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Abstract

This chapter considers the nonlinear filtering problem involving noises that are unknown
and bounded. We propose a new filtering method via set-membership theory and bound-
ary sampling technique to determine a state estimation ellipsoid. In order to guarantee the
online usage, the nonlinear dynamics are linearized about the current estimate, and the
remainder term is then bounded by an optimization ellipsoid, which can be described as
the solution of a semi-infinite optimization problem. It is an analytically intractable prob-
lem for general nonlinear dynamic systems. Nevertheless, for a typical nonlinear dynamic
system in target tracking, some certain regular properties for the remainder are analyti-
cally derived; then, we use a randomized method to approximate the semi-infinite opti-
mization problem efficiently. Moreover, for some quadratic nonlinear dynamic systems,
the semi-infinite optimization problem is equivalent to solving a semi-definite program
problem. Finally, the set-membership prediction and measurement update are derived
based on the recent optimization method and the online bounding ellipsoid of the remain-
der other than a priori bound. Numerical example shows that the proposed method
performs better than the extended set-membership filter, especially in the situation of the
larger noise.

Keywords: nonlinear dynamic systems, set-membership filter, randomization,
semi-definite optimization, target tracking

1. Introduction

Filtering techniques for dynamic systems are widely used in practiced fields such as target

tracking, signal processing, automatic control, and computer vision. The Kalman filter is a

fundamental tool for solving a broad class of filtering problems with linear dynamic systems.

When dynamic systems are nonlinear, some well-known generalizations include the extended
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Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



Kalman filter (EKF) and unscented Kalman filtering (UKF) [1]. These methods are based on

local linear approximations of the nonlinear system where the higher order terms are ignored.

Most recently, [2] proposes box particle filter to handle interval data based on interval analysis

and constraint satisfaction techniques. The advantage of the box particle filter against the

standard particle filter is its reduced computational complexity [3–5]. However, most of Monte

Carlo filtering techniques are based on the assumptions that probability density functions of

the state noise and measurement noise are known.

Actually, when the underlying probabilistic assumptions are not realistic (e.g., the main per-

turbation may be deterministic), it seems more natural to assume that the state noise and

measurement noise are unknown but bounded [6]; then, [7] proposed set-membership estima-

tion technique. The idea of propagating bounding ellipsoids (or boxes, polytopes, simplexes,

parallelotopes, and polytopes) for systems with bounded noises has also been extensively

investigated (e.g., see recent papers [6, 8–12] and references therein). Most of these methods

concentrate on the linear dynamic systems.

The set-membership filtering for nonlinear dynamic systems is known to be a challenging

problem. Based on ellipsoid-bounded, fuzzy-approximated, or Lipschitz-like nonlinearities,

several results have been made [13–15]. These results assume that the ellipsoid bounds, the

coefficients of fuzzy-approximation, or Lipschitz constants are known before filtering,

which limits them in real time implementation. For example, for a typical nonlinear

dynamic system in a radar, the bounds of the remainder depend on the past estimates so

that they cannot be obtained before filtering. Recently, the paper [16] gives an overview of

recent developments in set-theoretic methods for nonlinear systems, with a particular focus

on a two-reaction model of anaerobic digestion, and the key idea of [17, 18] consists in

a combination of Bayesian and set-valued estimation concepts. To our knowledge, [19, 20]

develop nonlinear set-membership filters which can estimate the bounding ellipsoid of

nonlinearities in real time, and the filters are called the extended set-membership filter

(ESMF) and set-valued nonlinear filter (SVNF), respectively. Both [19, 20] derive the bounds

of the remainder by an outer bounding box. Actually, if the remainder can be bounded by

a tighter ellipsoid and using some recent advanced optimization techniques for filtering,

it should be able to derive a tighter set-membership filtering for the nonlinear dynamic

system.

In this chapter, when the underlying state noises and measurement noises are unknown but

bounded, we propose a tighter set-membership filtering methods via set-membership estimation

theory and boundary sampling technique. In order to guarantee the online usage, the nonlinear

dynamics are linearized about the current estimate, and the remainder terms are then bounded

by an ellipsoid, which can be formulated as the solution of a semi-infinite optimization problem.

In general, it is an analytically intractable problem when dynamic systems are nonlinear. The

main contributions of the paper are summarized as follows:

• For a typical nonlinear dynamic system in target tracking, we can analytically derive some

regular properties for the remainder. Then, the semi-infinite optimization problem can be

efficiently solved by using boundary sampling technique.
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• For some quadratic nonlinear dynamic systems, using the samples on all vertices of a

polyhedron, we obtain a tight bounding ellipsoid, which can cover the remainder by

solving a semi-definite program (SDP) problem.

• The set-membership prediction and measurement update are derived based on the recent

optimization method and the online bounding ellipsoid of the remainder other than a

priori bound.

The rest of the paper is organized as follows. Preliminaries are given in Section 2. In Section 3,

the bounding ellipsoid of the remainder set is calculated. In Section 4, the prediction step

and the measurement update step of the set-membership filtering for nonlinear dynamic sys-

tems are derived, respectively. Examples and conclusions are given in Section 5 and Section 6,

respectively.

2. Preliminaries

2.1. Problem formulation

We consider a nonlinear dynamic system:

xkþ1 ¼ f k xkð Þ þwk, (1)

yk ¼ hk xkð Þ þ vk, (2)

where xk ∈R
n is the state of system at time k and yk ∈R

n1 is the measurement. f k xkð Þ and hk xkð Þ

are nonlinear functions of xk,wk ∈R
n is the uncertainty of process noises or system biases, and

vk ∈R
n1 is the uncertainty of measurement noises or system biases. They are assumed to be

confined to the specified ellipsoidal sets:

Wk ¼ wk : wT
kQ

�1
k wk ≤ 1

� �

Vk ¼ vk : vTkR
�1
k vk ≤ 1

� �
,

where Qk and Rk are the shape matrices of the ellipsoids Wk and Vk, respectively, which are

known as symmetric positive-definite matrices. At time k given that xk belongs to a current

bounding ellipsoid:

Ek ¼ x∈Rn
: x� bxkð Þ

T
Pkð Þ�1 x� bxkð Þ ≤ 1

n o

¼ x∈Rn
: x ¼ bxk þ Ekuk;Pk ¼ EkE

T
k ; ∥uk∥ ≤ 1

� � (3)

where bxk is the center of ellipsoid Ek and Pk is a known symmetric positive-definite matrix.

Moreover, we assume that when the nonlinear functions are linearized, the remainder terms

can be bounded by an ellipsoid. Specifically, by Taylor’s theorem, f k and hk can be linearized to
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f k bxk þ Ekukð Þ ¼ f k bxkð Þ þ Jf kEkuk þ Δf k ukð Þ, (4)

hk bxk þ Ekukð Þ ¼ hk bxkð Þ þ JhkEkuk þ Δhk ukð Þ, (5)

where Ek and uk are defined in (3), Jf k ¼
∂f k xkð Þ

∂x

���bx
k

and Jhk ¼
∂hk xkð Þ

∂x

���bx
k

are Jacobian matrices, and

Δf k ukð Þ and Δhk ukð Þ are high-order remainders, which can be bounded in an ellipsoid for all

kukk ≤ 1, respectively, i.e.,

Δf k ukð Þ∈ E f k
¼ x∈Rn

: x� ef k
� �T

Pf k

� ��1
x� ef k
� �

≤ 1
n o

, (6)

¼ x∈Rn
: x ¼ ef k þ Bf k

Δf k
;Pf k

¼ Bf k
BT
f k

; ∥Δf k
∥ ≤ 1

n o
, (7)

Δhk ukð Þ∈ Ehk ¼ x∈Rn1
: x� ehkð ÞT Phkð Þ�1 x� ehkð Þ ≤ 1

n o
, (8)

¼ x∈Rn1
: x ¼ ehk þ BhkΔhk ;Phk ¼ BhkB

T
hk

; ∥Δhk∥ ≤ 1
n o

, (9)

where ef k and ehk are the centers of the ellipsoids E f k
and Ehk , respectively, and Pf k

and Phk are the

shape matrices of the ellipsoids E f k
and Ehk , respectively. Note that we do not assume that the

ellipsoids E f k
and Ehk are given before filtering, and we will compute these ellipsoids online.

Suppose that the initial state x0 belongs to a given bounding ellipsoid:

E0 ¼ x∈Rn
: x� bx0ð Þ

T
P0ð Þ�1 x� bx0ð Þ ≤ 1

n o
, (10)

where bx0 is the center of ellipsoid E0 and P0 is the shape matrix of the ellipsoid E0 which is a

known symmetric positive-definite matrix.

The proposed set-membership filter mainly contains two steps: prediction step and measure-

ment update step. The goal of prediction step is to determine a bounding ellipsoid Ekþ1∣k based

on the measurement yk at time k, i.e., look for bxkþ1∣k,Pkþ1∣k such that the state xkþ1 belongs to

Ekþ1∣k ¼ x∈Rn
: x� bxkþ1∣k

� �T
Pkþ1∣k

� ��1
x� bxkþ1∣k

� �
≤ 1

n o
,

whenever (i) xk is in Ek; (ii) the processeswk, vk are bounded in ellipsoids, i.e.,wk ∈Wk, vk ∈Vk;

and (iii) the remainders Δf k ukð Þ∈ E f k
and Δhk ukð Þ∈ Ehk . The robust measurement update step is

aimed to determine a bounding ellipsoid Ekþ1 based on the measurement ykþ1 at time kþ 1,

i.e., look for bxkþ1,Pkþ1 such that the state xkþ1 belongs to

Ekþ1 ¼ x∈Rn
: x� bxkþ1ð Þ

T
Pkþ1ð Þ�1 x� bxkþ1ð Þ ≤ 1

n o
,

whenever (i) xkþ1 is in Ekþ1∣k; (ii) the measurement noises vkþ1 is bounded in ellipsoid, i.e.,

vkþ1 ∈Vkþ1; and (iii) the remainders Δhkþ1 ukþ1ð Þ∈ Ehkþ1
. The key issue is to determine two
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tight bounding ellipsoids E f k
and Ehk in real time so that the filtering algorithm can be impl-

emented online.

3. Ellipsoidal remainder bounding

In this section, we discuss the key problem on how to adaptively determine a tighter bounding

ellipsoid to cover the high-order remainders from the optimization point of view.

3.1. Ellipsoidal remainder bounding by sampling

By (4)–(5), the high-order remainders are

Δf k ukð Þ ¼ f k bxk þ Ekukð Þ � f k bxkð Þ � Jf kEkuk,

Δhk ukð Þ ¼ hk bxk þ Ekukð Þ � hk bxkð Þ � JhkEkuk,

whenever ∥uk∥ ≤ 1. Obviously, it is a hard problem to cover a remainder by an ellipsoid since f k
and hk are generally nonlinear functions. The outer bounding ellipsoid for Δf k ukð Þ is not

uniquely defined, which can be optimized by minimizing the size f Pð Þ of the bounding

ellipsoid. Thus, the optimization problem for the bounding ellipsoid of Δf k ukð Þ defined in (6)

can be written as

min f Pf k

� �
(11)

subject to Δf k ukð Þ � ef k
� �T

Pf k

� ��1
Δf k ukð Þ � ef k
� �

≤ 1, for all kukk ≤ 1: (12)

where Pf k
¼ Bf k

BT
f k
and ef k and Pf k

are decision variables. Since the optimization problem (11)–

(12) has an infinite number of constraints, it is called a semi-infinite optimization problem in

[21]. In general, it is a NP-hard problem.

Remark 1. In practice, we want to achieve a state estimation ellipsoid by minimizing its “size” at each

time; it is a function of the shape matrix P denoted by f Pð Þ. If we choose trace function, i.e.,

f Pð Þ ¼ tr Pð Þ, it means the sum of squares of semiaxes lengths of the ellipsoid E. The other common

“size” of the ellipsoid is logdet Pð Þ, which corresponds to the volume of the ellipsoid E.

For a general nonlinear dynamic system, it is hard to solve the problem (11)–(12) [22]. It is this

reason that the literatures [23, 24] are sought to find the particular relaxations of the original

optimization problem (11)–(12). One of the typical methods is based on randomization of the

parameter uk. Specifically, to solve the problem (11)–(12), we may take some samples from the

boundary and interior points of the sphere kukk ≤ 1 so that we can get a finite set of u1
k ,…,uN

k ,

and then the infinite constraint (12) can be approximated by N constraints based on u1
k ,…,uN

k .

Moreover, by Schur complement, an approximate bounding ellipsoid for Δf k ukð Þ can be

derived by solving the following SDP optimization problem:
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min f Pf k

� �

(13)

subject to
�1 Δf k ui

k

� �

� ef k
� �T

Δf k ui
k

� �

� ef k �Pf k

2

4

3

5≼0

i ¼ 1,…, N:

(14)

Although the randomized solution may not be feasible for all kukk ≤ 1, [24] has used statistical

learning techniques to provide an explicit bound on the measure of the set of original con-

straints that are possibly violated by the randomized solution, and they prove this measure

rapidly decreases to zero as N is increasing. Therefore, the obtained randomized solution of

the optimization problem (13)–(14) can be made approximately feasible for the semi-infinite

optimization (11)–(12) by sampling a sufficient number of constraints.

Similarly, the outer bounding ellipsoid for Δhk ukð Þ can be derived by solving

min f Phkð Þ (15)

subject to
�1 Δhk ui

k

� �

� ehk
� �T

Δhk ui
k

� �

� ehk �Phk

2

4

3

5≼0,

i ¼ 1,…, N:

(16)

Remark 2. Note that the bounding ellipsoid of [19] is derived by interval mathematics. We derive the

bounding ellipsoid by solving a semi-infinite optimization problem. Figure 1 illustrates the difference of

two methods. It is obvious to see that the bounding ellipsoid derived by solving the SDP (13) is tighter

than that obtained by interval mathematics. The cumulative effect of the conservative bounding ellipsoid

at each time step may yield divergence of a filtering.

Figure 1. (Top) The bounding ellipsoid is derived by covering the solid points of the remainder which are obtained byMonte

Carlo sampling. (Bottom) The bounding ellipsoid is derived by covering the vertices of the rectangle obtained by interval

mathematics [19].
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3.2. Ellipsoidal remainder bounding by boundary sampling

In this subsection, for a typical nonlinear dynamic system in target tracking, we discuss that

the remainder can be bounded by an ellipsoid via boundary sampling for target tracking. Thus,

the new method can reduce the computation complexity efficiently in the bounding step.

Let us consider the following nonlinear measurement Eq. [1]:

h xð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x 1ð Þ � að Þ2 þ x 2ð Þ � bð Þ2

q

arctan
x 2ð Þ � b

x 1ð Þ � a

� 	

2

664

3

775, a, b∈R (17)

where x is a four-dimensional state variable that includes position and velocity x; y; _x; _y½ �T.

Note that h xð Þ only depends on the first two dimensions x 1ð Þ and x 2ð Þ.

We discuss the relationship between the set kukk ≤ 1;uk ¼ uk 1ð Þ uk 2ð Þ½ �f g and the remainder

set Δhkþ1 ukð Þ : kukk ≤ 1f g.

Proposition 1. If we let the remainder g uð Þ ¼ h bx þ Euð Þ � h bxð Þ � JhEu where h bxð Þ is defined in (17),

E is a Cholesky factorization of a positive-definite P such that ellipsoid x ¼ bx þ Eu : ∥u∥ ≤ 1f g does

not intersect with the radial x : x 1ð Þ <¼ a; x 2ð Þ ¼ bf g, and then the boundary of the remainder set

S ¼ g uð Þ : ∥u∥ ≤ 1f g belongs to the set g uð Þ : ∥u∥ ¼ 1f g.

Remark 3. Note that the ellipsoid x ¼ bx þ Eu : ∥u∥ ≤ 1f g does not intersect with the radial. x : x 1ð Þf

<¼ a; x 2ð Þ ¼ bg is a weak condition, which is in order to satisfy the continuity of g uð Þ, and we can verify

the condition by using the distance from the ellipsoid center bx to the radial. Moreover, if the condition is

violated, i.e., the true target is near the radial, we can transform the data to a new coordinate system where

the target is far way the radial, and then the assumption can be satisfied.

The proof of Proposition 1 relies on the following three lemmas:

Lemma 1. (Remainder lemma). The determinant of the derivative of the remainder g uð Þ is not less than

0, and the equality holds if and only if cu 1ð Þ þ du 2ð Þ ¼ 0, where c ¼ E11 bx 2ð Þ � bð Þ � E21 bx 1ð Þ � að Þ,

d ¼ E12 bx 2ð Þ � bð Þ � E22 bx 1ð Þ � að Þ, and Eij are the entries of the ith row and the jth column of the matrix

E. Meanwhile, if cu 1ð Þ þ du 2ð Þ ¼ 0, then g uð Þ ¼ 0.

Lemma 2. If the sets S1
∪S2 ¼ S3

∪S4, S3
∩S4 ¼ ∅, and S1 ⊂S3, then S4 ⊂S2.

Lemma 3. (Inverse function theorem [25]) Suppose that φ : Rn ! Rn is continuously differentiable

in an open set containing u and det φ0 uð Þð Þ 6¼ 0, then there is an open set V containing u and open set

W containing φ uð Þ such that φ : V ! W has a continuous inverse φ�1
: W ! V which is differentia-

ble and for all y∈W satisfies φ�1
� �0

yð Þ ¼ φ0 φ�1 yð Þ
� �
 ��1

.

Example 1. To illustrate Proposition 1, we give an example as follow: if a ¼ 50, b ¼ 100, bx ¼

80 130½ �T , and P ¼ diag 500; 1000ð Þ, it is easy to check that g uð Þ is continuously differentiable in set

S1 ¼ u : ∥u∥ ≤ 1f g. We divide S1 into three parts, i.e., S1 ¼ A1
∪B1

∪C1, where A1 ¼ u : cu 1ð Þþf

du 2ð Þ < 0; ∥u∥ ≤ 1g, B1 ¼ u : cu 1ð Þ þ du 2ð Þ > 0; ∥u∥ ≤ 1f g, and C1 ¼ u : cu 1ð Þ þ du 2ð Þ ¼ 0;f
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∥u∥ ≤ 1g. Meanwhile, we can also divide S into the corresponding parts, such that A ¼ g uð Þ :f

u∈A1g, B ¼ g uð Þ : u∈B1
� �

, C ¼ g uð Þ : u∈C1
� �

, and then S ¼ A∪B∪C.

Figure 2 shows the separation area of the circle and their corresponding area of g uð Þ. Three observations

can be made as follows:

• The remainder set is the union of two sets.

• The (red) line C1 is mapped to the point 0.

• The boundary of S belongs to the set g uð Þ : ∥u∥ ¼ 1f g.

In summary, when we take samples from the boundary, they are sufficient to derive the outer bounding

ellipsoids of the remainder set. Therefore, based on Proposition 1, the computation complexity in the

bounding step of the new method can be reduced much more.

Remark 4. In order to further reduce the samples and cover the remainder set at the same time, we can

heuristically enlarge the sampling area, such as kukk ¼ 1:1f g; then, the remainder set becomes a little

larger. If we derive an ellipsoid to cover the little larger remainder, then this ellipsoid can cover the

original remainder set Δhkþ1 ukð Þ : kukk ≤ 1f g.

3.3. A tight solution

In this subsection, for some quadratic nonlinear dynamic systems, the semi-infinite optimization

problem (11)–(12) may be equivalent to solving an SDP problem via sampling on all vertices of a

polyhedron. Thus, we can obtain a tight bounding ellipsoid to cover the remainder.

We consider a quadratic nonlinear state equation:

f k xkð Þ ¼

α1 0 0 0

0 α2 0 0

0 0 ⋱ 0

0 0 0 αn

2

6

6

6

4

3

7

7

7

5

x1k
� �2

x2k
� �2

⋮

xnk
� �2

2

6

6

6

6

4

3

7

7

7

7

5

(18)

Figure 2. (Left) The separation of circle. (Right) The corresponding area of g uð Þ.
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where xk ∈R
n is the state of system at time k, and xik denoted the ith component of xk; αi are

known parameters, i ¼ 1,…, n.

Proposition 2. If we let the high-order remainder Δf k ukð Þ ¼ f bxk þ Ekukð Þ � f bxkð Þ � Jf kEkuk where

∥uk∥ ≤ 1, assume that f k bxkð Þ is a quadratic function defined in (18) and Ek is a diagonal matrix; then, a

tight bounding ellipsoid can be derived to cover the high-order remainder Δf k ukð Þ by solving the

following optimization problem:

min f Pf k

� �
(19)

ð20Þ

for i ¼ 1, 2,…, n:

where Eii
k is the ith row and jth column of Ek.

In summary, we can determine the remainder bounding ellipsoid by sampling as follows.

1 For general nonlinear functions, samples may be taken from the sphere kukk ≤ 1.

2 For a typical nonlinear dynamic system in target tracking or nonlinear functions, samples

may be taken on the boundary of the sphere kukk ≤ 1.

3 For some quadratic nonlinear functions, samples only need vertices of a polyhedron.

4. Ellipsoidal state bounding via SDP

In this section, we present the prediction step and the measurement step of the set-membership

filtering by extending El Ghaoui and Calafiore’s optimization method [26]. The point is that

when the nonlinear dynamics are linearized on the current estimate, the uncertainties of the

new linearized dynamic system include the uncertain bounding ellipsoids of the remainder

terms and the noises.
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4.1. Prediction step

Proposition 3. At time kþ 1, based on measurements yk, the bounding ellipsoids of the state, and the

remainders Ek, E f k
, and Ehk , a predicted bounding ellipsoid Ekþ1∣k ¼ x : x� bxkþ1∣k

� �T
Pkþ1∣k

� ��1
n

x� bxkþ1∣k

� �
≤ 1g can be obtained by solving the optimization problem in the variables Pkþ1∣k and bxkþ1∣k

and nonnegative scalars τu ≥ 0, τw ≥ 0, τv ≥ 0, τf ≥ 0, τh ≥ 0:

min f Pkþ1∣k

� �
(21)

subject to � τ
u
≤ 0, � τ

w
≤ 0, � τ

v
≤ 0, (22)

� τ
f
≤ 0, � τ

h
≤ 0, � Pkþ1∣k ≺ 0, (23)

�Pkþ1∣k Φkþ1∣k Ψkþ1∣k

� �
⊥

Φkþ1∣k Ψkþ1∣k

� �
⊥

� �T
� Ψkþ1∣k

� �T
⊥
Ξ Ψkþ1∣k

� �
⊥

2

64

3

75≼0, (24)

where

Φkþ1∣k ¼ f k bxkð Þ þ ef k � bx
kþ1∣k

; Jf kEk; I; 0;Bf k
; 0

h i
, 0∈R

n,n1 , (25)

Ψkþ1∣k ¼ hk bxkð Þ þ ehk � yk; JhkEk; 0; I; 0;Bhk


 �
: (26)

Ψkþ1∣k

� �
⊥
is the orthogonal complement ofΨkþ1∣k. Ek is the Cholesky factorization of Pk, i.e., Pk ¼ Ek Ekð ÞT .

ef k , ehk , Bf k
, and Bhk are denoted by (7) and (9), respectively. Jf k ¼

∂f k xkð Þ
∂x

���bxk

and Jhk ¼
∂hk xkð Þ

∂x

���bxk

:

Ξ ¼ diag 1� τ
u � τ

w � τ
v � τ

f � τ
h; τuI; τwQ�1

k ; τvR�1
k ; τf I; τhI

� �
: (27)

Remark 5. The objective function (21) is aimed at minimizing the shape matrix of the predicted

ellipsoid, and the constraints (22)–(24) ensure that the true state is contained in predicted bounding

ellipsoid Ekþ1∣k. Notice that if f Pð Þ ¼ tr Pð Þ, the optimization problems (13)–(16), (21)–(24), and

(28)–(31) are SDP problems, which can be efficiently solved by modern interior-point methods [27].

According to the guidelines in [28], the computational complexity of solving an SDP problem is

O max m; nð Þ4n1=2log1=e
� 


, where n is the number of the states. With the development of convex

optimization technology technique, one can also use first-order optimizing algorithm. The computa-

tional complexity may be reduced further (see [29]).

4.2. Measurement update step

Similarly, we can derive the measurement update step of the nonlinear filtering.

Proposition 4. At time kþ 1, based on measurement ykþ1, the predicted bounding ellipsoid Ekþ1∣k,

and the bounding ellipsoid of the remainder Ehkþ1
, an estimated bounding ellipsoid
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Ekþ1 ¼ x : x� bxkþ1ð Þ
T
Pkþ1ð Þ�1

n
x� bxkþ1ð Þ ≤ 1g can be obtained by solving the optimization problem

in the variables Pkþ1 and bxkþ1 and nonnegative scalars τu ≥ 0, τv ≥ 0, τh ≥ 0:

min f Pkþ1ð Þ (28)

subject to � τ
u
≤ 0, � τ

v
≤ 0, � τ

h
≤ 0, (29)

�Pkþ1 ≺ 0, (30)

�Pkþ1 Φkþ1 Ψkþ1ð Þ⊥

Φkþ1 Ψkþ1ð Þ⊥
� �T

� Ψkþ1ð ÞT⊥Ξ Ψkþ1ð Þ⊥

" #

≼0, (31)

where

Φkþ1 ¼ bxkþ1∣k � bxkþ1;Ekþ1∣k; 0; 0

 �

, 0∈R
n,n1 , (32)

Ψkþ1 ¼ hkþ1 bxkþ1∣k

� �
þ ehkþ1

� ykþ1; Jhkþ1∣k
Ekþ1∣k; I;Bhkþ1

h i
: (33)

Ψkþ1ð Þ⊥ is the orthogonal complement of Ψkþ1. Ekþ1∣k is the Cholesky factorization of Pkþ1∣k, i.e.,

Pkþ1∣k ¼ Ekþ1∣k Ekþ1∣k

� �T
. bxkþ1∣k is the center of the predicted bounding ellipsoid Ekþ1∣k. ehkþ1

and Bhkþ1

are denoted by 9ð Þ at the time step kþ 1. Jhkþ1∣k
¼ ∂hkþ1 xkð Þ

∂x

���bx kþ1∣k
:

Ξ ¼ diag 1� τ
u � τ

v � τ
h
; τ

uI; τvR�1
kþ1; τ

hI
� �

: (34)

4.3. Sampling-based ellipsoidal bounding filter algorithm

• Step 1: (Initialization step) Set k ¼ 0 and initial values bx0;P0ð Þ such that x0 ∈ E0.

• Step 2: (Bounding step) Take samples u1
k ,…,uN

k from the sphere kukk ≤ 1, and then determine

two bounding ellipsoids to cover the remainders Δf k and Δhk by (13)–(14) and (15)–(16),

respectively.

• Step 3: (Prediction step) Optimize the center and shape matrix of the state prediction

ellipsoid bxkþ1∣k;Pkþ1∣k

� �
such that xkþ1∣k ∈ Ekþ1∣k by solving the optimization problem (21)–(24).

• Step 4: (Bounding step) Take samples u1
kþ1∣k,…,uN

kþ1∣k from the sphere kukþ1∣kk ≤ 1, and then

determine one bounding ellipsoid to cover the remainder Δhkþ1 by (15)–(16).

• Step 5: (Measurement update step) Optimize the center and shape matrix of the state estima-

tion ellipsoid bxkþ1;Pkþ1ð Þ such that xkþ1 ∈ Ekþ1 by solving the optimization problem (28)–(31).

• Step 6: Set k ¼ kþ 1 and go to Step 2.
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5. Numerical example in target tracking

In this section, we compare the performance between the proposed set-membership filter and

extended set-membership filter (ESMF) [19], which can also be implemented online for target

tracking with a nonlinear dynamic system, when the state noises and measurement noises are

unknown but bounded.

By considering a two-dimensional Cartesian, coordinate system as follows [1]:

xkþ1 ¼

1 0 T 0

0 1 0 T

0 0 1 0

0 0 0 1

2

6664

3

7775xk þwk, (35)

yk ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xk 1ð Þð Þ2 þ xk 2ð Þð Þ2

q

arctan
xk 2ð Þ

xk 1ð Þ

� 	

2

664

3

775þ vk, (36)

x is a four-dimensional state variable that includes position and velocity x; y; _x; _y½ �T, and T ¼ 1

s is the time sampling interval. The process noise and measurement noise assumed to be

confined to specified ellipsoidal sets:

Wk ¼ wk : wT
kQ

�1
k wk ≤ 1

� �

Vk ¼ vk : vTk R
�1
k vk ≤ 1

� �
:

where

Qk ¼ σ
2

T3

3
0

T2

2
0

0
T3

3
0

T2

2

T2

2
0 T 0

0
T2

2
0 T

2

666666666664

3

777777777775

,Rk ¼ q �
32 0

0 12

" #

:

The target acceleration σ
2 equals to 10. The parameter q is used to control the uncertainty of

the measurement noise. In the example, the target starts at the point 50; 30ð Þ with a velocity of

5; 5ð Þ. The center and the shape matrix of the initial bounding ellipsoid are bx0 ¼ 49:5 29:5 5 5½ �T

and P0 ¼ diag 5; 5; 2; 2½ �ð Þ, respectively.

The following simulation results include three parts: the first part is about the size of the

remainder bounding ellipsoid, the second part is about the root-mean-square error (RMSE) of

the state estimation, and the third part is about the computation time. They are illustrated and
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discussed by the number of samples, the time steps, and the uncertain parameter q of the

measurement noise, respectively:

• In Figure 3, the log size of the remainder bounding ellipsoid is plotted as a function of the

time steps with the uncertain parameter q ¼ 0:01. It shows that the size of the new method

is much smaller than that of the ESMF, i.e., the new method derives a tighter ellipsoid to

cover the remainder. Moreover, we use 30 samples to calculate a remainder bounding

ellipsoid on a time step based on solving the optimization problem (15)–(16). The corresp-

onding bounding ellipsoid is presented in Figure 4. It shows that the bounding ellipsoid

can cover all points of the remainder set with a very small size. In Figures 5 and 6, the

average size of the remainder bounding ellipsoid through the time steps 1–20 is plotted as a

function of the uncertain parameter q of the measurement noise. The larger q means that the

measurement noise is more uncertain. Thus, Figures 5 and 6 show that when the uncer-

tainty of the measurement noise is increasing, the size of the remainder bounding ellipsoid

of ESMF is quickly increasing; however, that of the new method is slowly increasing and

relatively stable.

• RMSE of the state estimation along the position direction is plotted as a function of the time

steps in Figure 7. It shows that RMSE of the new method is less than that of ESMF. The reason

may be that the new method derives a tighter ellipsoid to cover the remainder, which can be

seen in the Figure 4. Figure 7 also shows that RMSEs of the proposed filter based on 30 and 40

samples are almost same. The reason may be that the remainder bounding ellipsoid is same

when the number of samples is more than 30. In Figure 8, the average RMSE of the state

estimation through the time steps 1 to 20 is plotted as a function of the uncertain parameter q. It

Figure 3. The log size of the remainder bounding ellipsoid is plotted as a function of time steps with q ¼ 0:01.
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Figure 4. The remainder bounding ellipsoid on a time step based on 30 samples from the boundary.

Figure 5. The average size of the remainder bounding ellipsoid is plotted as a function of the uncertain parameter q by ESMF.
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Figure 6. The average size of the remainder bounding ellipsoid is plotted as a function of the uncertain parameter q by the

new method.

Figure 7. The RMSE of the state estimation is plotted as a function of time steps with q ¼ 0:01.
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Figure 8. The average RMSE of the state estimation through the time steps 1 to 20 is plotted as a function of the uncertain

parameter q.

Figure 9. The computation time of the proposed state bounding filter and ESMF at each time step.
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shows that the average RMSE of the state estimation based on the new method is also less than

that of ESMF. The larger uncertain parameter q is a better performance of the new method than

that of ESMF. In summary, Figures 5–8 indicate that the new method performs much better

than ESMF, especially in the situation of the larger noise.

• Since the predictive step and measurement update step of the new method are calculated by

solving an SDP, the computation time of the new method is greater than that of ESMF, which

can be seen in the right of Figure 9, but it may be tolerated and be done in polynomial time.

6. Conclusion

In order to deal with the nonlinear dynamic systems with unknown but bounded noise, we

have proposed a new filtering method via set-membership theory and boundary sampling

technique to determine a state estimation ellipsoid. To guarantee the online usage, the nonli-

near dynamics are linearized about the current estimate, and the remainder terms are then

bounded by an ellipsoid, which can be written as the solution of a semi-infinite optimization

problem. For a typical nonlinear dynamic system in target tracking, the semi-infinite optimi-

zation problem can be efficiently approximated by a randomized method. Moreover, for some

quadratic nonlinear dynamic systems, using the samples on all vertices of a polyhedron, we

obtain a tight bounding ellipsoid, which covers the remainder by solving an SDP problem.

Finally, the set-membership prediction and measurement update are derived based on the

recent optimization method and the online bounding ellipsoid of the remainder other than a

priori bound, so that a tighter set-membership filter can be achieved. Numerical example

shows that the proposed method performs much better than ESMF, especially in the situation

of the larger noise. Future work will include that the multisensor fusion, multiple target

tracking, and various applications such as sensor management and placement for structures

and different types of wireless networks.
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