
Fig.14 summarizes the global structure. 

Figure 14. Overview of the ANN 

4.2.2. Connection dynamics 

Recognition process : The recognition phase is quite simple. The possible responses of the 
network are the following: unknown, uncertain, uncertain identified, and identified, 
depending on the criteria reported in Table 2. In all cases, a list of fired classes is given in 
decreasing order of confidence. We note that the nearest neighbour criterion is only used to 
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discriminate between uncertain classifications because this criterion is highly dependent on 
the way the network is learned (positions of the examples). Nonetheless, most of the time it 
becomes the best and simplest criterion when others have failed. 
Learning rules : There are three main parameters in which a learning rule can be applied: 
creation/destruction of prototypes, displacement of the centroid, and adjustment of the 

radius. Papers on different algorithms using the creation/reducing radius (Nestor™
system), centroid position, and creation/position/radius have been published (Judge J., et 
al., 1996). Most of them do not affect more than one parameter at a time. Moreover, few 
algorithms can remove a prototype, and this could be useful when the set of examples 
includes errors. Some algorithms introduce an activation value for each prototype and use it 
in the recognition phase. We do not use this because of the statistical effect of this parameter. 
The learning phase becomes sensitive to the class representation in the learning set. Indeed, 
this explains why we developed our own algorithm, enabling creation and removal of 
prototypes, and simultaneous adjustment of the centroid position and the radius (increase 
or decrease) of the hypersphere (Table 3). 

Four learning parameters appear: α and α‘ set the amplitude of the correction (0 means no 

correction, 1 excludes the sample from the prototype); and β and β‘ set the proportion 
between the centroid displacement (max when 1) and the radius adjustment (max when 0). 
Varying these parameters allows adjustment of the learning rule to the set of examples. 

Identified Only one class has obtained 2 or 3 

Uncertain
identified 

Several classes have the same highest score but one class has the nearest 
neighbour (given by the "min " cell) 
Only one class has obtained 1 
The nearest neighbour if no classes are fired (useful when a decision must 
always be taken) 

Uncertain Several classes have the same highest score but no nearest neighbour 

Unidentified No class fired and no nearest neighbour 

Table 2. Recognition confidence level 

Situation Action 

No
prototype
fired

Creation of a prototype where Wi=I1i, R=Rmax or R=min distance of the 
centroid of prototypes of wrong classes 
Creation, if necessary, of a cell in the output layer, for the first occurrence of this 
class 

At least 
one
prototype
fired

The nearest is approached and its radius is increased according to the formulae  

( )

R R W I

W W I W
i i i i

= + − −

= + −

α β
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( )1 1 1

1

    [ ]α β, ,∈ 0 1

the increase of R is limited to Rmax. 

R=Rmin If this occurs subsequently n times, the prototype is removed 

R>Rmin Radius is reduced and the centroid is displaced according to the formula 
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R can be reduced up to Rmin. 

Table 3. Summary of learning rules 
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The advantages of such a neural network are the following: 
- It can be easily implemented on a microcontroller. 
- It is an incremental neural network, so that a new configuration can be learned without 

the need for learning again with the whole set of examples. 
- The neural network algorithm avoids the consideration of statistics, which provides a 

learning phase less sensitive to the learning set, and the rare events can be well 
identified 

- Unexplored spaces provide unknown responses, thus avoiding misclassification. The 
unlabelled data are stored, analysed "off-line", and then learned. 

4.3. Validation of the prototype  

The measurement of acceleration along two axes (horizontal and vertical) enabling fall 
detection is used to monitor gait activity of the patient. The use of the neural network 
method presented previously needs relevant input vector in order to provide relevant 
classification. To find out the best input the Neural Network should be provided with, we 
have assessed many different cases such as acceleration along x and y axes, average and 
standard deviation of acceleration or magnitude of acceleration and velocity. The result of 
this evaluation is that the best inputs to analyse the gait activity of the patient are the 
magnitude of acceleration and velocity. We have chosen three different output classes 
representing low and high activity respectively for instance walking and running, and fall 
detection. 
Computation of velocity: The main difficulty encountered with the computation of the 
velocity is the offset signal stemming from accelerometers that disturbs deeply the result of 
the velocity. We have observed this offset signal on experimental measurements. It is not a 
constant value. To overcome this problem, we propose to compute the velocity by using 
centred accelerations, where the average is computed over a sliding window, which can be 
adapted according to accelerometer types. 

Figure 15. Sensor outputs and computed vectors 
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Learning Phase: We used some experimental data streams from elderly people simulating 
different activities such as walking, running and falling down. The reference file used is 
presented Fig.15. This file contains three different activities, which are:  

• Low activity: t=0s, t=10s (walking, sitting) 

• High activity: t>10s, t=16s (running) 

• Fall detection: t>16s 
Recognition phase: Fig.16 presents the recognition phase performing on the reference file 
by using the neural network. Each activity is well detected and recognised. The y axis of the 
Fig.16.b represents the classes such: 1  low-activity, 2  high-activity, 3 Fall. 

Figure 16. Recognition on learned file 

Validation: To validate this development, we have performed the classification method on 
different patients keeping the previous learning phase as reference in order to estimate the 
robustness. Fig.17 shows the capacity to detect and discriminate the three phases even with a 
learning phase carried out on another patient. The results of the classification activities show 
the first period as an intermediate class between 1 and 2 (mean value is about 1,5). The second 
period is also higher than 2. These intermediate results (class 1,5 for instance) mean that there 
is an uncertainty between both of them (classes 1 and 2). Then, we compute an average value 
within this ambiguous period, which returns an intermediate class result. These results are 
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due to unknown activities detection which is obtained by using the nearest neighbour 
criterion. This criterion can propose alternatively class 1 or 2 as the nearest neighbour.  

Figure 17. Recognition on another person 

5. Conclusion 

In this chapter we have introduced several approaches for the estimation, detection and 
classification of the posture or movement of disabled patients. They are founded on non-
intrusive sensors and are meant for closed-loop control in the context of functional 
restoration via electrical stimulation. 
While taking advantage of an available walker, we have investigated the potential of using 
only arm support measurements. Then, we found that we can reconstruct patients standing 
postures only with a fairly large uncertainty. However, we found that these measurements 
can be used for detecting patients trunk movement. When miniature sensors are attached 
onto the patient’s body, then it is possible to efficiently detect transitions such as sit-to-stand 
or classify steady-state movements such as standing, sitting or walking. The two 
technologies could eventually be combined.  
Finally, a synergy between artificial and voluntary movements can indeed be achieved by 
using these methods. For instance, in a FES-assisted sit-to-stand movement, the electrical 
stimulation should be triggered according to the patient’s trunk movements.  
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